Floriculture

Last updated
A retail greenhouse shows some of the diversity of floricultural plants Floriculture.jpg
A retail greenhouse shows some of the diversity of floricultural plants
Flower seedlings sold at a local market in Breda, Netherlands 027 Flowers at Algemene warenmarkt - market in Grote Markt, Breda, Netherlands.jpg
Flower seedlings sold at a local market in Breda, Netherlands

Floriculture is the study of the efficient production of the plants that produce showy, colorful flowers and foliage for human enjoyment and the human environment. It is a commercially successful branch of horticulture and agriculture found throughout the world. Efficient production practices have been developed over the years, for the hundreds of plant taxa used in the floral industry, increasing the overall knowledge of whole plant biology. Plant breeding and selection have produced tens of thousands of new genotypes for human use. Jasmine, Marigold, Chrysanthemum, Rose, Orchid, Anthurium, etc. are flowers of commercial demand.

Contents

Overview

Flowers are a part of human society. They are used at times of joy and sadness and part of everyday life. Flowers and plants may be indoors in a sunny window, as part of the landscape in the front yard or on the patio or deck in the back yard. People have been studying flowers and plants and their interaction with humans and how to produce these flowers and plants so all humans can enjoy them. Floriculture scientists throughout the world do this work.

Floriculture crops include cut flowers [1] and cut cultivated greens, bedding plants (garden flowers or annuals, and perennials, houseplants (foliage plants and flowering potted plants). [2] [3] These plants are produced in ground beds, flower fields or in containers in a greenhouse. Protected cultivation is often used because these plants have a high value to humans.

Flower crops are grown in simple to highly sophisticated ways. These crops can be grown in soil in farm fields or in field soil in inexpensive high tunnel greenhouses. [4] For years, flowers were grown, seasonally for the specific crop, close to the market in Europe, North America and Asia. However, many crops of the floral industry have moved to a specific climate, typically in the mountains of South America, Africa and China, so certain plants can be grown year around [5] where hand labor is available. [6]

Protected horticulture (greenhouses) has developed simultaneously with the continued changes in the flower crops and markets. Floriculture is a major component of controlled-environment agriculture (CEA). Floriculture crops have a high value to humans, so the cost of an expensive production system - greenhouses, [7] [8] [9] automated environmental control, automated irrigation and fertilization, robotic seed, transplant and container handling, supplemental photosynthetic lighting - is necessary to produce these plants efficiently for the world-wide markets. Some are irrigated manually, but most are irrigated with drip irrigation, boom irrigation or flood floors. Hydroponics can be used for many cut flower crops. [7] [9]

Floriculture value 2022

The global Floriculture market size is estimated to be worth US$50040 million in 2022 and is forecast to be a readjusted size of US$58030 million by 2028 with a compound annual growth rate of 2.5% during the review period. [10]

The total wholesale value of sales across all U.S. floriculture crops totaled US$6.69 billion in 2022 from 8,951 floriculture producers with a production area of 833 million square feet. [11]

Floriculture crops

Annual Bedding/Garden Plants

Potted Flowering Plants

Herbaceous Perennial Plants

Foliage Plants, Indoor/Patio Use (Houseplants)

Propagative Floriculture Materials

Cut Flowers

Cut Cultivated Greens

Floriculture advancements

Plant enthusiasts and growers learned significant details about growing certain plants over the years. Chrysanthemums have been cultivated in China for over 3000 years, [12] so growers knew about the plant and how to grow it. Floriculture scientists have simply continued this trend to control the plant's environment to control flowering for the significant dates when humans want flowers for celebrations and gatherings.

Photoperiodism

Chrysanthemum was one of the plants used in experiments that led to the definitions of photoperiod and photoperiodism. [13] Yet, it's likely that Chinese, Korean and Japanese plantsmen had a good understanding based on their years of experience. The occurrence of this physiological response and the reasons for it have been the subject of many experiments at universities and in industry. [14] [15] [16] [17] Poinsettias are another short day plant with importance to flower growers. [18] These and additional experiments and experience have shown that temperature has an impact on the photoperiodic response. [19] Many cut flower and bedding plant species respond to long day or short day treatments for faster flowering. [20] [21] [22] The use of lighting treatments to extend the day and black cloth treatments to shorten the day are important additions to floriculture to increase the efficiency of plant production.

Plant tissue culture, micropropagation

Plant propagation has always been a part of flower and plant gardening. Plant tissue culture began as a way to save orchid embryos as orchid fanciers bred new cultivars. Most horticulture and many botany programs in the world had scientists working on plant propagation through tissue culture techniques from the 1950s to the 1980s. [23] [24] [25] These programs expanded the knowledge base on a wide range of taxa and allowed industry to find the connection to commercial production. Plant tissue culture allowed new, unique phenotypes and genotypes to be propagated in large numbers quickly. Many cultivars of foliage plants are available only from tissue culture. [26] Uniquely, tissue cultured geraniums were heat treated to allow the identification and removal of many viruses, virus-indexed. [27] As viruses were removed, many horticultural characteristics of the many cultivars disappeared; this led plant breeders to leave many viruses in breeding lines for future cultivars. Heat treatment of tissue culture of many taxa has since been used to remove bacteria and virus pathogens in various floriculture crops.

Containers and growing media

Containers of various kinds have been used in the culture of plants for a long time. Field soil or garden soil possibly with an addition of organic matter (compost) was placed in the container or pot and a plant was added followed by regular watering. It was simple but required experience and a watchful eye to prevent overwatering.

Most people don't recognize that this success was tied to a relatively deep pot, usually 6-10 inches (15–25 cm) deep or larger. Gravity was sufficient to pull or drain water from the soil so an adequate portion of the soil in the pot was well drained and oxygen would be available to the root system. As US greenhouses began to expand the bedding plant business in the 1950s and 1960s, they needed smaller containers for the logistical aspects of plant spacing and shipping. Vacuum formed plastic trays and packs offered the smaller sizes but composted field soil was easy to overwater in the smaller containers. The first step was to add peat moss and perlite to the field soil in a 1:1:1 ratio. The next step was to use other materials, sphagnum moss peat and vermiculite, in a 1:1 ratio, the Cornell peat-lite mix. [28] [29] In the 1970s, more materials were used for growing media by the companies formed to process and distribute growing media to operations across the country. The physical properties of all the products had to be evaluated on a standard basis to make wise choices with economic decisions the operations were making. [30] [31] As plug (young plant) production, mechanization of seed germination and mechanization of transplanting, began in the 1980s more work was necessary to manage the small volume of growing media in plug trays. [32] Research continues of all aspects of growing media and container design. [33]

The harvest and use of peat for growing media remains an environmental issue in North America and Europe. [34] Alternative and more sustainable materials continue to be added to growing media processing - pine bark, processed pine bark, coco coir, wood fiber, etc. [35] [36] Sustainable solutions for growing media materials remain a high priority for the industry. [37]

Pesticide residues

Pesticide residues remain a significant issue for floriculture crops. Many countries have limited controls on pesticide usage but flower handlers and consumers could be contaminated by the residue. [38] [39]

The impact of certain pesticides, neonics, on bees and other pollinators has become a significant concern. The application of these pesticides on garden flowers during greenhouse production can have a major impact on pollinator populations in a consumer's garden. [40] [41]

Research continues on biological control of greenhouse insect, mite and plant pathogens to reduce pesticide use in floriculture crop production. [42] [43] [44]

Supplemental lighting

Supplemental lighting for flower crops began with photoperiod treatments and interest expanded to determine whether artificial light from electric lamps could substitute for sunlight during winter conditions. [45] [46] Incandescent lamps were not successful, so floriculture had to wait for lighting technology to improve. Advancements with fluorescent lamps and industrial lamps (mercury vapor, high pressure sodium, low pressure sodium, etc.) led to improved plant production for geraniums, roses and other crops. [47] [48] [49] [50] In the following decades, artificial lighting became standard practice in Europe, North America and Japan. [51]

Work was completed to standardize a plant's need for light (radiant energy) from natural and artificial sources. The term daily light integral (DLI) was introduced as a measurement of the optimal amount of radiant energy each plant requires for optimal growth. [52] [53] [54] [55]

The introduction of light emitting diode (LED) lamps offered more opportunities for supplemental lighting. These lamps were more efficient at light production, cooler and allowed the manipulation of light quality from different wavelengths of light compared to other lamps. [56] [57] [58]

Supplemental lighting has been used to optimize production of seedlings, [59] [60] bedding plants, [21] cut flowers [61] and other crops.

Plant nutrition, water quality and irrigation

Flower crops were grown in field soil like all horticultural and agricultural crops. Nutrients important to the flowers were held in the soil matrix and supplemented with additions of organic matter and animal manure. These organic additions were labor-intensive and inconsistent, reducing the ability to optimize flower production. Floriculture moved to growing media and inorganic fertilizer products in the 1950s and 1960s as container production became more important. This move was supported by hydroponic research more than soil science research. The "soil-less" nature of hydroponics was more similar to the "soil-less" nature of growing media.

See also,

Related Research Articles

<span class="mw-page-title-main">Hydroponics</span> Growing plants without soil using nutrients in water

Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions in an artificial environment. Terrestrial or aquatic plants may grow freely with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.

<span class="mw-page-title-main">Greenhouse</span> Building made chiefly of transparent material in which plants are grown

A greenhouse is a special structure that is designed to regulate the temperature and humidity of the environment inside. There are different types of greenhouses, but they all have large areas covered with transparent materials that capture sunlight and heat. The most common materials used in modern greenhouses for walls and roofs are rigid plastic made of polycarbonate, plastic film made of polyethylene, or glass panes. When the inside of a greenhouse is exposed to sunlight, the temperature increases, providing a sheltered environment for plants to grow even in cold weather.

<span class="mw-page-title-main">Horticulture</span> Small-scale cultivation of plants

Horticulture is the art and science of growing plants. This definition is seen in its etymology, which is derived from the Latin words hortus, which means "garden" and cultura which means "to cultivate". It is important to note that there are various divisions of horticulture because plants are grown for a variety of reasons. In anthropology, horticulture refers to a subsistence strategy characterized by the small-scale, non-industrial cultivation of plants for food. Horticulture is typically small-scale or ornamental, as compared to the larger-scale cultivation of crops that is seen in agriculture. However, there are aspects of horticulture that are industrialized/commercial such as greenhouse production across the globe.

<span class="mw-page-title-main">Plant physiology</span> Subdiscipline of botany

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.

<span class="mw-page-title-main">Waratah</span> Genus of plants in the family Proteaceae from southeastern Australia

Waratah (Telopea) is an Australian-endemic genus of five species of large shrubs or small trees, native to the southeastern parts of Australia. The best-known species in this genus is Telopea speciosissima, which has bright red flowers and is the New South Wales (NSW) state emblem. The waratah is a member of the family Proteaceae, flowering plants distributed in the Southern Hemisphere. The key diagnostic feature of Proteaceae is the inflorescence, which is often very large, brightly coloured and showy, consisting of many small flowers densely packed into a compact head or spike. Species of waratah boast such inflorescences ranging from 6–15 cm in diameter with a basal ring of coloured bracts. The leaves are spirally arranged, 10–20 cm long and 2–3 cm broad with entire or serrated margins. The name waratah comes from the Eora Aboriginal people, the pre-European inhabitants of the Sydney area.

<span class="mw-page-title-main">Babaco</span> Hybrid species of tree

The babaco, is a hybrid cultivar in the genus Vasconcellea from Ecuador. It is a hybrid between Vasconcellea cundinamarcensis, and Vasconcellea stipulata.

<span class="mw-page-title-main">Cannabis cultivation</span> Process of planting, growing and harvesting cannabis

Cultivation of cannabis is the production of cannabis infructescences. Cultivation techniques for other purposes differ.

This is an alphabetical index of articles related to gardening.

<span class="mw-page-title-main">Deep water culture</span>

Deep water culture (DWC) is a hydroponic method of plant production by means of suspending the plant roots in a solution of nutrient-rich, oxygenated water. Also known as deep flow technique (DFT), floating raft technology (FRT), or raceway, this method uses a rectangular tank less than one foot deep filled with a nutrient-rich solution with plants floating in Styrofoam boards on top. This method of floating the boards on the nutrient solution creates a near friction-less conveyor belt of floating rafts. DWC, along with nutrient film technique (NFT), and aggregate culture, is considered to be one of the most common hydroponic systems used today. Typically, DWC is used to grow short-term, non-fruiting crops such as leafy greens and herbs. DWC was invented accidentally in 1998 by a legacy cannabis grower who goes by the name of “Snype”. This occurred because “Snype” and his (unnamed) associate had to take a trip to Amsterdam and needed a way to feed their cannabis crop while they were away. They built nutrient and water reservoirs that would keep the plants thoroughly fed in their absence, and thusly the DWC system was born. They revised this system in 2010 to create RDWC. The large volume of water helps mitigate rapid changes in temperature, pH, electrical conductivity (EC), and nutrient solution composition.

<span class="mw-page-title-main">Floral industry</span>

The floral industry is focused on the production, distribution and sale of flowers for human enjoyment. The floral industry began in the Golden Century of the Netherlands, where flowers were grown on a large scale on vast estates. The industry continues to diversify from the production of cut flowers to the production and sale of plants and flowers in many different forms. The global floral industry market size is estimated to be worth US$ 50040 million in 2022 and is forecast to increase to US$ 58030 million by 2028 with a compound annual growth rate of 2.5% during the review period.

<span class="mw-page-title-main">Grow light</span> Lighting to aid plant growth

A grow light is an electric light to help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.

<span class="mw-page-title-main">Potting soil</span> Medium in which to grow plants

Potting soil or growing media, also known as potting mix or potting compost (UK), is a substrate used to grow plants in containers. The first recorded use of the term is from an 1861 issue of the American Agriculturist. Despite its name, little or no soil is usually used in potting soil.

<span class="mw-page-title-main">Bedding (horticulture)</span>

Many types of flowering plants are available to plant in flower gardens or flower beds. The floral industry calls these plants, bedding plants. These fast-growing plants in seasonal flower beds create colourful displays, during spring, summer, fall or winter, depending on the climate. Plants used for bedding are generally annuals, but biennials, tender perennials, and succulents are used.

<span class="mw-page-title-main">Tropical horticulture</span> Branch of horticulture

Tropical horticulture is a branch of horticulture that studies and cultivates plants in the tropics, i.e., the equatorial regions of the world. The field is sometimes known by the portmanteau "TropHort".

<span class="mw-page-title-main">Tomato grafting</span> Horticulture technique

Tomato grafting is a horticulture technique that has been utilized in Asia and Europe for greenhouse and high tunnel production and is gaining popularity in the United States. Typically, stock or rootstock are selected for their ability to resist infection by certain soilborne pathogens or their ability to increase vigor and fruit yield. The scion of the grafted tomato represents the upper portion of the plant and is selected for its fruit quality characteristics. There are several methods for grafting tomatoes and they have certain advantages and disadvantages. Once the grafts are made, the plants are moved into a chamber or environment with high relative humidity (>90%) and low light levels to reduce water stress in the scion while the graft union forms.

<span class="mw-page-title-main">Cut flowers</span> Flowers or buds harvested for decoration

Cut flowers are flowers and flower buds that have been cut from the plant bearing it. It is removed from the plant for decorative use. Cut greens are leaves with or without stems added to the cut flowers for contrast and design purposes. These displays improve the quality of the human environment.

Daily light integral (DLI) describes the number of photosynthetically active photons that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants.

<span class="mw-page-title-main">Bacterial wilt of carnation</span> Bacterial plant disease

Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli. Previously named Pseudomonas caryophilli, the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.

<span class="mw-page-title-main">Plant LED incubator</span>

A plant LED incubator is a chamber which can automatically control the environment of the plant. It can control the temperature, moisture, and especially light regime of the plant based on light emitting diodes (LEDs). LEDs have efficient electric lighting with desired wavelengths (Red+Blue) which support greenhouse production in a minimum time and with high quality and quantity. As LEDs are cool it helps plants to be placed as close as possible to light sources without overheating or scorching. This saves space for intense cultivation. It could provide the opportunity of greenhouse-produced fruits and vegetable to be available for the market more quickly and less expensively due to the effect of LED lighting on earliness, compactness and quality of products.

<span class="mw-page-title-main">Ethylene (plant hormone)</span> Alkene gas naturally regulating the plant growth

Ethylene (CH
2
=CH
2
) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.

References

  1. Armitage, Allan M (1993). Specialty cut flowers. The production of annuals, perennials, bulbs and woody plants for fresh and dried cut flowers. cabdirect.org.
  2. Dole, John M; Wilkins, Harold F. (2004). Floriculture: Principles and Species (2nd ed.). Pearson.
  3. Larson, Roy A (2013). Introduction to Floriculture. United States: Elsevier Science.
  4. H. Chris Wien. Floral Crop Production in High Tunnels. HortTechnology Jan 2009 19(1): 56-60 doi : 10.21273/HORTSCI.19.1.56
  5. Van Rijswick C. World floriculture map 2015. Gearing Up for Stronger Competition, Rabobank Industry Note. 2015 Jan(475).
  6. Harisha, BN (Oct 2017). "An economic analysis of floriculture in India". In Proceedings of the Sixth Middle East Conference on Global Business, Economics, Finance and Banking (ME17Dubai Conference): 6–8.
  7. 1 2 Hanan, Joe J (2017). Greenhouses: Advanced Technology for Protected Horticulture.
  8. Hanan, J.J; Holley, W.D.; Goldsberry, K.L. (1978). Greenhouse Management. Advanced Series in Agricultural Sciences. Springer-Verlag.
  9. 1 2 Chris Beytes (Editor). 2021. Ball RedBook: Greenhouse Structures, Equipment, and Technology 19th Edition. Ball Publishing.
  10. Floriculture Market 2022. Size, Share, Growth. Trends, Recent Developments, Company Profiles, Key Suppliers, Production Capacity, Revenue & Gross Margin, Market Drivers, Opportunities, Challenges and Forecast 2028. Market Reports World. April 04, 2022 07:48 ET.
  11. 2022 Commercial Floriculture Survey NASS's Quick Stats. National Agricultural Statistics Service. United States Department of Agriculture. 05/31/2023.
  12. Visitor Team at Manchester Museum (2020). "FOUR NOBLE PLANTS IN CHINESE CULTURE PART 4: CHRYSANTHEMUM, October 23, 2020".
  13. Garner, W. and H. Allard. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res. 18:553-606.
  14. Withrow, R.B. and H.M. Benedict. 1936. Photoperiodic responses of certain greenhouse annuals as influenced by intensity and wavelength of artificial light used to lengthen the daylight period. Plant Physiol. 11:225-249.
  15. Popham, R. A., & Chan, A. P. (1952). Origin and development of the receptacle of Chrysanthemum morifolium. American Journal of Botany, 329-339.
  16. Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H., & Hisamatsu, T. (2012). Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of plant physiology, 169(18), 1789-1796.
  17. Lee, B. J., Won, M. K., Choi, W. C., Yang, E. S., Lee, J. S., & Atherton, J. G. (2004). Floral development of chrysanthemum influenced by photoperiod. HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY, 45(3), 149-153.
  18. Parker, M. W., Borthwick, H. A., & Rappleye, L. E. (1950). Photoperiodic responses of poinsettia. Florists' Exchange, 115(20), 11-50.
  19. Alden, M., & Faust, J. E. (2021). Unravelling the role of temperature and photoperiod on poinsettia heat delay. HortScience, 56(9), 1097-1103.
  20. Harshitha, H. M., Chandrashekar, S. Y., & Harishkumar, K. (2021). Photoperiod manipulation in flowers and ornamentals for perpetual flowering. Pharma Innov J, 10(6), 127-134.
  21. 1 2 Erwin, J. E., & Warner, R. M. (2000, November). Determination of photoperiodic response group and effect of supplemental irradiance on flowering of several bedding plant species. In IV International ISHS Symposium on Artificial Lighting 580 (pp. 95-99).
  22. Adams, S. R., & Langton, F. A. (2005). Photoperiod and plant growth: a review. The Journal of Horticultural Science and Biotechnology, 80(1), 2-10.
  23. Thorpe, T. A. (2007). History of plant tissue culture. Molecular biotechnology, 37, 169-180.
  24. Gamborg, O. L., Murashige, T., Thorpe, T. A., & Vasil, I. K. (1976). Plant tissue culture media. In vitro, 12(7), 473-478.
  25. García-Gonzáles, R., Quiroz, K., Carrasco, B., & Caligari, P. (2010). Plant tissue culture: Current status, opportunities and challenges. International Journal of Agriculture and Natural Resources, 37(3), 5-30.
  26. Griffith, L. P. (1998). Tropical Foliage Plants: A Grower's Guide. United States: Ball Pub.
  27. Oglevee-O'Donovan, W. (1986). Production of culture virus-indexed geraniums. In Tissue culture as a plant production system for horticultural crops: Conference on Tissue Culture as a Plant Production System for Horticultural Crops, Beltsville, MD, October 20–23, 1985 (pp. 119-123). Dordrecht: Springer Netherlands.
  28. Sheldrake Jr, R., & Boodley, J. W. (1965, May). Plant growing in lightweight artificial mixes. In Symposium on Vegetable Growing under Glass 4 (pp. 155-157).
  29. Boodley, J. W., & Sheldrake, R. (1972). Cornell peat-lite mixes for commercial growing.
  30. Bilderback, T. E., & Fonteno, W. C. (1987). Effects of container geometry and media physical properties on air and water volumes in containers. Journal of Environmental Horticulture, 5(4), 180-182.
  31. Fonteno, W. C., Cassel, D. K., & Larson, R. A. (1981). Physical Properties of Three Container Media and their Effect on Poinsettia Growth1. Journal of the American Society for Horticultural Science, 106(6), 736-741.
  32. Di Benedetto, A. H., & Klasman, R. (2004). The effect of plug cell volume on the post-transplant growth for Impatiens walleriana pot plant. European Journal of Horticultural Science, 69(2), 82-86.
  33. Gallegos, J., Álvaro, J. E., & Urrestarazu, M. (2020). Container Design Affects Shoot and Root Growth of Vegetable Plant. HortScience horts, 55(6), 787-794. Retrieved Jul 22, 2023, from doi : 10.21273/HORTSCI14954-20
  34. Kitir, N., Yildirim, E., Şahin, Ü., Turan, M., Ekinci, M., Ors, S., ... & Ünlü, H. (2018). Peat use in horticulture. Peat; Topcuoglu, B., Turan, M., Eds.; IntechOpen: London, UK, 75-90.
  35. Jackson B., Fields J., Altland J., Owen J. (2022). "The Latest on Growing Media Research Jan 1, 2022".{{cite web}}: CS1 maint: multiple names: authors list (link)
  36. Eveleens, B., van Winkel, A., & Blok, C. (2021, August). Wood fiber in pot plant culture; peat replacement up to 50% in volume?. In II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Horticulture 1317 (pp. 165-174).
  37. Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Scientia horticulturae, 212, 220-234.
  38. Toumi, K., Vleminckx, C., Van Loco, J., Schiffers, B. 2016. Pesticide Residues on Three Cut Flower Species and Potential Exposure of Florists in Belgium.International Journal of Environmental Research and Public Health 13:943.
  39. Pereira, P., Parente, C., Carvalho, G., Torres, J., Meire, R., Dorneles, P., Malm, O. (2021) A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution, Volume 289:117817
  40. Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., ... & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220-229.
  41. Thompson, D. A., Lehmler, H. J., Kolpin, D. W., Hladik, M. L., Vargo, J. D., Schilling, K. E., ... & Field, R. W. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Science: Processes & Impacts, 22(6), 1315-1346.
  42. Messelink, G. J., & Janssen, A. (2014). Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biological Control, 79, 1-7.
  43. van Lenteren, J. C. (2007). Biological control for insect pests in greenhouses: an unexpected success. Biological control: a global perspective. CAB Int, Wallingford, 105-117.
  44. Van Driesche, R., & Hoddle, M. (2009). Control of pests and weeds by natural enemies: an introduction to biological control. John Wiley & Sons.
  45. Werner, H. O. (1942). Relation of length of photoperiod and intensity of supplemental light to the production of flowers and berries in the greenhouse by several varieties of potatoes. Journal of Agricultural Research, 64, 257-275.
  46. Ramaley, F. (1934). Influence of supplemental light on blooming. Botanical Gazette, 96(1), 165-174.
  47. Carpenter, W. J., & Rodriguez, R. C. (1971). Earlier Flowering of Geranium cv. Carefree Scarlet by High Intensity Supplemental Light Treatment1. HortScience, 6(3), 206-207.
  48. Armitage, A. M., & Tsujita, M. J. (1979). Supplemental lighting and nitrogen nutrition effects on yield and quality of Forever Yours roses. Canadian Journal of Plant Science, 59(2), 343-350.
  49. Cathey, H. M., & Campbell, L. E. (1979). Relative Efficiency of High-and Low-pressure Sodium and Incandescent Filament Lamps Used to Supplement Natural Winter Light in Greenhouses1. Journal of the American Society for Horticultural Science, 104(6), 812-825.
  50. Lee, M.J., Seo, H.S., Min, S.Y., Lee, J., Park, S., Jeon, J.B., Kim, J. and Oh, W., 2021. Effects of supplemental lighting with high-pressure sodium or plasma lamps on quality and yield of cut roses. Horticultural Science and Technology, 39(1), pp.49-61.
  51. Moe, R., Grimstad, S. O., & Gislerod, H. R. (2005, June). The use of artificial light in year round production of greenhouse crops in Norway. In V International Symposium on Artificial Lighting in Horticulture 711 (pp. 35-42).
  52. Faust, J. E., Holcombe, V., Rajapakse, N. C., & Layne, D. R. (2005). The effect of daily light integral on bedding plant growth and flowering. HortScience, 40(3), 645-649.
  53. Kjaer, K. H., Ottosen, C. O., & Jørgensen, B. N. (2012). Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system. Scientia Horticulturae, 143, 189-196.
  54. Faust, J. E., & Logan, J. (2018). Daily light integral: A research review and high-resolution maps of the United States. HortScience, 53(9), 1250-1257.
  55. Oh, W., Cheon, I. H., Kim, K. S., & Runkle, E. S. (2009). Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience, 44(2), 341-344.
  56. Mitchell, C. A., Both, A. J., Bourget, C. M., Burr, J. F., Kubota, C., Lopez, R. G., ... & Runkle, E. S. (2012). LEDs: The future of greenhouse lighting!. Chronica Horticulturae, 52(1), 6-12.
  57. Jeong, S.W., Hogewoning, S.W. and van Ieperen, W., 2014. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae, 165, pp.69-74.
  58. Kobori, M. M. R. G., da Costa Mello, S., de Freitas, I. S., Silveira, F. F., Alves, M. C., & Azevedo, R. A. (2022). Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Scientia Horticulturae, 306, 111424.
  59. Oh, W., Runkle, E. S., & Warner, R. M. (2010). Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. HortScience, 45(9), 1332-1337.
  60. Randall, W. C., & Lopez, R. G. (2015). Comparison of bedding plant seedlings grown under sole-source light-emitting diodes (LEDs) and greenhouse supplemental lighting from LEDs and high-pressure sodium lamps. HortScience, 50(5), 705-713.
  61. Spall, C. E., & Lopez, R. G. (2023). Supplemental Lighting Quality Influences Time to Flower and Finished Quality of Three Long-Day Specialty Cut Flowers. Horticulturae, 9(1), 73.

Further reading