Mesangiospermae

Last updated

Mesangiospermae
Flower poster 2.jpg
Diversity of Mesangiosperms
Scientific classification Red Pencil Icon.png
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Mesangiosperms
Groups
Synonyms
  • Core angiosperms
Flower of Liriodendron tulipifera, a Mesangiosperm Liriodendron tulipifera1Foggy Bummer.jpg
Flower of Liriodendron tulipifera , a Mesangiosperm

Mesangiospermae (core angiosperms) is a clade of flowering plants (angiosperms), informally called "mesangiosperms". They are one of two main groups of angiosperms. It is a name created under the rules of the PhyloCode system of phylogenetic nomenclature. [1] There are about 350,000 species of mesangiosperms. [2] The mesangiosperms contain about 99.95% of the flowering plants, assuming that there are about 175 species not in this group [3] and about 350,000 that are. [2] While such a clade with a similar circumscription exists in the APG III system, it was not given a name. [4]

Contents

Phylogeny

Besides the mesangiosperms, the other groups of flowering plants are Amborellales, Nymphaeales, and Austrobaileyales. These constitute a paraphyletic grade called basal angiosperms. The order names, ending in -ales are used here without reference to taxonomic rank because these groups contain only one order.[ clarification needed ]

Mesangiospermae includes the following clades:

Cladogram: The phylogenetic position of the Mesangiospermae within the angiosperms, as of APG IV (2016) [5]
angiosperms

Amborellales

Nymphaeales

Austrobaileyales

Mesangiospermae

magnoliids

Chloranthales

monocots

Ceratophyllales

eudicots

basal angiosperms
core angiosperms

Name

The mesangiosperms are usually recognized in classification systems that do not assign groups to taxonomic rank. The name Mesangiospermae is a branch-modified node-based name in phylogenetic nomenclature. It is defined as the most inclusive crown clade containing Platanus occidentalis , but not Amborella trichopoda , Nymphaea odorata , or Austrobaileya scandens . [6] It is sometimes written as /Mesangiospermae even though this is not required by the PhyloCode. The "clademark" slash indicates that the term is intended as phylogenetically defined. [1]

Description

In molecular phylogenetic studies, the mesangiosperms are always strongly supported as a monophyletic group. [7] There is no distinguishing characteristic which is found in all mature mesangiosperms but which is not found in any of the basal angiosperms. Nevertheless, the mesangiosperms are recognizable in the earliest stage of embryonic development. [3] [8] The ovule contains a megagametophyte, also known as an embryo sac, that is bipolar in structure and contains 8 cell nuclei. The antipodal cells are persistent, and the endosperm is triploid.

History

The oldest known fossils of flowering plants are fossil mesangiosperms from the Hauterivian stage of the Cretaceous period. [9]

Molecular clock comparisons of DNA sequences indicate that the mesangiosperms originated between 140 and 150 Mya (million years ago) near the beginning of the Cretaceous period. [10] This was about 25 Ma (million years) after the origin of the angiosperms in the mid-Jurassic. [11]

By 135Mya, the mesangiosperms had radiated into 5 groups: Chloranthales, Magnoliids, Monocots, Ceratophyllales, and Eudicots. [11] The radiation into 5 groups probably occurred in about 4 million years.

Because the interval of this radiation (about 4 million years) is short in proportion to its age (about 145 million years), it had long appeared that the 5 groups of mesangiosperms had arisen simultaneously. The mesangiosperms were shown as an unresolved pentatomy in phylogenetic trees. In 2007, two studies attempted to resolve the phylogenetic relationships among these 5 groups by comparing large portions of their chloroplast genomes. [11] [12] These studies agreed on the most likely phylogeny for the mesangiosperms. In this phylogeny, the monocots are sister to the clade [Ceratophyllales + eudicots]. However, this result is not strongly supported. The approximately unbiased topology test showed that some of the other possible positions of the monocots had more than 5% probability of being correct. The major weakness of these 2 studies was the small number of species whose DNA was being used in the phylogenetic analysis, 45 in one study and 64 in the other. [11] This was unavoidable, because complete chloroplast genome sequences are known for only a few plants.

Related Research Articles

<span class="mw-page-title-main">Apiales</span> Order of eudicot flowering plants in the asterid group

The Apiales are an order of flowering plants. The families are those recognized in the APG III system. This is typical of the newer classifications, though there is some slight variation and in particular, the Torriceliaceae may also be divided.

<span class="mw-page-title-main">Flowering plant</span> Clade of seed plants that produce flowers

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. They include insect-pollinated herbs such as buttercups, pond plants such as water lilies, wind-pollinated grasses, and trees such as apple and oak. The term "angiosperm" is derived from the Greek words ἀγγεῖον /angeion and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

<span class="mw-page-title-main">Malpighiales</span> Eudicot order of flowering plants

The Malpighiales comprise one of the largest orders of flowering plants, containing about 36 families and more than 16,000 species, about 7.8% of the eudicots. The order is very diverse, containing plants as different as the willow, violet, poinsettia, manchineel, rafflesia and coca plant, and are hard to recognize except with molecular phylogenetic evidence. It is not part of any of the classification systems based only on plant morphology. Molecular clock calculations estimate the origin of stem group Malpighiales at around 100 million years ago (Mya) and the origin of crown group Malpighiales at about 90 Mya.

<span class="mw-page-title-main">Saxifragales</span> Order of Eudicot flowering plants in the Superrosid clade

The Saxifragales (saxifrages) are an order of flowering plants (Angiosperms). They are an extremely diverse group of plants which include trees, shrubs, perennial herbs, succulent and aquatic plants. The degree of diversity in terms of vegetative and floral features makes it difficult to define common features that unify the order.

<span class="mw-page-title-main">Monocotyledon</span> Important clade of flowering plants

Monocotyledons, commonly referred to as monocots, are grass and grass-like flowering plants (angiosperms), the seeds of which typically contain only one embryonic leaf, or cotyledon. They constitute one of the major groups into which the flowering plants have traditionally been divided; the rest of the flowering plants have two cotyledons and are classified as dicotyledons, or dicots.

<span class="mw-page-title-main">Rosidae</span>

Under the International Code of Nomenclature for algae, fungi, and plants (ICN), Rosidae is a botanical name at the rank of subclass. Circumscription of the subclass will vary with the taxonomic system being used; the only requirement being that it includes the family Rosaceae.

<span class="mw-page-title-main">Celastrales</span> Order of flowering plants, mostly from tropics and subtropics

The Celastrales are an order of flowering plants found throughout the tropics and subtropics, with only a few species extending far into the temperate regions. The 1200 to 1350 species are in about 100 genera. All but seven of these genera are in the large family Celastraceae. Until recently, the composition of the order and its division into families varied greatly from one author to another.

<i>Amborella</i> Species of shrub

Amborella is a monotypic genus of understory shrubs or small trees endemic to the main island, Grande Terre, of New Caledonia in the southwest Pacific Ocean. The genus is the only member of the family Amborellaceae and the order Amborellales and contains a single species, Amborella trichopoda. Amborella is of great interest to plant systematists because molecular phylogenetic analyses consistently place it as the sister group to all other flowering plants.

<span class="mw-page-title-main">Angiosperm Phylogeny Group</span> Collaborative research group for the classification of flowering plants

The Angiosperm Phylogeny Group (APG) is an informal international group of systematic botanists who collaborate to establish a consensus on the taxonomy of flowering plants (angiosperms) that reflects new knowledge about plant relationships discovered through phylogenetic studies.

<span class="mw-page-title-main">Eudicots</span> Clade of flowering plants

The eudicots, Eudicotidae, or eudicotyledons are a clade of flowering plants mainly characterized by having two seed leaves upon germination. The term derives from Dicotyledons.

<span class="mw-page-title-main">Rosids</span> Large clade of flowering plants

The rosids are members of a large clade of flowering plants, containing about 70,000 species, more than a quarter of all angiosperms.

<span class="mw-page-title-main">Peridiscaceae</span> Family of flowering plants in the order Saxifragales

Peridiscaceae is a family of flowering plants in the order Saxifragales. Four genera comprise this family: Medusandra, Soyauxia, Peridiscus, and Whittonia., with a total of 12 known species. It has a disjunct distribution, with Peridiscus occurring in Venezuela and northern Brazil, Whittonia in Guyana, Medusandra in Cameroon, and Soyauxia in tropical West Africa. Whittonia is possibly extinct, being known from only one specimen collected below Kaieteur Falls in Guyana. In 2006, archeologists attempted to rediscover it, however, it proved unsuccessful.

<span class="mw-page-title-main">Commelinids</span> Clade of monocot flowering plants

In plant taxonomy, commelinids is a clade of flowering plants within the monocots, distinguished by having cell walls containing ferulic acid.

<span class="mw-page-title-main">Huerteales</span> Order of flowering plants

Huerteales is the botanical name for an order of flowering plants. It is one of the 17 orders that make up the large eudicot group known as the rosids in the APG III system of plant classification. Within the rosids, it is one of the orders in Malvidae, a group formerly known as eurosids II and now known informally as the malvids. This is true whether Malvidae is circumscribed broadly to include eight orders as in APG III, or more narrowly to include only four orders. Huerteales consists of four small families, Petenaeaceae, Gerrardinaceae, Tapisciaceae, and Dipentodontaceae.

<span class="mw-page-title-main">Magnoliids</span> Clade of flowering plants

Magnoliids are a clade of flowering plants. With more than 10,000 species, including magnolias, nutmeg, bay laurel, cinnamon, avocado, black pepper, tulip tree and many others, it is the third-largest group of angiosperms after the eudicots and monocots. The group is characterized by trimerous flowers, pollen with one pore, and usually branching-veined leaves.

<span class="mw-page-title-main">Basal angiosperms</span> Descendants of most extant flowering plants

The basal angiosperms are the flowering plants which diverged from the lineage leading to most flowering plants. In particular, the most basal angiosperms were called the ANITA grade, which is made up of Amborella, Nymphaeales and Austrobaileyales.

<span class="mw-page-title-main">Superrosids</span> Clade of flowering plants

The superrosids are members of a large clade of flowering plants, containing more than 88,000 species, and thus more than a quarter of all angiosperms.

<span class="mw-page-title-main">Pentapetalae</span> Group of eudicots known as core eudicots

In phylogenetic nomenclature, the Pentapetalae are a large group of eudicots that were informally referred to as the "core eudicots" in some papers on angiosperm phylogenetics. They comprise an extremely large and diverse group that accounting about 65% of the species richness of the angiosperms, with wide variability in habit, morphology, chemistry, geographic distribution, and other attributes. Classical systematics, based solely on morphological information, was not able to recognize this group. In fact, the circumscription of the Pentapetalae as a clade is based on strong evidence obtained from DNA molecular analysis data.

<span class="mw-page-title-main">Superasterids</span> Clade of flowering plants

The superasterids are members of a large clade of flowering plants, containing more than 122,000 species.

References

  1. 1 2 Philip D. Cantino, James A. Doyle, Sean W. Graham, Walter S. Judd, Richard G. Olmstead, Douglas E. Soltis, Pamela S. Soltis, and Michael J. Donoghue (2007). "Towards a phylogenetic nomenclature of Tracheophyta". Taxon. 56 (3): 822–846. doi:10.2307/25065865. JSTOR   25065865.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Alan J. Paton, Neil Brummitt, Rafaël Govaerts, Kehan Harman, Sally Hinchcliffe, Bob Allkin, & Eimear Nic Lughadha (2008). "Towards Target 1 of the Global Strategy for Plant Conservation: a working list of all known plant species - progress and prospects". Taxon57(2):602-611.
  3. 1 2 Peter F. Stevens (2001 onwards). Angiosperm Phylogeny Website In: Missouri Botanical Garden Website. (see External links below).
  4. Angiosperm Phylogeny Group (2009), "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III", Botanical Journal of the Linnean Society, 161 (2): 105–121, doi: 10.1111/j.1095-8339.2009.00996.x
  5. APG IV 2016.
  6. Philip D. Cantino, James A. Doyle, Sean W. Graham, Walter S. Judd, Richard G. Olmstead, Douglas E. Soltis, Pamela S. Soltis, and Michael J. Donoghue. 2007. Electronic Supplement: pages E1-E44. To: Cantino et alii. 2007. "Towards a phylogenetic nomenclature of Tracheophyta". Taxon56(3):822-846. (see External links below).
  7. Douglas E. Soltis, Pamela S. Soltis, Peter K. Endress, and Mark W. Chase (2005). Phylogeny and Evolution of the Angiosperms. Sinauer: Sunderland, MA
  8. William E. Friedman and Kirsten C. Ryerson (2009). "Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants". American Journal of Botany 96(1):129-143. doi : 10.3732/ajb.0800311
  9. Else Marie Friis, K. Raunsgaard Pedersen, and Peter R. Crane (2006). "Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction". Palaeogeography, Palaeoclimatology, Palaeoecology232(2-4):251-293. doi : 10.1016/j.palaeo.2005.07.006
  10. T. Jonathan Davies, Timothy G. Barraclough, Mark W. Chase, Pamela S. Soltis, Douglas E. Soltis, and Vincent Savolainen (2004). "Darwin's abominable mystery: Insights from a supertree of the angiosperms". Proceedings of the National Academy of Sciences 101(7):1904-1909.
  11. 1 2 3 4 Michael J. Moore, Charles D. Bell, Pamela S. Soltis, and Douglas E. Soltis (2007). "Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms". Proceedings of the National Academy of Sciences 104(49):19363-19368. doi : 10.1073/pnas.0708072104
  12. Robert K. Jansen, Zhengqiu Cai, Linda A. Raubeson, Henry Daniell, Claude W. dePamphilis, James Leebens-Mack, Kai F. Müller, Mary Guisinger-Bellian, Rosemarie C. Haberle, Anne K. Hansen, Timothy W. Chumley, Seung-Bum Lee, Rhiannon Peery, Joel R. McNeal, Jennifer V. Kuehl, and Jeffrey L. Boore (2007). "Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns" Proceedings of the National Academy of Sciences 104(49):19369-19374 doi : 10.1073/pnas.0709121104

Bibliography