Floriculture is the study of the efficient production of the plants that produce showy, colorful flowers and foliage for human enjoyment in human environments. It is a commercially successful branch of horticulture and agriculture found throughout the world. Efficient production practices have been developed over the years, for the hundreds of plant taxa used in the floral industry, increasing the overall knowledge of whole plant biology. Plant breeding and selection have produced tens of thousands of new genotypes for human use. Jasmine, marigold, chrysanthemum, rose, orchid, and anthurium are flowers of commercial demand.
Flowers are an important part of human society that are often used at times of joy and sadness, and as a part of everyday life. Flowers and plants may be indoors in a sunny window, as part of the landscape in the front yard or on the patio or deck in the back yard. People have been studying flowers and plants and their interaction with humans and how to produce these flowers and plants so all humans can enjoy them. Floriculture scientists throughout the world to do this work.
Floriculture crops include cut flowers [1] and cut cultivated greens, bedding plants (garden flowers or annuals, and perennials, houseplants (foliage plants and flowering potted plants). [2] [3] These plants are produced in ground beds, flower fields or in containers in a greenhouse. Protected cultivation is often used because these plants have a high value to humans.
Flower crops are grown in simple to highly sophisticated ways. These crops can be grown in soil in farm fields or in field soil in inexpensive high tunnel greenhouses. [4] For years, flowers were grown, seasonally for the specific crop, close to the market in Europe, North America and Asia. However, many crops of the floral industry have moved to a specific climate, typically in the mountains of South America, Africa and China, so certain plants can be grown year around [5] where hand labor is available. [6]
Protected horticulture (greenhouses) has developed simultaneously with the continued changes in the flower crops and markets. Floriculture is a major component of controlled-environment agriculture (CEA). Floriculture crops have a high value to humans, so the cost of an expensive production system - greenhouses, [7] [8] [9] automated environmental control, automated irrigation and fertilization, robotic seed, transplant and container handling, supplemental photosynthetic lighting - is necessary to produce these plants efficiently for the world-wide markets. [10] Some are irrigated manually, but most are irrigated with drip irrigation, boom irrigation or flood floors. Hydroponics can be used for many cut flower crops. [7] [9]
The global Floriculture market size is estimated to be worth US$50040 million in 2022 and is forecast to be a readjusted size of US$58030 million by 2028 with a compound annual growth rate of 2.5% during the review period. [11]
The total wholesale value of sales across all U.S. floriculture crops totaled US$6.69 billion in 2022 from 8,951 floriculture producers with a production area of 833 million square feet. [12]
The horticulture industry involves the cultivation of plants for food, medicine, and aesthetic purposes. It covers a wide range of activities including the growth, distribution, and sale of fruits, vegetables, flowers, trees, and ornamental plants. The sector plays a vital role in agriculture and includes several key branches such as:
1. Floriculture: Focuses on growing and marketing flowers and ornamental plants.
2. Olericulture: The production of vegetables.
3. Pomology: The cultivation of fruit trees and shrubs.
4. Landscape Horticulture: Involves designing, maintaining, and managing landscapes for aesthetic and functional purposes.
Importance of the Horticulture Industry:
Economic Contribution: Horticulture contributes significantly to the global economy by providing employment in both rural and urban areas, and through the sale of fresh produce, ornamental plants, and landscaping services.
Environmental Benefits: It helps improve biodiversity, soil quality, and air purification, as well as reduce urban heat islands through landscaping and green spaces.
Food Security: It enhances food production by supplying fruits and vegetables, which are crucial for balanced diets.
Innovation and Technology: The industry increasingly relies on modern technologies like precision farming, greenhouse systems, and sustainable practices to improve productivity and reduce environmental impact.
The horticulture industry is growing due to the increasing demand for fresh, healthy food, sustainable landscaping, and environmental conservation.
Plant enthusiasts and growers learned significant details about growing certain plants over the years. Chrysanthemums have been cultivated in China for over 3000 years, [13] so growers knew about the plant and how to grow it. Floriculture scientists have simply continued this trend to control the plant's environment to control flowering for the significant dates when humans want flowers for celebrations and gatherings.
Chrysanthemum was one of the plants used in experiments that led to the definitions of photoperiod and photoperiodism. [14] Yet, it's likely that Chinese, Korean and Japanese plantsmen had a good understanding based on their years of experience. The occurrence of this physiological response and the reasons for it have been the subject of many experiments at universities and in industry. [15] [16] [17] [18] Poinsettias are another short day plant with importance to flower growers. [19] These and additional experiments and experience have shown that temperature has an impact on the photoperiodic response. [20] Many cut flower and bedding plant species respond to long day or short day treatments for faster flowering. [21] [22] [23] The use of lighting treatments to extend the day and black cloth treatments to shorten the day are important additions to floriculture to increase the efficiency of plant production.
Plant propagation has always been a part of flower and plant gardening. Plant tissue culture began as a way to save orchid embryos as orchid fanciers bred new cultivars. Most horticulture and many botany programs in the world had scientists working on plant propagation through tissue culture techniques from the 1950s to the 1980s. [24] [25] [26] These programs expanded the knowledge base on a wide range of taxa and allowed industry to find the connection to commercial production. Plant tissue culture allowed new, unique phenotypes and genotypes to be propagated in large numbers quickly. Many cultivars of foliage plants are available only from tissue culture. [27] Uniquely, tissue cultured geraniums were heat treated to allow the identification and removal of many viruses, virus-indexed. [28] As viruses were removed, many horticultural characteristics of the many cultivars disappeared; this led plant breeders to leave many viruses in breeding lines for future cultivars. Heat treatment of tissue culture of many taxa has since been used to remove bacteria and virus pathogens in various floriculture crops.
Containers of various kinds have been used in the culture of plants for a long time[ as of? ]. Field soil or garden soil possibly with an addition of organic matter (compost) was placed in the container or pot and a plant was added followed by regular watering. It required experience and a watchful eye to prevent overwatering.
This success was tied to a relatively deep pot, usually 6-10 inches (15–25 cm) deep or larger.[ citation needed ] Gravity was sufficient to pull or drain water from the soil so an adequate portion of the soil in the pot was well drained and oxygen would be available to the root system. As US greenhouses began to expand the bedding plant business in the 1950s and 1960s, they needed smaller containers for the logistical aspects of plant spacing and shipping. Vacuum formed plastic trays and packs offered the smaller sizes but composted field soil was easy to overwater in the smaller containers. The first step was to add peat moss and perlite to the field soil in a 1:1:1 ratio. The next step was to use other materials, sphagnum moss peat and vermiculite, in a 1:1 ratio, the Cornell peat-lite mix. [29] [30] In the 1970s, more materials were used for growing media by the companies formed to process and distribute growing media to operations across the country. The physical properties of all the products had to be evaluated on a standard basis to make wise choices with economic decisions the operations were making. [31] [32] As plug (young plant) production, mechanization of seed germination and mechanization of transplanting, began in the 1980s more work was necessary to manage the small volume of growing media in plug trays. [33] Research continues of all aspects of growing media and container design. [34]
The harvest and use of peat for growing media remains an environmental issue in North America and Europe. [35] Alternative and more sustainable materials continue to be added to growing media processing - pine bark, processed pine bark, coco coir, wood fiber, etc. [36] [37] Sustainable solutions for growing media materials remain a high priority for the industry. [38]
Pesticide residues remain a significant issue for floriculture crops. Many countries have limited controls on pesticide usage but flower handlers and consumers could be contaminated by the residue. [39] [40]
The impact of certain pesticides, neonics, on bees and other pollinators has become a significant concern. The application of these pesticides on garden flowers during greenhouse production can have a major impact on pollinator populations in a consumer's garden. [41] [42]
Research continues on biological control of greenhouse insect, mite and plant pathogens to reduce pesticide use in floriculture crop production. [43] [44] [45]
Supplemental lighting for flower crops began with photoperiod treatments and interest expanded to determine whether artificial light from electric lamps could substitute for sunlight during winter conditions. [46] [47] Incandescent lamps were not successful, so floriculture had to wait for lighting technology to improve. Advancements with fluorescent lamps and industrial lamps (mercury vapor, high pressure sodium, low pressure sodium, etc.) led to improved plant production for geraniums, roses and other crops. [48] [49] [50] [51] In the following decades, artificial lighting became standard practice in Europe, North America and Japan. [52]
Work was completed to standardize a plant's need for light (radiant energy) from natural and artificial sources. The term daily light integral (DLI) was introduced as a measurement of the optimal amount of radiant energy each plant requires for optimal growth. [53] [54] [55] [56]
The introduction of light emitting diode (LED) lamps offered more opportunities for supplemental lighting. These lamps were more efficient at light production, cooler and allowed the manipulation of light quality from different wavelengths of light compared to other lamps. [57] [58] [59]
Supplemental lighting has been used to optimize production of seedlings, [60] [61] bedding plants, [22] cut flowers [62] and other crops.
Flower crops were grown in field soil like all horticultural and agricultural crops. Nutrients important to the flowers were held in the soil matrix and supplemented with additions of organic matter and animal manure. These organic additions were labor-intensive and inconsistent, reducing the ability to optimize flower production. Floriculture moved to growing media and inorganic fertilizer products in the 1950s and 1960s as container production became more important. This move was supported by hydroponic research more than soil science research. The "soil-less" nature of hydroponics was more similar to the "soil-less" nature of growing media.
Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions in an artificial environment. Terrestrial or aquatic plants may grow freely with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.
A greenhouse is a special structure that is designed to regulate the temperature and humidity of the environment inside. There are different types of greenhouses, but they all have large areas covered with transparent materials that let sunlight pass and block it as heat. The most common materials used in modern greenhouses for walls and roofs are rigid plastic made of polycarbonate, plastic film made of polyethylene, or glass panes. When the inside of a greenhouse is exposed to sunlight, the temperature increases, providing a sheltered environment for plants to grow even in cold weather.
Horticulture is the science and art of growing fruits, vegetables, flowers, or ornamental plants. Horticulture is commonly associated with the more professional and technical aspects of plant cultivation on a smaller and more controlled scale than agronomy. There are various divisions of horticulture because plants are grown for a variety of purposes. These divisions include, but are not limited to: propagation, arboriculture, landscaping, floriculture and turf maintenance. For each of these, there are various professions, aspects, tools used and associated challenges; Each requiring highly specialized skills and knowledge of the horticulturist.
Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.
The waratah (Telopea) is an Australian-endemic genus of five species of large shrubs or small trees, native to the southeastern parts of Australia. The best-known species in this genus is Telopea speciosissima, which has bright red flowers and is the New South Wales (NSW) state emblem. The waratah is a member of the family Proteaceae, flowering plants distributed in the Southern Hemisphere. The key diagnostic feature of Proteaceae is the inflorescence, which is often very large, brightly coloured and showy, consisting of many small flowers densely packed into a compact head or spike. Species of waratah boast such inflorescences ranging from 6–15 cm in diameter with a basal ring of coloured bracts. The leaves are spirally arranged, 10–20 cm long and 2–3 cm broad with entire or serrated margins. The name waratah comes from the Eora Aboriginal people, the pre-European inhabitants of the Sydney area.
The babaco, is a hybrid cultivar in the genus Vasconcellea from Ecuador. It is a hybrid between Vasconcellea cundinamarcensis, and Vasconcellea stipulata although Vasconcellea weberbaueri has also been mentioned as a contributor to the hybrid.
Cultivation of cannabis is the production of cannabis infructescences. Cultivation techniques for other purposes differ.
This is an alphabetical index of articles related to gardening.
Deep water culture (DWC) is a hydroponic method of plant production by means of suspending the plant roots in a solution of nutrient-rich, oxygenated water. Also known as deep flow technique (DFT), floating raft technology (FRT), or raceway, this method uses a rectangular tank less than one foot deep filled with a nutrient-rich solution with plants floating in Styrofoam boards on top. This method of floating the boards on the nutrient solution creates a near friction-less conveyor belt of floating rafts. DWC, along with nutrient film technique (NFT), and aggregate culture, is considered to be one of the most common hydroponic systems used today. Typically, DWC is used to grow short-term, non-fruiting crops such as leafy greens and herbs. Supposedly, DWC was invented accidentally in 1998 by a legacy cannabis grower who goes by the name of “Snype." This occurred because “Snype” and his (unnamed) associate had to take a trip to Amsterdam and needed a way to feed their cannabis crop while they were away. They built nutrient and water reservoirs that would keep the plants thoroughly fed in their absence, and thusly the DWC system was born. However, this information is not backed up by any reliable source. English physician John Woodward is usually remembered as the first person to grow plants in water culture, although Woodward did note Robert Boyle was conducting similar experiments. Woodward's work was not specifically with DWC systems, however. This system was revised in 2010 to create RDWC. The large volume of water helps mitigate rapid changes in temperature, pH, electrical conductivity (EC), and nutrient solution composition.
The floral industry is focused on the production, distribution and sale of flowers for human enjoyment. The industry continues to diversify from the production of cut flowers to the production and sale of plants and flowers in many different forms. The global floral industry market size is estimated to be worth US$ 50040 million in 2022 and is forecast to increase to US$ 58030 million by 2028 with a compound annual growth rate of 2.5% during the review period.
A grow light is an electric light that can help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.
Potting soil or growing media, also known as potting mix or potting compost (UK), is a substrate used to grow plants in containers. The first recorded use of the term is from an 1861 issue of the American Agriculturist. Despite its name, little or no soil is usually used in potting soil.
Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues, or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used to produce clones of a plant in a method known as micropropagation. Different techniques in plant tissue culture may offer certain advantages over traditional methods of propagation, including:
Many types of flowering plants are available to plant in flower gardens or flower beds. The floral industry calls these bedding plants. These fast-growing plants in seasonal flower beds create colourful displays, during spring, summer, fall or winter, depending on the climate. Plants used for bedding are generally annuals, but biennials, tender perennials, and succulents are used.
Tropical horticulture is a branch of horticulture that studies and cultivates plants in the tropics, i.e., the equatorial regions of the world. The field is sometimes known by the portmanteau "TropHort".
Tomato grafting is a horticulture technique that has been utilized in Asia and Europe for greenhouse and high tunnel production and is gaining popularity in the United States. Typically, stock or rootstock are selected for their ability to resist infection by certain soilborne pathogens or their ability to increase vigor and fruit yield. The scion of the grafted tomato represents the upper portion of the plant and is selected for its fruit quality characteristics. There are several methods for grafting tomatoes and they have certain advantages and disadvantages. Once the grafts are made, the plants are moved into a chamber or environment with high relative humidity (>90%) and low light levels to reduce water stress in the scion while the graft union forms.
Cut flowers are flowers and flower buds that have been cut from the plant bearing it. It is removed from the plant for decorative use. Cut greens are leaves with or without stems added to the cut flowers for contrast and design purposes.
Daily light integral (DLI) describes the number of photosynthetically active photons that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants.
Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli. Previously named Pseudomonas caryophilli, the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.
Ethylene (CH
2=CH
2) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as a hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.
{{cite web}}
: CS1 maint: multiple names: authors list (link)