Prairie

Last updated
Prairie, Badlands National Park, South Dakota, US, is in the mixed grasslands region containing some species of tall grass, and some of short grass Cumulus Clouds over Yellow Prairie2.jpg
Prairie, Badlands National Park, South Dakota, US, is in the mixed grasslands region containing some species of tall grass, and some of short grass

Prairies are ecosystems considered part of the temperate grasslands, savannas, and shrublands biome by ecologists, based on similar temperate climates, moderate rainfall, and a composition of grasses, herbs, and shrubs, rather than trees, as the dominant vegetation type. Temperate grassland regions include the Pampas of Argentina, Brazil and Uruguay, and the steppe of Ukraine, Russia and Kazakhstan. Lands typically referred to as "prairie" tend to be in North America. The term encompasses the area referred to as the Interior Lowlands of Canada, the United States, and Mexico, which includes all of the Great Plains as well as the wetter, hillier land to the east.

Ecosystem A community of living organisms together with the nonliving components of their environment

An ecosystem is a community of living organisms in conjunction with the nonliving components of their environment, interacting as a system. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the system through photosynthesis and is incorporated into plant tissue. By feeding on plants and on one-another, animals play an important role in the movement of matter and energy through the system. They also influence the quantity of plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes.

Temperate grasslands, savannas, and shrublands Habitats and climate of : temperate grasslands

Temperate grasslands, savannahs, and shrublands is a terrestrial habitat type defined by the World Wide Fund for Nature. The predominant vegetation in this biome consists of grass and/or shrubs. The climate is temperate and ranges from semi-arid to semi-humid. The habitat type differs from tropical grasslands in the annual temperature regime as well as the types of species found here.

Biome Distinct biological communities that have formed in response to a shared physical climate

A biome is a community of plants and animals that have common characteristics for the environment they exist in. They can be found over a range of continents. Biomes are distinct biological communities that have formed in response to a shared physical climate. "Biome" is a broader term than "habitat"; any biome can comprise a variety of habitats.

Contents

In the U.S., the area is constituted by most or all of the states of North Dakota, South Dakota, Nebraska, Kansas, and Oklahoma, and sizable parts of the states of Montana, Wyoming, Colorado, New Mexico, Texas, Missouri, Iowa, Illinois, Indiana, Wisconsin, and western and southern Minnesota. The Palouse of Washington and the Central Valley of California are also prairies. The Canadian Prairies occupy vast areas of Manitoba, Saskatchewan, and Alberta.

North Dakota State of the United States of America

North Dakota is a U.S. state in the midwestern and northern regions of the United States. It is the nineteenth largest in area, the fourth smallest by population, and the fourth most sparsely populated of the 50 states. North Dakota was admitted to the Union on November 3, 1889, along with its neighboring state, South Dakota. Its capital is Bismarck, and its largest city is Fargo.

South Dakota State of the United States of America

South Dakota is a U.S. state in the Midwestern region of the United States. It is named after the Lakota and Dakota Sioux Native American tribes, who compose a large portion of the population and historically dominated the territory. South Dakota is the seventeenth largest by area, but the fifth smallest by population and the 5th least densely populated of the 50 United States. As the southern part of the former Dakota Territory, South Dakota became a state on November 2, 1889, simultaneously with North Dakota. Pierre is the state capital and Sioux Falls, with a population of about 187,200, is South Dakota's largest city.

Nebraska State of the United States of America

Nebraska is a state that lies in both the Great Plains and the Midwestern United States. It is bordered by South Dakota to the north; Iowa to the east and Missouri to the southeast, both across the Missouri River; Kansas to the south; Colorado to the southwest; and Wyoming to the west. It is the only triply landlocked U.S. state.

Etymology

Approximate regional types of prairie in the United States
Shortgrass prairie
Mixed grass prairie
Tallgrass prairie United States Prairies.svg
Approximate regional types of prairie in the United States

According to Theodore Roosevelt:

Prairie is the French word for meadow; the root is the Latin pratum (same meaning).

French language Romance language

French is a Romance language of the Indo-European family. It descended from the Vulgar Latin of the Roman Empire, as did all Romance languages. French evolved from Gallo-Romance, the spoken Latin in Gaul, and more specifically in Northern Gaul. Its closest relatives are the other langues d'oïl—languages historically spoken in northern France and in southern Belgium, which French (Francien) has largely supplanted. French was also influenced by native Celtic languages of Northern Roman Gaul like Gallia Belgica and by the (Germanic) Frankish language of the post-Roman Frankish invaders. Today, owing to France's past overseas expansion, there are numerous French-based creole languages, most notably Haitian Creole. A French-speaking person or nation may be referred to as Francophone in both English and French.

Latin Indo-European language of the Italic family

Latin is a classical language belonging to the Italic branch of the Indo-European languages. The Latin alphabet is derived from the Etruscan and Greek alphabets and ultimately from the Phoenician alphabet.

Formation

Tallgrass prairie flora (Midewin National Tallgrass Prairie) Midewin1.JPG
Tallgrass prairie flora (Midewin National Tallgrass Prairie)

The formation of the North American Prairies started with the uplift of the Rocky Mountains near Alberta. The mountains created a rain shadow that resulted in lower precipitation rates downwind. [2]

Canadian Prairies geographical region of Canada

The Canadian Prairies is a region in Western Canada. It includes the Canadian portion of the Great Plains and the Prairie provinces, namely Alberta, Saskatchewan, and Manitoba. These provinces are partially covered by grasslands, plains, and lowlands, mostly in the southern regions. The northern-most section of the Canadian prairies are less well known. They are marked by forests and more variable topology. If the region is defined to include areas only covered by prairie land, the corresponding region is known as the Interior Plains. Geographically, the Canadian prairies extend to northeastern British Columbia, but this province is not included in a political manner.

Rocky Mountains mountain range in North America

The Rocky Mountains, also known as the Rockies, are a major mountain range in western North America. The Rocky Mountains stretch more than 4,800 kilometers (3,000 mi) from the northernmost part of British Columbia, in western Canada, to New Mexico in the Southwestern United States. Located within the North American Cordillera, the Rockies are somewhat distinct from the Pacific Coast Ranges, Cascade Range, and the Sierra Nevada, which all lie farther to the west.

Alberta Province of Canada

Alberta is a western province of Canada. With an estimated population of 4,067,175 as of 2016 census, it is Canada's fourth most populous province and the most populous of Canada's three prairie provinces. Its area is about 660,000 square kilometres (250,000 sq mi). Alberta and its neighbour Saskatchewan were districts of the Northwest Territories until they were established as provinces on September 1, 1905. The premier is Jason Kenney as of April 30, 2019.

The parent material of most prairie soil was distributed during the last glacial advance that began about 110,000 years ago. The glaciers expanding southward scraped the landscape, picking up geologic material and leveling the terrain. As the glaciers retreated about 10,000 years ago, it deposited this material in the form of till. Wind based loess deposits also form an important parent material for prairie soils. [3]

Parent material is the underlying geological material in which soil horizons form. Soils typically inherit a great deal of structure and minerals from their parent material, and, as such, are often classified based upon their contents of consolidated or unconsolidated mineral material that has undergone some degree of physical or chemical weathering and the mode by which the materials were most recently transported.

Quaternary glaciation

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma, and is ongoing. Although geologists describe the entire time period as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period. Since earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with earth now experiencing an interglacial period.

Till Unsorted glacial sediment

Till or glacial till is unsorted glacial sediment.

Tallgrass prairie evolved over tens of thousands of years with the disturbances of grazing and fire. Native ungulates such as bison, elk, and white-tailed deer, roamed the expansive, diverse grasslands before European colonization of the Americas. [4] For 10,000-20,000 years, native people used fire annually as a tool to assist in hunting, transportation, and safety. [5] Evidence of ignition sources of fire in the tallgrass prairie are overwhelmingly human as opposed to lightning. [6] Humans, and grazing animals, were active participants in the process of prairie formation and the establishment of the diversity of graminoid and forbs species. Fire has the effect on prairies of removing trees, clearing dead plant matter, and changing the availability of certain nutrients in the soil from the ash produced. Fire kills the vascular tissue of trees, but not prairie species, as up to 75% (depending on the species) of the total plant biomass is below the soil surface and will re-grow from its deep (upwards of 20 feet [7] ) roots. Without disturbance, trees will encroach on a grassland and cast shade, which suppresses the understory. Prairie and widely spaced oak trees evolved to coexist in the oak savanna ecosystem. [8]

Ungulate group of large mammals that use the tips of their toes or hoofs to walk on

Ungulates are any members of a diverse group of primarily large mammals that includes odd-toed ungulates such as horses and rhinoceroses, and even-toed ungulates such as cattle, pigs, giraffes, camels, deer, and hippopotamuses. Most terrestrial ungulates use the tips of their toes, usually hoofed, to sustain their whole body weight while moving.

Bison genus of mammals

Bison are large, even-toed ungulates in the genus Bison within the subfamily Bovinae.

Elk Large antlered species of deer from North America and east Asia

The elk or wapiti is one of the largest species within the deer family, Cervidae, and one of the largest terrestrial mammals in North America and Northeast Asia. This animal should not be confused with the still larger moose to which the name "elk" applies in British English and in reference to populations in Eurasia.

Fertility

In spite of long recurrent droughts and occasional torrential rains, the grasslands of the Great Plains were not subject to great soil erosion. The root systems of native prairie grasses firmly held the soil in place to prevent run-off of soil. When the plant died, the fungi, bacteria returned its nutrients to the soil. These deep roots also help native prairie plants reach water in even the driest conditions. Native grasses suffer much less damage from dry conditions than many farm crops currently grown. [9] [10]

Geographical regions


Prairie grasses Prairie grass.JPG
Prairie grasses

Prairie in North America is usually split into three groups: wet, mesic, and dry. [11] They are generally characterized by tallgrass prairie, mixed, or shortgrass prairie, depending on the quality of soil and rainfall.

Wet

In wet prairies, the soil is usually very moist, including during most of the growing season, because of poor water drainage. The resulting stagnant water is conducive to the formation of bogs and fens. Wet prairies have excellent farming soil. The average precipitation is 10–30 inches (250–760 mm) a year.

Mesic

Mesic prairie has good drainage, but good soil during the growing season. This type of prairie is the most often converted for agricultural usage; consequently, it is one of the most endangered types of prairie.

Dry

Dry prairie has somewhat wet to very dry soil during the growing season because of good drainage in the soil. Often, this prairie can be found on uplands or slopes. Dry soil usually doesn't get much vegetation due to lack of rain. [12] This is the dominant biome in the Southern Canadian agricultural and climatic region known as Palliser's Triangle. Once thought to be completely unarable, the Triangle is now one of the most important agricultural regions in Canada thanks to advances in irrigation technology. In addition to its very high local importance to Canada, Palliser's Triangle is now also one of the most important sources of wheat in the world as a result of these improved methods of watering wheat fields (along with the rest of the Southern prairie provinces which also grow wheat, canola and many other grains). Despite these advances in farming technology, the area is still very prone to extended periods of drought, which can be disastrous for the industry if it is significantly prolonged. [13] An infamous example of this is the Dust Bowl of the 1930s, which also hit much of the United States great plains ecoregion - contributing greatly to the Great Depression. [13]

Environmental history

Bison hunting

Nomadic hunting has been the main human activity on the prairies for the majority of the archaeological record. This once included many now-extinct species of megafauna.

After the other extinction, the main hunted animal on the prairies was the plains bison. Using loud noises and waving large signals, Native peoples would drive bison in fenced pens called (buffalo pounds) to be killed with bows and arrows or spears, or drive them off a cliff (called a buffalo jump), to kill or injure the bison en masse. The introduction of the horse and the gun greatly expanded the killing power of the plains Natives. This was followed by the policy of indiscriminate killing by European Americans and Canadians, and caused a dramatic drop in bison numbers from millions to a few hundred in a century's time, and almost caused their extinction.

Farming and ranching

Prairie Homestead, Milepost 213 on I-29, South Dakota (May 2010). Prairie Homestead.jpg
Prairie Homestead, Milepost 213 on I-29, South Dakota (May 2010).

The very dense soil plagued the first European settlers who were using wooden plows, which were more suitable for loose forest soil. On the prairie, the plows bounced around, and the soil stuck to them. This problem was solved in 1837 by an Illinois blacksmith named John Deere who developed a steel moldboard plow that was stronger and cut the roots, making the fertile soils ready for farming.

The tallgrass prairie has been converted into one of the most intensive crop producing areas in North America. Less than one tenth of one percent (<0.09%) of the original landcover of the tallgrass prairie biome remains. [14] States formerly with landcover in native tallgrass prairie such as Iowa, Illinois, Minnesota, Wisconsin, Nebraska, and Missouri have become valued for their highly productive soils and are included in the Corn Belt. As an example of this land use intensity, Illinois and Iowa rank 49th and 50th, out of 50 US states, in total uncultivated land remaining.[ citation needed ]

Drier shortgrass prairies were once used mostly for open-range ranching. But the development of the barbed wire in the 1870s, and improved irrigation techniques, means that this region has mostly been converted to cropland and small fenced pasture as well.

Biofuels

Research, by David Tilman, ecologist at the University of Minnesota, suggests that, "Biofuels made from high-diversity mixtures of prairie plants can reduce global warming by removing carbon dioxide from the atmosphere. Even when grown on infertile soils, they can provide a substantial portion of global energy needs, and leave fertile land for food production." [15] Unlike corn and soybeans, which are both directly and indirectly major food crops, including livestock feed, prairie grasses are not used for human consumption. Prairie grasses can be grown in infertile soil, eliminating the cost of adding nutrients to the soil. Tilman and his colleagues estimate that prairie grass biofuels would yield 51 percent more energy per acre than ethanol from corn grown on fertile land. [15] Some plants commonly used are lupine, big bluestem (turkey foot), blazing star, switchgrass, and prairie clover.

Preservation

Because rich and thick topsoil made the land well suited for agricultural use, only 1% of tallgrass prairie remains in the U.S. today. [16] Short grass prairie is more abundant.

Significant preserved areas of prairie include:

Virgin prairies

Virgin prairie refers to prairie land that has never been plowed. Small virgin prairies exist in the American Midwestern states and in Canada. Restored prairie refers to a prairie that has been reseeded after plowing or other disturbance.

Prairie garden

A prairie garden is a garden primarily consisting of plants from a prairie.

Physiography

The originally treeless prairies of the upper Mississippi basin began in Indiana, and extended westward and north-westward, until they merged with the drier region known as the Great Plains. An eastward extension of the same region, originally tree-covered, extended to central Ohio. Thus, the prairies generally lie between the Ohio and Missouri rivers on the south and the Great Lakes on the north. The prairies are a contribution of the glacial period. They consist for the most part of glacial drift, deposited unconformably on an underlying rock surface of moderate or small relief. Here, the rocks are an extension of the same stratified Palaeozoic formations already described as occurring in the Appalachian region and around the Great Lakes. They are usually fine-textured limestones and shales, lying horizontal. The moderate or small relief that they were given by mature preglacial erosion is now buried under the drift.

The greatest area of the prairies, from Indiana to North Dakota, consists of till plains, that is, sheets of unstratified drift. These plains are 30, 50 or even 100 ft (up to 30 m) thick covering the underlying rock surface for thousands of square miles except where postglacial stream erosion has locally laid it bare. The plains have an extraordinarily even surface. The till is presumably made in part of preglacial soils, but it is more largely composed of rock waste mechanically transported by the creeping ice sheets. Although the crystalline rocks from Canada and some of the more resistant stratified rocks south of the Great Lakes occur as boulders and stones, a great part of the till has been crushed and ground to a clayey texture. The till plains, although sweeping in broad swells of slowly changing altitude, often appear level to the eye with a view stretching to the horizon. Here and there, faint depressions occur, occupied by marshy sloughs, or floored with a rich black soil of postglacial origin. It is thus by sub-glacial aggradation that the prairies have been levelled up to a smooth surface, in contrast to the higher and non-glaciated hilly country just to the south.

The great ice sheets formed terminal moraines around their border at various end stages. However, the morainic belts are of small relief in comparison to the great area of the ice. They rise gently from the till plains to a height of 50, 100 or more feet. They may be one, two or three miles (5 km) wide and their hilly surface, dotted over with boulders, contains many small lakes in basins or hollows, instead of streams in valleys. The morainic belts are arranged in groups of concentric loops, convex southward, because the ice sheets advanced in lobes along the lowlands of the Great Lakes. Neighboring morainic loops join each other in re-entrants (north-pointing cusps), where two adjacent glacial lobes came together and formed their moraines in largest volume. The moraines are of too small relief to be shown on any maps except of the largest scale. Small as they are, they are the chief relief of the prairie states, and, in association with the nearly imperceptible slopes of the till plains, they determine the course of many streams and rivers, which as a whole are consequent upon the surface form of the glacial deposits.

The complexity of the glacial period and its subdivision into several glacial epochs, separated by interglacial epochs of considerable length (certainly longer than the postglacial epoch) has a structural consequence in the superposition of successive till sheets, alternating with non-glacial deposits. It also has a physiographic consequence in the very different amount of normal postglacial erosion suffered by the different parts of the glacial deposits. The southernmost drift sheets, as in southern Iowa and northern Missouri, have lost their initially plain surface and are now maturely dissected into gracefully rolling forms. Here, the valleys of even the small streams are well opened and graded, and marshes and lakes are rare. These sheets are of early Pleistocene origin. Nearer the Great Lakes, the till sheets are trenched only by the narrow valleys of the large streams. Marshy sloughs still occupy the faint depressions in the till plains and the associated moraines have abundant small lakes in their undrained hollows. These drift sheets are of late Pleistocene origin.

When the ice sheets extended to the land sloping southward to the Ohio River, Mississippi River and Missouri River, the drift-laden streams flowed freely away from the ice border. As the streams escaped from their subglacial channels, they spread into broader channels and deposited some of their load, and thus aggraded their courses. Local sheets or aprons of gravel and sand are spread more or less abundantly along the outer side of the morainic belts. Long trains of gravel and sands clog the valleys that lead southward from the glaciated to the non-glaciated area. Later, when the ice retreated farther and the unloaded streams returned to their earlier degrading habit, they more or less completely scoured out the valley deposits, the remains of which are now seen in terraces on either side of the present flood plains.

When the ice of the last glacial epoch had retreated so far that its front border lay on a northward slope, belonging to the drainage area of the Great Lakes, bodies of water accumulated in front of the ice margin, forming glacio-marginal lakes. The lakes were small at first, and each had its own outlet at the lowest depression of land to the south. As the ice melted further back, neighboring lakes became confluent at the level of the lowest outlet of the group. The outflowing streams grew in the same proportion and eroded a broad channel across the height of land and far down stream, while the lake waters built sand reefs or carved shore cliffs along their margin, and laid down sheets of clay on their floors. All of these features are easily recognized in the prairie region. The present site of Chicago was determined by an Indian portage or carry across the low divide between Lake Michigan and the headwaters of the Illinois River. This divide lies on the floor of the former outlet channel of the glacial Lake Michigan. Corresponding outlets are known for Lake Erie, Lake Huron, and Lake Superior. A very large sheet of water, named Lake Agassiz, once overspread a broad till plain in northern Minnesota and North Dakota. The outlet of this glacial lake, called river Warren, eroded a large channel in which the Minnesota River evident today. The Red River of the North flows northward through a plain formerly covered by Lake Agassiz.

Certain extraordinary features were produced when the retreat of the ice sheet had progressed so far as to open an eastward outlet for the marginal lakes. This outlet occurred along the depression between the northward slope of the Appalachian plateau in west-central New York and the southward slope of the melting ice sheet. When this eastward outlet came to be lower than the south-westward outlet across the height of land to the Ohio or Mississippi river, the discharge of the marginal lakes was changed from the Mississippi system to the Hudson system. Many well-defined channels, cutting across the north-sloping spurs of the plateau in the neighborhood of Syracuse, New York, mark the temporary paths of the ice-bordered outlet river. Successive channels are found at lower and lower levels on the plateau slope, indicating the successive courses taken by the lake outlet as the ice melted farther and farther back. On some of these channels, deep gorges were eroded heading in temporary cataracts which exceeded Niagara in height but not in breadth. The pools excavated by the plunging waters at the head of the gorges are now occupied by little lakes. The most significant stage in this series of changes occurred when the glacio-marginal lake waters were lowered so that the long escarpment of Niagara limestone was laid bare in western New York. The previously confluent waters were then divided into two lakes. The higher one, Lake Erie, supplied the outflowing Niagara River, which poured its waters down the escarpment to the lower, Lake Ontario. This gave rise to Niagara Falls. Lake Ontario's outlet for a time ran down the Mohawk Valley to the Hudson River. At this higher elevation, it was known as Lake Iroquois. When the ice melted from the northeastern end of the lake, it dropped to a lower level, and drained through the St. Lawrence area. This created a lower base level for the Niagara River, increasing its erosive capacity.

In certain districts, the subglacial till was not spread out in a smooth plain, but accumulated in elliptical mounds, 100–200 feet. high and 0.5 to 1 mile (0.80 to 1.61 kilometres) long with axes parallel to the direction of the ice motion as indicated by striae on the underlying rock floor. These hills are known by the Irish name, drumlins, used for similar hills in north-western Ireland. The most remarkable groups of drumlins occur in western New York, where their number is estimated at over 6,000, and in southern Wisconsin, where it is placed at 5,000. They completely dominate the topography of their districts.

A curious deposit of an impalpably fine and unstratified silt, known by the German name bess (or loess), lies on the older drift sheets near the larger river courses of the upper Mississippi basin. It attains a thickness of 20 ft (6.1 m) or more near the rivers and gradually fades away at a distance of ten or more miles (16 or more km) on either side. It contains land shells, and hence cannot be attributed to marine or lacustrine submergence. The best explanation is that, during certain phases of the glacial period, it was carried as dust by the winds from the flood plains of aggrading rivers, and slowly deposited on the neighboring grass-covered plains. The glacial and eolian origin of this sediment is evidenced by the angularity of its grains (a bank of it will stand without slumping for years), whereas, if it had been transported significantly by water, the grains would have been rounded and polished. Loess is parent material for an extremely fertile, but droughty soil.

Southwestern Wisconsin and parts of the adjacent states of Illinois, Iowa, and Minnesota are known as the driftless zone, because, although bordered by drift sheets and moraines, it is free from glacial deposits. It must therefore have been a sort of oasis, when the ice sheets from the north advanced past it on the east and west, and joined around its southern border. The reason for this exemption from glaciation is the converse of that for the southward convexity of the morainic loops. For while they mark the paths of greatest glacial advance along lowland troughs (lake basins), the driftless zone is a district protected from ice invasion by reason of the obstruction which the highlands of northern Wisconsin and Michigan (part of the Superior upland) offered to glacial advance.

The course of the upper Mississippi River is largely consequent upon glacial deposits. Its sources are in the morainic lakes in northern Minnesota. The drift deposits thereabouts are so heavy that the present divides between the drainage basins of Hudson Bay, Lake Superior, and the Gulf of Mexico evidently stand in no very definite relation to the preglacial divides. The course of the Mississippi through Minnesota is largely guided by the form of the drift cover. Several rapids and the Saint Anthony Falls (determining the site of Minneapolis) are signs of immaturity, resulting from superposition through the drift on the under rock. Farther south, as far as the entrance of the Ohio River, the Mississippi follows a rock-walled valley 300 to 400 ft (91 to 122 m) deep, with a flood-plain 2 to 4 mi (3.2 to 6.4 km) wide. This valley seems to represent the path of an enlarged early-glacial Mississippi, when much precipitation that is today discharged to Hudson Bay and the Gulf of St Lawrence was delivered to the Gulf of Mexico, for the curves of the present river are of distinctly smaller radii than the curves of the valley. Lake Pepin (30 mi [48 km] below St. Paul), a picturesque expansion of the river across its flood-plain, is due to the aggradation of the valley floor where the Chippewa River, coming from the northeast, brought an overload of fluvio-glacial drift. Hence, even the father of waters, like so many other rivers in the Northern states, owes many of its features more or less directly to glacial action.

The fertility of the prairies is a natural consequence of their origin. During the mechanical transportation of the till, no vegetation was present to remove the minerals essential to plant growth, as is the case in the soils of normally weathered and dissected peneplains. The soil is similar to the Appalachian piedmont which though not exhausted by the primeval forest cover, are by no means so rich as the till sheets of the prairies. Moreover, whatever the rocky understructure, the till soil has been averaged by a thorough mechanical mixture of rock grindings. Hence, the prairies are continuously fertile for scores of miles together. The true prairies were once covered with a rich growth of natural grass and annual flowering plants, but today, they are covered with farms.

See also

Related Research Articles

Plain Extensive flat region that generally does not vary much in elevation

In geography, a plain is a flat, sweeping landmass that generally does not change much in elevation. Plains occur as lowlands along the bottoms of valleys or on the doorsteps of mountains, as coastal plains, and as plateaus or uplands.

Vale of York

The Vale of York is an area of flat land in the northeast of England. The vale is a major agricultural area and serves as the main north-south transport corridor for Northern England.

Wisconsin glaciation

The Wisconsin Glacial Episode, also called the Wisconsinan glaciation, was the most recent glacial period of the North American ice sheet complex. This advance included the Cordilleran Ice Sheet, which nucleated in the northern North American Cordillera; the Innuitian ice sheet, which extended across the Canadian Arctic Archipelago; the Greenland ice sheet; and the massive Laurentide ice sheet, which covered the high latitudes of central and eastern North America. This advance was synchronous with global glaciation during the last glacial period, including the North American alpine glacier advance, known as the Pinedale glaciation. The Wisconsin glaciation extended from approximately 75,000 to 11,000 years ago, between the Sangamonian Stage and the current interglacial, the Holocene. The maximum ice extent occurred approximately 25,000–21,000 years ago during the last glacial maximum, also known as the Late Wisconsin in North America.

Kettle (landform) A depression/hole in an outwash plain formed by retreating glaciers or draining floodwaters

A kettle is a depression/hole in an outwash plain formed by retreating glaciers or draining floodwaters. The kettles are formed as a result of blocks of dead ice left behind by retreating glaciers, which become surrounded by sediment deposited by meltwater streams as there is increased friction. The ice becomes buried in the sediment and when the ice melts, a depression is left called a kettle hole, creating a dimpled appearance on the outwash plain. Lakes often fill these kettles, these are called kettle hole lakes. Another source is the sudden drainage of an ice-dammed lake. When the block melts, the hole it leaves behind is a kettle. As the ice melts, ramparts can form around the edge of the kettle hole. The lakes that fill these holes are seldom more than 10 m (33 ft) deep and eventually become filled with sediment. In acid conditions, a kettle bog may form but in alkaline conditions, it will be kettle peatland.

Tallgrass prairie ecosystem native to central North America

The Tallgrass prairie is an ecosystem native to central North America. Natural and anthropogenic fire, as well as grazing by large mammals, were historically agents of periodic disturbance, which regulates tree encroachment, recycles nutrients to the soil, and catalyzes some seed dispersal and germination processes. Prior to widespread use of the steel plow, which enabled conversion to agricultural land use, tallgrass prairies expanded throughout the American Midwest and smaller portions of southern central Canada, from the transitional ecotones out of eastern North American forests, west to a climatic threshold based on precipitation and soils, to the southern reaches of the Flint Hills in Oklahoma, to a transition into forest in Manitoba.

Oak savanna

An oak savanna is a type of savanna, or lightly forested grassland, where oaks are the dominant trees. These savannas were maintained historically through wildfires set by lightning or humans, grazing, low precipitation, and/or poor soil.

Driftless Area

The Driftless Area is a region in southeastern Minnesota, southwestern Wisconsin, northeastern Iowa, and the extreme northwestern corner of Illinois, of the American Midwest. The region escaped glaciation during the last ice age and, consequently, is characterized by steep, forested ridges, deeply-carved river valleys, and karst geology characterized by spring-fed waterfalls and cold-water trout streams. Ecologically, the flora and fauna of the Driftless Area are more closely related to those of the Great Lakes region and New England rather than those of the broader Midwest and central Plains regions. Colloquially, the term includes the incised Paleozoic Plateau of southeastern Minnesota and northeastern Iowa. The region includes elevations ranging from 603 to 1,719 feet at Blue Mound State Park and covers an area of 24,000 square miles (62,200 km2). The rugged terrain is due both to the lack of glacial deposits, or drift, and to the incision of the upper Mississippi River and its tributaries into bedrock.

Savanna Portage State Park

Savanna Portage State Park is a state park of Minnesota, USA, established in 1961 to preserve the historic Savanna Portage, a difficult 6-mile (9.7 km) trail connecting the watersheds of the Mississippi River and Lake Superior. The portage trail crosses a drainage divide separating the West Savanna River, which drains to the Mississippi River and the Gulf of Mexico, from the East Savanna River, which flows in an opposite direction to the Saint Louis River, Lake Superior and the Great Lakes, and the Saint Lawrence River to the Atlantic Ocean.

Dissected Till Plains

The Dissected Till Plains are physiographic sections of the Central Lowlands province, which in turn is part of the Interior Plains physiographic division of the United States, located in southern and western Iowa, northeastern Kansas, the southwestern corner of Minnesota, northern Missouri, eastern Nebraska, and southeastern South Dakota.

Loess Hills

The Loess Hills are a formation of wind-deposited loess soil in the westernmost parts of Iowa and Missouri, and the easternmost parts of Nebraska and Kansas, along the Missouri River.

Geology of Minnesota

The geology of Minnesota comprises the rock, minerals, and soils of the U.S. state of Minnesota, including their formation, development, distribution, and condition.

Buffalo Ridge

Buffalo Ridge is a large expanse of rolling hills in the southeastern part of the larger Coteau des Prairies. It stands 1,995 feet (608 m) above sea level. The Buffalo Ridge is sixty miles long and runs through Lincoln County, Pipestone County, Murray County, Nobles County, and Rock County in the southwest corner of Minnesota.

Glacial history of Minnesota

The glacial history of Minnesota is most defined since the onset of the last glacial period, which ended some 10,000 years ago. Within the last million years, most of the Midwestern United States and much of Canada were covered at one time or another with an ice sheet. This continental glacier had a profound effect on the surface features of the area over which it moved. Vast quantities of rock and soil were scraped from the glacial centers to its margins by slowly moving ice and redeposited as drift or till. Much of this drift was dumped into old preglacial river valleys, while some of it was heaped into belts of hills at the margin of the glacier. The chief result of glaciation has been the modification of the preglacial topography by the deposition of drift over the countryside. However, continental glaciers possess great power of erosion and may actually modify the preglacial land surface by scouring and abrading rather than by the deposition of the drift.

Traverse Gap

The Traverse Gap is an ancient river channel occupied by Lake Traverse, Big Stone Lake and the valley connecting them at Browns Valley, Minnesota. It is located on the border of the U.S. states of Minnesota and South Dakota. Traverse Gap has an unusual distinction for a valley: it is crossed by a continental divide, and in some floods water has flowed across that divide from one drainage basin to the other. Before the Anglo-American Convention of 1818 it marked the border between British territory in the north and U.S. – or earlier, French – territory in the south.

Glacial River Warren, also known as River Warren, was a prehistoric river that drained Lake Agassiz in central North America between about 13,500 and 10,650 BP calibrated years ago. A part of the uppermost portion of the river channel was designated a National Natural Landmark in 1966.

River Warren Falls

The River Warren Falls was a massive waterfall on the glacial River Warren initially located in present-day Saint Paul, Minnesota, United States. The waterfall was 2700 feet (823 m) across and 175 feet (53 m) high.

Proglacial lakes of Minnesota

The proglacial lakes of Minnesota were lakes created in what is now the U.S. state of Minnesota in central North America in the waning years of the last glacial period. As the Laurentide ice sheet decayed at the end of the Wisconsin glaciation, lakes were created in depressions or behind moraines left by the glaciers. Evidence for these lakes is provided by low relief topography and glaciolacustrine sedimentary deposits. Not all contemporaneous, these glacial lakes drained after the retreat of the lobes of the ice sheets that blocked their outlets, or whose meltwaters fed them. There were a number of large lakes, one of which, Glacial Lake Agassiz, was the largest body of freshwater known to have existed on the North American continent; there were also dozens of smaller and more transitory lakes filled from glacial meltwater, which shrank or dried as the ice sheet retreated north.

Kankakee Torrent

The Kankakee Torrent was a catastrophic flood that occurred about 19,000 BP calibrated years ago in the Midwestern United States. It resulted from a breach of moraines forming a large glacial lake fed by the melting of the Late Wisconsin Laurentide Ice Sheet. The point of origin of the flood was from Lake Chicago. The landscape south of Chicago still shows the effects of the torrent, particularly at Kankakee River State Park and on the Illinois River at Starved Rock State Park.

Lake Kankakee

Lake Kankakee formed 14,000 years before present (YBP) in the valley of the Kankakee River. It developed from the outwash of the Michigan Lobe, Saginaw Lobe, and the Huron-Erie Lobe of the Wisconsin glaciation. These three ice sheets formed a basin across Northwestern Indiana. It was a time when the glaciers were receding, but had stopped for a thousand years in these locations. The lake drained about 13,000 YBP, until reaching the level of the Momence Ledge. The outcropping of limestone created an artificial base level, holding water throughout the upper basin, creating the Grand Kankakee Marsh.

References

  1. Roosevelt, Theodore (1889). The Winning of the West: Volume I. New York and London: G. P. Putnam's Sons. p.  34.
  2. "East Coast". www.atmos.washington.edu. Retrieved 2018-06-12.
  3. Hole, F.D.; G. Nielsen (1968). "Soil genesis under prairie". Proceedings of a symposium on prairie and prairie restoration.
  4. Dinsmore, James and Muller, Mark. (Illustrator) A Country So Full of Game: The Story of Wildlife in Iowa Burr Oak Series. April 1994.
  5. William J. McShea (Editor), William M. Healy (Editor) Oak Forest Ecosystems: Ecology and Management for Wildlife The Johns Hopkins University Press; 1 edition (October 21, 2003)
  6. Abrams, Marc D. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA The Holocene, Vol. 18, No. 7, 1123-1137 (2008)
  7. Weaver, J. E. (1968). Prairie Plants and Their Environment. University of Nebraska.
  8. Thompson, Janette R. Prairies, Forests, and Wetlands: The Restoration of Natural Landscape Communities in Iowa Burr Oak Series. University Of Iowa Press; 1 edition (June 1, 1992)
  9. Keyser, Pat (2012-08-02). "Drought and Native Grasses". The University of Tennessee Institute of Agriculture. Retrieved 2018-08-02.
  10. Taylor, Ciji (2013-06-03). "Native warm-season grasses weather drought, provide many other benefit". southeastfarmpress.com. Southeast FarmPress. Retrieved 2018-08-02.
  11. "Prairie Types Guide by Prairie Frontier". www.prairiefrontier.com.
  12. "Drought: A Paleo Perspective – 20th Century Drought". National Climatic Data Center . Retrieved April 5, 2009.
  13. 1 2 "Drought in Palliser's Triangle" . Retrieved June 16, 2015.
  14. Carl Kurtz. Iowa's Wild Places: An Exploration With Carl Kurtz (Iowa Heritage Collection) Iowa State Press; 1st edition (July 30, 1996)
  15. 1 2 David Tilman. "Mixed Prairie Grasses Better Source of Biofuel Than Corn Ethanol and Soybean Biodiesel". National Science Foundation (NSF). Retrieved December 7, 2006.
  16. Robison, Roy; Donald B. White; Mary H. Meyer (1995). "Plants in Prairie Communities". University of Minnesota . Retrieved 22 February 2011.
  17. "Alderville First Nation Black Oak Savanna". www.aldervillesavanna.ca.
  18. "Ojibway Prairie Complex - Parks & Recreation - City of Windsor". www.ojibway.ca.