Endosperm

Last updated
Wheat seed Wheat seed.jpg
Wheat seed

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid (meaning three chromosome sets per nucleus) in most species, [1] which may be auxin-driven. [2] It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread (the rest of the grain is included as well in whole wheat flour), while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", [3] and corn. Some plants, such as certain orchids, lack endosperm in their seeds.

Contents

Ancestral flowering plants have seeds with small embryos and abundant endosperm. In some modern flowering plants the embryo occupies most of the seed and the endosperm is non-developed or consumed before the seed matures. [4] [5] In other flowering plant taxa, the Poaceae for example, the endosperm is greatly developed. [6]

Double fertilization

An endosperm is formed after the two sperm nuclei inside a pollen grain reach the interior of a female gametophyte or megagametophyte, also called the embryonic sac. One sperm nucleus fertilizes the egg cell, forming a zygote, while the other sperm nucleus usually fuses with the binucleate central cell, forming a primary endosperm cell (its nucleus is often called the triple fusion nucleus). That cell created in the process of double fertilization develops into the endosperm. Because it is formed by a separate fertilization event, the endosperm is a separate entity from the developing embryo, and some consider it to be a separate organism.

About 70% of angiosperm species have endosperm cells that are polyploid. [7] These are typically triploid (containing three sets of chromosomes), but can vary widely from diploid (2n) to 15n. [8]

One flowering plant, Nuphar polysepala , has diploid endosperm, resulting from the fusion of a pollen nucleus with one, rather than two, maternal nuclei. The same is supposed for some other basal angiosperms. [9] It is believed that early in the development of angiosperm lineages, there was a duplication in this mode of reproduction, producing seven-celled/eight-nucleate female gametophytes, and triploid endosperms with a 2:1 maternal to paternal genome ratio. [10]

Double fertilisation is a characteristic feature of angiosperms.

Endosperm development

There are three types of endosperm development:

Nuclear endosperm development – where repeated free-nuclear divisions take place; if a cell wall is formed it will form after free-nuclear divisions. Commonly referred to as liquid endosperm. Coconut water is an example of this.

Cellular endosperm development – where a cell-wall formation is coincident with nuclear divisions. Coconut meat is cellular endosperm. Acoraceae has cellular endosperm development while other monocots are helobial.

Helobial endosperm development – where a cell wall is laid down between the first two nuclei, after which one half develops endosperm along the cellular pattern and the other half along the nuclear pattern.

Evolutionary origins

The evolutionary origins of double fertilization and endosperm are unclear, attracting researcher attention for over a century. There are the two major hypotheses: [8]

The triploid transition - and the production of antipodal cells - may have occurred due to a shift in gametophyte development which produced a new interaction with an auxin-dependent mechanism originating in the earliest angiosperms. [2]

Role in seed development

In some groups (e.g. grains of the family Poaceae), the endosperm persists to the mature seed stage as a storage tissue, in which case the seeds are called "albuminous" or "endospermous", and in others it is absorbed during embryo development (e.g., most members of the family Fabaceae, including the common bean, Phaseolus vulgaris), in which case the seeds are called "exalbuminous" or "cotyledonous" and the function of storage tissue is performed by enlarged cotyledons ("seed leaves"). In certain species (e.g. corn, Zea mays); the storage function is distributed between both endosperm and the embryo. Some mature endosperm tissue stores fats (e.g. castor bean, Ricinus communis) and others (including grains, such as wheat and corn) store mainly starches.

The dust-like seeds of orchids have no endosperm. Orchid seedlings are mycoheterotrophic in their early development. In some other species, such as coffee, the endosperm also does not develop. [12] Instead, the nucellus produces a nutritive tissue termed "perisperm". The endosperm of some species is responsible for seed dormancy. [13] Endosperm tissue also mediates the transfer of nutrients from the mother plant to the embryo, it acts as a location for gene imprinting, and is responsible for aborting seeds produced from genetically mismatched parents. [7] In angiosperms, the endosperm contain hormones such as cytokinins, which regulate cellular differentiation and embryonic organ formation. [14]

Cereal grains

Wheat-kernel nutrition.png

Cereal crops are grown for their edible fruit (grains or caryopses), which are primarily endosperm. In the caryopsis, the thin fruit wall is fused to the seed coat. Therefore, the nutritious part of the grain is the seed and its endosperm. In some cases (e.g. wheat, rice) the endosperm is selectively retained in food processing (commonly called white flour), and the embryo (germ) and seed coat (bran) removed. The processed grain has a lower quality of nutrition. Endosperm thus has an important role within the human diet worldwide.

The aleurone is the outer layer of endosperm cells, present in all small grains and retained in many dicots with transient endosperm. The cereal aleurone functions for both storage and digestion. During germination, it secretes the amylase enzyme that breaks down endosperm starch into sugars to nourish the growing seedling. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Flowering plant</span> Clade of seed plants that produce flowers

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae, commonly called angiosperms. They include all forbs, grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. The term "angiosperm" is derived from the Greek words ἀγγεῖον / angeion and σπέρμα / sperma ('seed'), meaning that the seeds are enclosed within a fruit. They are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species. Angiosperms were formerly called Magnoliophyta.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Apomixis</span> Replacement of the normal sexual reproduction by asexual reproduction, without fertilization

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The embryophytes are a clade of plants, also known as Embryophyta or land plants. They are the most familiar group of photoautotrophs that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the bryophytes and the polysporangiophytes. Living embryophytes include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and angiosperms. Embryophytes have diplobiontic life cycles.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Sporophyte</span> Diploid multicellular stage in the life cycle of a plant or alga

A sporophyte is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte — is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule. On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules.

Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination. The zygote produced after fertilization must undergo various cellular divisions and differentiations to become a mature embryo. An end stage embryo has five major components including the shoot apical meristem, hypocotyl, root meristem, root cap, and cotyledons. Unlike the embryonic development in animals, and specifically in humans, plant embryonic development results in an immature form of the plant, lacking most structures like leaves, stems, and reproductive structures. However, both plants and animals including humans, pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

Aleurone is a protein found in protein granules of maturing seeds and tubers. The term also describes one of the two major cell types of the endosperm, the aleurone layer. The aleurone layer is the outermost layer of the endosperm, followed by the inner starchy endosperm. This layer of cells is sometimes referred to as the peripheral endosperm. It lies between the pericarp and the hyaline layer of the endosperm. Unlike the cells of the starchy endosperm, aleurone cells remain alive at maturity. The ploidy of the aleurone is (3n) [as a result of double fertilization].

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or double fertilisation is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryonic sac (megagametophyte).

<span class="mw-page-title-main">Microspore</span> Small land plant spores that develop into male gametophytes

Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspores are structures that are part of the alternation of generations in many seedless vascular cryptogams, all gymnosperms and all angiosperms. Plants with heterosporous life cycles using microspores and megaspores arose independently in several plant groups during the Devonian period. Microspores are haploid, and are produced from diploid microsporocytes by meiosis.

A seedless fruit is a fruit developed to possess no mature seeds. Since eating seedless fruits is generally easier and more convenient, they are considered commercially valuable.

<span class="mw-page-title-main">Megaspore</span> Large spore in heterosporous plants that germinates into a female gametophyte

Megaspores, also called macrospores, are a type of spore that is present in heterosporous plants. These plants have two spore types, megaspores and microspores. Generally speaking, the megaspore, or large spore, germinates into a female gametophyte, which produces egg cells. These are fertilized by sperm produced by the male gametophyte developing from the microspore. Heterosporous plants include seed plants, water ferns (Salviniales), spikemosses (Selaginellaceae) and quillworts (Isoetaceae).

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants. During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryonic sac, which is where the female gamete is housed. These megaspores then develop into the haploid female gametophytes. This occurs within the ovule, which is housed inside the ovary.

<span class="mw-page-title-main">Nucellar embryony</span> Form of seed reproduction

Nucellar embryony is a form of seed reproduction that occurs in certain plant species, including many citrus varieties. Nucellar embryony is a type of apomixis, where eventually nucellar embryos from the nucellus tissue of the ovule are formed, independent of meiosis and sexual reproduction. During the development of seeds in plants that possess this genetic trait, the nucellus tissue which surrounds the megagametophyte can produce nucellar cells, also termed initial cells. These additional embryos (polyembryony) are genetically identical to the parent plant, rendering them as clones. By contrast, zygotic seedlings are sexually produced and inherit genetic material from both parents. Most angiosperms reproduce sexually through double fertilization. Different from nucellar embryony, double fertilization occurs via the syngamy of sperm and egg cells, producing a triploid endosperm and a diploid zygotic embryo. In nucellar embryony, embryos are formed asexually from the nucellus tissue. Zygotic and nucellar embryos can occur in the same seed (monoembryony), and a zygotic embryo can divide to produce multiple embryos. The nucellar embryonic initial cells form, divide, and expand. Once the zygotic embryo becomes dominant, the initial cells stop dividing and expanding. Following this stage, the zygotic embryo continues to develop and the initial cells continue to develop as well, forming nucellar embryos. The nucellar embryos generally end up outcompeting the zygotic embryo, rending the zygotic embryo dormant. The polyembryonic seed is then formed by the many adventitious embryos within the ovule. The nucellar embryos produced via apomixis inherit its mother's genetics, making them desirable for citrus propagation, research, and breeding.

<span class="mw-page-title-main">Embryonic sac</span>

A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes (megagametophytes). The megaspore mother cell arises within the megasporangium tissue.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

References

  1. Stewart-Cox JA, Britton NF, Mogie M (August 2004). "Endosperm triploidy has a selective advantage during ongoing parental conflict by imprinting". Proceedings. Biological Sciences. 271 (1549): 1737–43. doi:10.1098/rspb.2004.2783. PMC   1691787 . PMID   15306295.
  2. 1 2 Friedman, W. E. (2009-06-25). "Auxin at the Evo-Devo Intersection". Science . 324 (5935). American Association for the Advancement of Science: 1652–1653. Bibcode:2009Sci...324.1652F. doi:10.1126/science.1176526. ISSN   0036-8075. PMID   19556491. S2CID   206521265.
  3. "Edible Palm Fruits". Wayne's Word: An Online Textbook of Natural History. Archived from the original on 2 September 2017. Retrieved 14 July 2010.
  4. "The Seed Biology Place - Seed Dormancy". Seedbiology.de. Retrieved 2014-02-05.
  5. Friedman WE (1998), "The evolution of double fertilization and endosperm: an "historical" perspective", Sexual Plant Reproduction, 11: 6, doi:10.1007/s004970050114, S2CID   19785565
  6. "The Development of Endosperm in Grasses". academic.oup.com. Retrieved 2024-05-13.
  7. 1 2 Olsen OA (2007). Endosperm: Developmental and Molecular Biology. Springer. ISBN   9783540712350.
  8. 1 2 Baroux C, Spillane C, Grossniklaus U (August 2002). "Evolutionary origins of the endosperm in flowering plants". Genome Biology. 3 (9): reviews1026. doi: 10.1186/gb-2002-3-9-reviews1026 . PMC   139410 . PMID   12225592.
  9. Williams JH, Friedman WE (January 2002). "Identification of diploid endosperm in an early angiosperm lineage". Nature. 415 (6871): 522–6. Bibcode:2002Natur.415..522W. doi:10.1038/415522a. PMID   11823859. S2CID   4396197.
  10. Friedman WE, Williams JH (February 2003). "Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants". Evolution; International Journal of Organic Evolution. 57 (2): 216–30. doi: 10.1111/j.0014-3820.2003.tb00257.x . PMID   12683519. S2CID   24303275.
  11. Friedman WE (April 1995). "Organismal duplication, inclusive fitness theory, and altruism: understanding the evolution of endosperm and the angiosperm reproductive syndrome". Proceedings of the National Academy of Sciences of the United States of America. 92 (9): 3913–7. Bibcode:1995PNAS...92.3913F. doi: 10.1073/pnas.92.9.3913 . PMC   42072 . PMID   11607532.
  12. Houk WG (1938). "Endosperm and Perisperm of Coffee with Notes on the Morphology of the Ovule and Seed Development". American Journal of Botany. 25 (1): 56–61. doi:10.2307/2436631. JSTOR   2436631.
  13. Basra AS (1994). Mechanisms of plant growth and improved productivity: modern approaches. New York: M. Dekker. ISBN   978-0-8247-9192-6.
  14. Pearson LC (1995). The diversity and evolution of plants. Boca Raton: CRC Press. p. 547. ISBN   978-0-8493-2483-3.
  15. Becraft PW, Yi G (March 2011). "Regulation of aleurone development in cereal grains". Journal of Experimental Botany. 62 (5): 1669–75. doi: 10.1093/jxb/erq372 . PMID   21109580.
  16. Becraft PW, Gutierrez-Marcos J (2012). "Endosperm development: dynamic processes and cellular innovations underlying sibling altruism". Wiley Interdisciplinary Reviews: Developmental Biology. 1 (4): 579–93. doi:10.1002/wdev.31. PMID   23801534. S2CID   5752973.