Quaternary glaciation

Last updated
Extent of maximum glaciation in the Northern Hemisphere during the Pleistocene. The creation of 3 to 4 km (1.9 to 2.5 mi) thick ice sheets equate to a global sea level drop of about 120 m (390 ft) Iceage north-glacial hg.png
Extent of maximum glaciation in the Northern Hemisphere during the Pleistocene. The creation of 3 to 4 km (1.9 to 2.5 mi) thick ice sheets equate to a global sea level drop of about 120 m (390 ft)

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma (million years ago) and is ongoing. [1] [2] [3] Although geologists describe this entire period up to the present as an "ice age", in popular culture this term usually refers to the most recent glacial period, or to the Pleistocene epoch in general. [4] Since Earth still has polar ice sheets, geologists consider the Quaternary glaciation to be ongoing, though currently in an interglacial period.


During the Quaternary glaciation, ice sheets appeared, expanding during glacial periods and contracting during interglacial periods. Since the end of the last glacial period, only the Antarctic and Greenland ice sheets have survived, with other sheets formed during glacial periods, such as the Laurentide Ice Sheet, having completely melted.

The major effects of the Quaternary glaciation have been the continental erosion of land and the deposition of material; the modification of river systems; the creation of millions of lakes, including the development of pluvial lakes far from the ice margins; changes in sea level; the isostatic adjustment of the Earth's crust; flooding; and abnormal winds. The ice sheets themselves, by raising the albedo (the ratio of solar radiant energy reflected from Earth back into space) created significant feedback to further cool the climate. These effects have shaped land and ocean environments and biological communities.

Long before the Quaternary glaciation, land-based ice appeared and then disappeared during at least four other ice ages.


Evidence for the quaternary glaciation was first understood in the 18th and 19th centuries as part of the scientific revolution.

Over the last century, extensive field observations have provided evidence that continental glaciers covered large parts of Europe, North America, and Siberia. Maps of glacial features were compiled after many years of fieldwork by hundreds of geologists who mapped the location and orientation of drumlins, eskers, moraines, striations, and glacial stream channels to reveal the extent of the ice sheets, the direction of their flow, and the systems of meltwater channels. They also allowed scientists to decipher a history of multiple advances and retreats of the ice. Even before the theory of worldwide glaciation was generally accepted, many observers recognized that more than a single advance and retreat of the ice had occurred.


Graph of reconstructed temperature (blue), CO2 (green), and dust (red) from the Vostok Station ice core for the past 420,000 years Vostok Petit data.svg
Graph of reconstructed temperature (blue), CO2 (green), and dust (red) from the Vostok Station ice core for the past 420,000 years

To geologists, an ice age is defined by the presence of large amounts of land-based ice. Prior to the Quaternary glaciation, land-based ice formed during at least four earlier geologic periods: the Karoo (360–260 Ma), Andean-Saharan (450–420 Ma), Cryogenian (720–635 Ma) and Huronian (2,400–2,100 Ma). [5] [6]

Within the Quaternary ice age, there were also periodic fluctuations of the total volume of land ice, the sea level, and global temperatures. During the colder episodes (referred to as glacial periods or glacials) large ice sheets at least 4 km (2.5 mi) thick at their maximum covered parts of Europe, North America, and Siberia. The shorter warm intervals between glacials, when continental glaciers retreated, are referred to as interglacials. These are evidenced by buried soil profiles, peat beds, and lake and stream deposits separating the unsorted, unstratified deposits of glacial debris.

Initially the glacial/interglacial cycle length was about 41,000 years, but following the Mid-Pleistocene Transition about 1 Ma, it slowed to about 100,000 years, as evidenced most clearly by ice cores for the past 800,000 years and marine sediment cores for the earlier period. Over the past 740,000 years there have been eight glacial cycles. [7]

The entire Quaternary Period, starting 2.58 Ma, is referred to as an ice age because at least one permanent large ice sheet—the Antarctic ice sheet—has existed continuously. There is uncertainty over how much of Greenland was covered by ice during each interglacial.

Currently, Earth is in an interglacial period, the Holocene epoch beginning 15,000 to 10,000 years ago; this caused the ice sheets from the last glacial period to slowly melt. The remaining glaciers, now occupying about 10% of the world's land surface, cover Greenland, Antarctica and some mountainous regions.

During the glacial periods, the present (i.e. interglacial) hydrologic system was completely interrupted throughout large areas of the world and was considerably modified in others. Due to the volume of ice on land, sea level was about 120 metres (394 ft) lower than present.


Earth's history of glaciation is a product of the internal variability of Earth's climate system (e.g., ocean currents, carbon cycle), interacting with external forcing by phenomena outside the climate system (e.g., changes in earth's orbit, volcanism, and changes in solar output). [8]

Astronomical cycles

The role of Earth's orbital changes in controlling climate was first advanced by James Croll in the late 19th century. [9] Later, the Serbian geophysicist Milutin Milanković elaborated on the theory and calculated that these irregularities in Earth's orbit could cause the climatic cycles now known as Milankovitch cycles. [10] They are the result of the additive behavior of several types of cyclical changes in Earth's orbital properties.

Relationship of Earth's orbit to periods of glaciation Milankovitch Variations.png
Relationship of Earth's orbit to periods of glaciation

Firstly, changes in the orbital eccentricity of Earth occur on a cycle of about 100,000 years. [11] Secondly, the inclination or tilt of Earth's axis varies between 22° and 24.5° in a cycle 41,000 years long. [11] The tilt of Earth's axis is responsible for the seasons; the greater the tilt, the greater the contrast between summer and winter temperatures. Thirdly, precession of the equinoxes, or wobbles in the Earth's rotation axis, have a periodicity of 26,000 years. According to the Milankovitch theory, these factors cause a periodic cooling of Earth, with the coldest part in the cycle occurring about every 40,000 years. The main effect of the Milankovitch cycles is to change the contrast between the seasons, not the annual amount of solar heat Earth receives. The result is less ice melting than accumulating, and glaciers build up.

Milankovitch worked out the ideas of climatic cycles in the 1920s and 1930s, but it was not until the 1970s that a sufficiently long and detailed chronology of the Quaternary temperature changes was worked out to test the theory adequately. [12] Studies of deep-sea cores and their fossils indicate that the fluctuation of climate during the last few hundred thousand years is remarkably close to that predicted by Milankovitch.

A problem with the theory is that these astronomical cycles have occurred for many millions of years, but glaciation is a rare occurrence. Astronomical cycles correlate with glacial and interglacial periods within a long-term ice age, but do not initiate ice ages.

Atmospheric composition

One theory holds that decreases in atmospheric CO
, an important greenhouse gas, started the long-term cooling trend that eventually led to glaciation. Geological evidence indicates a decrease of more than 90% in atmospheric CO2 since the middle of the Mesozoic Era. [13] An analysis of CO2 reconstructions from alkenone records shows that CO2 in the atmosphere declined before and during Antarctic glaciation, and supports a substantial CO2 decrease as the primary cause of Antarctic glaciation. [14]

CO2 levels also play an important role in the transitions between interglacials and glacials. High CO2 contents correspond to warm interglacial periods, and low CO2 to glacial periods. However, studies indicate that CO
may not be the primary cause of the interglacial-glacial transitions, but instead acts as a feedback. [15] The explanation for this observed CO
variation "remains a difficult attribution problem". [15]

Plate tectonics and ocean currents

An important component in the development of long-term ice ages is the positions of the continents. [16] These can control the circulation of the oceans and the atmosphere, affecting how ocean currents carry heat to high latitudes. Throughout most of geologic time, the North Pole appears to have been in a broad, open ocean that allowed major ocean currents to move unabated. Equatorial waters flowed into the polar regions, warming them. This produced mild, uniform climates that persisted throughout most of geologic time.

But during the Cenozoic Era, the large North American and South American continental plates drifted westward from the Eurasian plate. This interlocked with the development of the Atlantic Ocean, running north–south, with the North Pole in the small, nearly landlocked basin of the Arctic Ocean. The Drake passage opened 33.9 million years ago (the Eocene-Oligocene transition), severing Antarctica from South America. The Antarctic Circumpolar Current could then flow through it, isolating Antarctica from warm waters and triggering the formation of its huge ice sheets. The Isthmus of Panama developed at a convergent plate margin about 2.6 million years ago, and further separated oceanic circulation, closing the last strait, outside the polar regions, that had connected the Pacific and Atlantic Oceans. [17] This increased poleward salt and heat transport, strengthening the North Atlantic thermohaline circulation, which supplied enough moisture to arctic latitudes to create the northern glaciation. [18]

Rise of mountains

The elevation of continental surface, often as mountain formation, is thought to have contributed to cause the Quaternary glaciation. The gradual movement of the bulk of Earth's landmasses away from the tropics in addition to increased mountain formation in the Late Cenozoic meant more land at high altitude and high latitude, favouring the formation of glaciers. [19] For example, the Greenland Ice Sheet formed in connection to the uplift of the West Greenland and East Greenland uplands in two phases, 10 and 5 million years ago in the Miocene epoch. These mountains constitute passive continental margins. [20] Computer models show that the uplift would have enabled glaciation through increased orographic precipitation and cooling of surface temperatures. [20] For the Andes it is known that the Principal Cordillera had risen to heights that allowed for the development of valley glaciers about 1 million years ago. [21]


The presence of so much ice upon the continents had a profound effect upon almost every aspect of Earth's hydrologic system. Most obvious are the spectacular mountain scenery and other continental landscapes fashioned both by glacial erosion and deposition instead of running water. Entirely new landscapes covering millions of square kilometers were formed in a relatively short period of geologic time. In addition, the vast bodies of glacial ice affected Earth well beyond the glacier margins. Directly or indirectly, the effects of glaciation were felt in every part of the world.


The Quaternary glaciation created more lakes than all other geologic processes combined. The reason is that a continental glacier completely disrupts the preglacial drainage system. The surface over which the glacier moved was scoured and eroded by the ice, leaving many closed, undrained depressions in the bedrock. These depressions filled with water and became lakes.

A diagram of the formation of the Great Lakes Glacial lakes.jpg
A diagram of the formation of the Great Lakes

Very large lakes were created along the glacial margins. The ice on both North America and Europe was about 3,000 m (10,000 ft) thick near the centers of maximum accumulation, but it tapered toward the glacier margins. Ice weight caused crustal subsidence, which was greatest beneath the thickest accumulation of ice. As the ice melted, rebound of the crust lagged behind, producing a regional slope toward the ice. This slope formed basins that have lasted for thousands of years. These basins became lakes or were invaded by the ocean. The Baltic Sea [22] [23] and the Great Lakes of North America [24] were formed primarily in this way.[ dubious ]

The numerous lakes of the Canadian Shield, Sweden, and Finland are thought to have originated at least partly from glaciers' selective erosion of weathered bedrock. [25] [26]

Pluvial lakes

The climatic conditions that cause glaciation had an indirect effect on arid and semiarid regions far removed from the large ice sheets. The increased precipitation that fed the glaciers also increased the runoff of major rivers and intermittent streams, resulting in the growth and development of large pluvial lakes. Most pluvial lakes developed in relatively arid regions where there typically was insufficient rain to establish a drainage system leading to the sea. Instead, stream runoff flowed into closed basins and formed playa lakes. With increased rainfall, the playa lakes enlarged and overflowed. Pluvial lakes were most extensive during glacial periods. During interglacial stages, with less rain, the pluvial lakes shrank to form small salt flats.

Isostatic adjustment

Major isostatic adjustments of the lithosphere during the Quaternary glaciation were caused by the weight of the ice, which depressed the continents. In Canada, a large area around Hudson Bay was depressed below (modern) sea level, as was the area in Europe around the Baltic Sea. The land has been rebounding from these depressions since the ice melted. Some of these isostatic movements triggered large earthquakes in Scandinavia about 9,000 years ago. These earthquakes are unique in that they are not associated with plate tectonics.

Studies have shown that the uplift has taken place in two distinct stages. The initial uplift following deglaciation was rapid (called "elastic"), and took place as the ice was being unloaded. After this "elastic" phase, uplift proceed by "slow viscous flow" so the rate decreased exponentially after that. Today, typical uplift rates are of the order of 1 cm per year or less, except in areas of North America, especially Alaska, where the rate of uplift is 2.54 cm per year (1 inch or more). [27] In northern Europe, this is clearly shown by the GPS data obtained by the BIFROST GPS network. [28] Studies suggest that rebound will continue for about at least another 10,000 years. The total uplift from the end of deglaciation depends on the local ice load and could be several hundred meters near the center of rebound.


The presence of ice over so much of the continents greatly modified patterns of atmospheric circulation. Winds near the glacial margins were strong and persistent because of the abundance of dense, cold air coming off the glacier fields. These winds picked up and transported large quantities of loose, fine-grained sediment brought down by the glaciers. This dust accumulated as loess (wind-blown silt), forming irregular blankets over much of the Missouri River valley, central Europe, and northern China.

Sand dunes were much more widespread and active in many areas during the early Quaternary period. A good example is the Sand Hills region in Nebraska, USA, which covers an area of about 60,000 km2 (23,166 sq mi). [29] This region was a large, active dune field during the Pleistocene epoch, but today is largely stabilized by grass cover. [30] [31]

Ocean currents

Thick glaciers were heavy enough to reach the sea bottom in several important areas, which blocked the passage of ocean water and affected ocean currents. In addition to these direct effects, it also caused feedback effects, as ocean currents contribute to global heat transfer.

Gold deposits

Moraines and till deposited by Quaternary glaciers have contributed to the formation of valuable placer deposits of gold. This is the case of southernmost Chile where reworking of Quaternary moraines have concentrated gold offshore. [32]

Records of prior glaciation

500 million years of climate change. Phanerozoic Climate Change.png
500 million years of climate change.

Glaciation has been a rare event in Earth's history, [33] but there is evidence of widespread glaciation during the late Paleozoic Era (300 to 200 Ma) and the late Precambrian (i.e. the Neoproterozoic Era, 800 to 600 Ma). [34] Before the current ice age, which began 2 to 3 Ma, Earth's climate was typically mild and uniform for long periods of time. This climatic history is implied by the types of fossil plants and animals and by the characteristics of sediments preserved in the stratigraphic record. [35] There are, however, widespread glacial deposits, recording several major periods of ancient glaciation in various parts of the geologic record. Such evidence suggests major periods of glaciation prior to the current Quaternary glaciation.

One of the best documented records of pre-Quaternary glaciation, called the Karoo Ice Age, is found in the late Paleozoic rocks in South Africa, India, South America, Antarctica, and Australia. Exposures of ancient glacial deposits are numerous in these areas. Deposits of even older glacial sediment exist on every continent except South America. These indicate that two other periods of widespread glaciation occurred during the late Precambrian, producing the Snowball Earth during the Cryogenian Period. [36]

Next glacial period

Increase in atmospheric CO
2 since the Industrial Revolution. Carbon History and Flux Rev.png
Increase in atmospheric CO
since the Industrial Revolution.

The warming trend following the Last Glacial Maximum, since about 20,000 years ago, has resulted in a sea level rise by about 130 metres (427 ft). This warming trend subsided about 6,000 years ago, and sea level has been comparatively stable since the Neolithic. The present interglacial period (the Holocene climatic optimum) has been stable and warm compared to the preceding ones, which were interrupted by numerous cold spells lasting hundreds of years. This stability might have allowed the Neolithic Revolution and by extension human civilization. [37]

Based on orbital models, the cooling trend initiated about 6,000 years ago will continue for another 23,000 years. [38] Slight changes in the Earth's orbital parameters may, however, indicate that, even without any human contribution, there will not be another glacial period for the next 50,000 years. [39] It is possible that the current cooling trend might be interrupted by an interstadial phase (a warmer period) in about 60,000 years, with the next glacial maximum reached only in about 100,000 years. [40]

Based on past estimates for interglacial durations of about 10,000 years, in the 1970s there was some concern that the next glacial period would be imminent. However, slight changes in the eccentricity of Earth's orbit around the Sun suggest a lengthy interglacial period lasting about another 50,000 years. [41] Additionally, human impact is now seen as possibly extending what would already be an unusually long warm period. Projection of the timeline for the next glacial maximum depend crucially on the amount of CO
in the atmosphere
. Models assuming increased CO
levels at 750 parts per million (ppm; current levels are at 417 ppm [42] ) have estimated the persistence of the current interglacial period for another 50,000 years. [43] However, more recent studies concluded that the amount of heat trapping gases emitted into Earth's oceans and atmosphere will prevent the next glacial (ice age), which otherwise would begin in around 50,000 years, and likely more glacial cycles. [44] [45]

Related Research Articles

<span class="mw-page-title-main">Ice age</span> Period of long-term reduction in temperature of Earths surface and atmosphere

An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and greenhouse periods, during which there are no glaciers on the planet. Earth is currently in the Quaternary glaciation. Individual pulses of cold climate within an ice age are termed glacial periods, and intermittent warm periods within an ice age are called interglacials or interstadials.

<span class="mw-page-title-main">Pleistocene</span> First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος, pleīstos, 'most' and καινός, kainós, 'new'.

<span class="mw-page-title-main">Quaternary</span> Third and current period of the Cenozoic Era, from 2.58 million years ago to the present

The Quaternary is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.58 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene and the Holocene.

<span class="mw-page-title-main">Milankovitch cycles</span> Global climate cycles

Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term was coined and named after Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypothesized that variations in eccentricity, axial tilt, and precession combined to result in cyclical variations in the intra-annual and latitudinal distribution of solar radiation at the Earth's surface, and that this orbital forcing strongly influenced the Earth's climatic patterns.

<span class="mw-page-title-main">Last Glacial Period</span> Period of major glaciations of the northern hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP), also known colloquially as the last ice age or simply ice age, occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago. The LGP is part of a larger sequence of glacial and interglacial periods known as the Quaternary glaciation which started around 2,588,000 years ago and is ongoing. The definition of the Quaternary as beginning 2.58 million years ago (Mya) is based on the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Mya, in the mid-Cenozoic. The term Late Cenozoic Ice Age is used to include this early phase. The previous ice age, the Saalian glaciation, which ended about 128,000 years ago, was more severe than the Last Glacial Period in some areas such as Britain, but less severe in others.

<span class="mw-page-title-main">Timeline of glaciation</span> Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

<span class="mw-page-title-main">Würm glaciation</span> Last glacial period in the Alpine region

The Würm glaciation or Würm stage, usually referred to in the literature as the Würm, was the last glacial period in the Alpine region. It is the youngest of the major glaciations of the region that extended beyond the Alps themselves. Like most of the other ice ages of the Pleistocene epoch, it is named after a river, in this case the Würm in Bavaria, a tributary of the Amper. The Würm ice age can be dated to about 115,000 to 11,700 years ago, but sources differ about the dates, depending on whether the long transition phases between the glacials and interglacials are allocated to one or other of those periods. The average annual temperatures during the Würm ice age in the Alpine Foreland were below −3 °C. That has been determined from changes in the vegetation, as well as differences in the facies.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

<span class="mw-page-title-main">Last Glacial Maximum</span> Most recent time during the Last Glacial Period that ice sheets were at their greatest extent

The Last Glacial Maximum (LGM), also referred to as the Late Glacial Maximum, was the most recent time during the Last Glacial Period that ice sheets were at their greatest extent. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing drought, desertification, and a large drop in sea levels. According to Clark et al., growth of ice sheets commenced 33,000 years ago and maximum coverage was between 26,500 years and 19–20,000 years ago, when deglaciation commenced in the Northern Hemisphere, causing an abrupt rise in sea level. Decline of the West Antarctica ice sheet occurred between 14,000 and 15,000 years ago, consistent with evidence for another abrupt rise in the sea level about 14,500 years ago.

The Holocene Climate Optimum (HCO) was a warm period that occurred in the interval roughly 9,000 to 5,000 years ago BP, with a thermal maximum around 8000 years BP. It has also been known by many other names, such as Altithermal, Climatic Optimum, Holocene Megathermal, Holocene Optimum, Holocene Thermal Maximum, Hypsithermal, and Mid-Holocene Warm Period.

The Flandrian interglacial or stage is the name given by geologists and archaeologists in the British Isles to the first, and so far only, stage of the Holocene epoch, covering the period from around 12,000 years ago, at the end of the last glacial period to the present day. As such, it is in practice identical in span to the Holocene.

<span class="mw-page-title-main">Marine isotope stages</span> Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

<span class="mw-page-title-main">Interglacial</span> Geological interval of warmer temperature that separates glacial periods within an ice age

An interglacial period is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

<span class="mw-page-title-main">Neoglaciation</span>

The neoglaciation describes the documented cooling trend in the Earth's climate during the Holocene, following the retreat of the Wisconsin glaciation, the most recent glacial period. Neoglaciation has followed the hypsithermal or Holocene Climatic Optimum, the warmest point in the Earth's climate during the current interglacial stage, excluding the global warming-induced temperature increase starting in the 20th century. The neoglaciation has no well-marked universal beginning: local conditions and ecological inertia affected the onset of detectably cooler conditions.

<span class="mw-page-title-main">100,000-year problem</span> Discrepancy between past temperatures and the amount of incoming solar radiation

The 100,000-year problem of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over the past 800,000 years. Due to variations in the Earth's orbit, the amount of insolation varies with periods of around 21,000, 40,000, 100,000, and 400,000 years. Variations in the amount of incident solar energy drive changes in the climate of the Earth, and are recognised as a key factor in the timing of initiation and termination of glaciations.

<span class="mw-page-title-main">Marine Isotope Stage 11</span> Marine isotope stage between 424,000 and 374,000 years ago

Marine Isotope Stage 11 or MIS 11 is a Marine Isotope Stage in the geologic temperature record, covering the interglacial period between 424,000 and 374,000 years ago. It corresponds to the Hoxnian Stage in Britain.

Throughout Earth's climate history (Paleoclimate) its climate has fluctuated between two primary states: greenhouse and icehouse Earth. Both climate states last for millions of years and should not be confused with glacial and interglacial periods, which occur as alternate phases within an icehouse period and tend to last less than 1 million years. There are five known Icehouse periods in Earth's climate history, which are known as the Huronian, Cryogenian, Andean-Saharan, Late Paleozoic, and Late Cenozoic glaciations. The main factors involved in changes of the paleoclimate are believed to be the concentration of atmospheric carbon dioxide, changes in Earth's orbit, long-term changes in the solar constant, and oceanic and orogenic changes from tectonic plate dynamics. Greenhouse and icehouse periods have played key roles in the evolution of life on Earth by directly and indirectly forcing biotic adaptation and turnover at various spatial scales across time.

Deglaciation is the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume. Thus, it refers to the retreat of a glacier, an ice sheet or frozen surface layer, and the resulting exposure of the Earth's surface. The decline of the cryosphere due to ablation can occur on any scale from global to localized to a particular glacier. After the Last Glacial Maximum, the last deglaciation begun, which lasted until the early Holocene. Around much of Earth, deglaciation during the last 100 years has been accelerating as a result of climate change, partly brought on by anthropogenic changes to greenhouse gases.

<span class="mw-page-title-main">Late Cenozoic Ice Age</span> Ice age of the last 34 million years, in particular in Antarctica

The Late Cenozoic Ice Age, or Antarctic Glaciation began 33.9 million years ago at the Eocene-Oligocene Boundary and is ongoing. It is Earth's current ice age or icehouse period. Its beginning is marked by the formation of the Antarctic ice sheets. The Late Cenozoic Ice Age gets its name due to the fact that it covers roughly the last half of Cenozoic era so far.

<span class="mw-page-title-main">Mid-Pleistocene Transition</span> Change in glacial cycles c. 1m years ago

The Mid-Pleistocene Transition (MPT), also known as the Mid-Pleistocene Revolution (MPR), is a fundamental change in the behaviour of glacial cycles during the Quaternary glaciations. The transition happened approximately 1.25–0.7 million years ago, in the Pleistocene epoch. Before the MPT, the glacial cycles were dominated by a 41,000-year periodicity with low-amplitude, thin ice sheets and a linear relationship to the Milankovitch forcing from axial tilt. After the MPT there have been strongly asymmetric cycles with long-duration cooling of the climate and build-up of thick ice sheets, followed by a fast change from extreme glacial conditions to a warm interglacial. The cycle lengths have varied, with an average length of approximately 100,000 years.


  1. Lorens, L.; Hilgen, F.; Shackelton, N.J.; Laskar, J.; Wilson, D. (2004). "Part III Geological Periods: 21 The Neogene Period". In Gradstein, Felix M.; Ogg, James G.; Smith, Alan G. (eds.). A Geologic Time Scale 2004. Cambridge University Press. p. 412. ISBN   978-0-521-78673-7.
  2. Ehlers, Jürgen; Gibbard, Philip (2011). "Quaternary glaciation". Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. pp. 873–882. doi:10.1007/978-90-481-2642-2_423. ISBN   978-90-481-2641-5.
  3. Berger, A.; Loutre, M.F. (2000). "CO2 And Astronomical Forcing of the Late Quaternary". Proceedings of the 1st Solar and Space Weather Euroconference, 25-29 September 2000. The Solar Cycle and Terrestrial Climate. Vol. 463. ESA Publications Division. p. 155. Bibcode:2000ESASP.463..155B. ISBN   9290926937.
  4. "Glossary of Technical Terms Related to the Ice Age Floods". Ice Age Floods Institute. Retrieved 17 February 2019.
  5. Lockwood, J.G.; van Zinderen-Bakker, E. M. (November 1979). "The Antarctic Ice-Sheet: Regulator of Global Climates?: Review". The Geographical Journal. 145 (3): 469–471. doi:10.2307/633219. JSTOR   633219.
  6. Warren, John K. (2006). Evaporites: sediments, resources and hydrocarbons. Birkhäuser. p. 289. ISBN   978-3-540-26011-0.
  7. Augustin, Laurent; et al. (2004). "Eight glacial cycles from an Antarctic ice core". Nature. 429 (6992): 623–8. Bibcode:2004Natur.429..623A. doi: 10.1038/nature02599 . PMID   15190344.
  8. Why were there Ice Ages?
  9. Discovery of the Ice Age
  10. EO Library: Milutin Milankovitch Archived December 10, 2003, at the Wayback Machine
  11. 1 2 Why do glaciations occur?
  12. EO Library: Milutin Milankovitch Page 3
  13. Fletcher, Benjamin J.; Brentnall, Stuart J.; Anderson, Clive W.; Berner, Robert A.; Beerling, David J. (2008). "Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change". Nature Geoscience. 1 (1): 43–48. Bibcode:2008NatGe...1...43F. doi:10.1038/ngeo.2007.29.
  14. Pagani, Mark; Huber, Matthew; Liu, Zhonghui; Bohaty, Steven M.; Henderiks, Jorijntje; Sijp, Willem; Krishnan, Srinath; DeConto, Robert M. (2011). "The Role of Carbon Dioxide During the Onset of Antarctic Glaciation". Science. 334 (6060): 1261–4. Bibcode:2011Sci...334.1261P. doi:10.1126/science.1203909. PMID   22144622. S2CID   206533232.
  15. 1 2 Joos, Fortunat; Prentice, I. Colin (2004). "A Paleo-Perspective on Changes in Atmospheric CO2 and Climate" (PDF). The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Scope. Vol. 62. Washington D.C.: Island Press. pp. 165–186. Archived from the original (PDF) on 2008-12-17. Retrieved 2008-05-07.
  16. Glaciers and Glaciation Archived August 5, 2007, at the Wayback Machine
  17. EO Newsroom: New Images – Panama: Isthmus that Changed the World Archived August 2, 2007, at the Wayback Machine
  18. Bartoli, G.; Sarnthein, M.; Weinelt, M.; Erlenkeuser, H.; Garbe-Schönberg, D.; Lea, D. W. (30 August 2005). "Final closure of Panama and the onset of northern hemisphere glaciation". Earth and Planetary Science Letters. 237 (1): 33–44. Bibcode:2005E&PSL.237...33B. doi: 10.1016/j.epsl.2005.06.020 . ISSN   0012-821X.
  19. Flint, Richard Foster (1971). Glacial and Quaternary Geology. John Wiley and Sons. p. 22.
  20. 1 2 Solgaard, Anne M.; Bonow, Johan M.; Langen, Peter L.; Japsen, Peter; Hvidberg, Christine (2013). "Mountain building and the initiation of the Greenland Ice Sheet". Palaeogeography, Palaeoclimatology, Palaeoecology . 392: 161–176. Bibcode:2013PPP...392..161S. doi:10.1016/j.palaeo.2013.09.019.
  21. Charrier, Reynaldo; Iturrizaga, Lafasam; Charretier, Sebastién; Regard, Vincent (2019). "Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35º S)". Andean Geology . 46 (2): 240–278. doi: 10.5027/andgeoV46n2-3108 . Retrieved June 9, 2019.
  22. Tikkanen, Matti; Oksanen, Juha (2002). "Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland". Fennia . 180 (1–2). Retrieved December 22, 2017.
  23. Polish Geological Institute Archived March 15, 2008, at the Wayback Machine
  24. CVO Website – Glaciations and Ice Sheets
  25. Lidmar-Bergström, K.; Olsson, S.; Roaldset, E. (1999). "Relief features and palaeoweathering remnants in formerly glaciated Scandinavian basement areas". In Thiry, Médard; Simon-Coinçon, Régine (eds.). Palaeoweathering, Palaeosurfaces and Related Continental Deposits. Special publication of the International Association of Sedimentologists. Vol. 27. Blackwell. pp. 275–301. ISBN   0-632-05311-9.
  26. Lindberg, Johan (April 4, 2016). "berggrund och ytformer". Uppslagsverket Finland (in Swedish). Retrieved November 30, 2017.
  27. Actual observations from Haines, Alaska
  28. Johansson, J.M.; Davis, J.L.; Scherneck, H.‐G.; Milne, G.A.; Vermeer, M.; Mitrovica, J.X.; Bennett, R.A.; Jonsson, B.; Elgered, G.; Elósegui, P.; Koivula, H.; Poutanen, M.; Rönnäng, B.O.; Shapiro, I.I. (2002). "Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results". Geodesy and Gravity/Tectonophysics. 107 (B8): 2157. Bibcode:2002JGRB..107.2157J. doi: 10.1029/2001JB000400 .
  29. EO Newsroom: New Images – Sand Hills, Nebraska Archived August 2, 2007, at the Wayback Machine
  30. LiveScience.com Archived December 1, 2008, at the Wayback Machine
  31. Nebraska Sand Hills Archived 2007-12-21 at the Wayback Machine
  32. García, Marcelo; Correa, Jorge; Maksaev, Víctor; Townley, Brian (2020). "Potential mineral resources of the Chilean offshore: an overview". Andean Geology . 47 (1): 1–13. doi: 10.5027/andgeov47n1-3260 .
  33. Ice Ages- Illinois State Museum
  34. When have Ice Ages occurred?
  35. Our Changing Continent
  36. Geotimes – April 2003 – Snowball Earth
  37. Richerson, Peter J.; Robert Boyd; Robert L. Bettinger (2001). "Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis" (PDF). American Antiquity. 66 (3): 387–411. doi:10.2307/2694241. JSTOR   2694241. S2CID   163474968 . Retrieved 29 December 2015.
  38. J Imbrie; J Z Imbrie (1980). "Modeling the Climatic Response to Orbital Variations". Science. 207 (4434): 943–953. Bibcode:1980Sci...207..943I. doi:10.1126/science.207.4434.943. PMID   17830447. S2CID   7317540.
  39. Berger A, Loutre MF (2002). "Climate: An exceptionally long interglacial ahead?". Science. 297 (5585): 1287–8. doi:10.1126/science.1076120. PMID   12193773. S2CID   128923481.{{cite journal}}: CS1 maint: uses authors parameter (link) "Berger and Loutre argue in their Perspective that with or without human perturbations, the current warm climate may last another 50,000 years. The reason is a minimum in the eccentricity of Earth's orbit around the Sun."
  40. "NOAA Paleoclimatology Program – Orbital Variations and Milankovitch Theory".A. Ganopolski, R. Winkelmann & H. J. Schellnhuber (2016). "Critical insolation–CO2 relation for diagnosing past and future glacial inception". Nature. 529 (7585): 200–203. Bibcode:2016Natur.529..200G. doi:10.1038/nature16494. PMID   26762457. S2CID   4466220.{{cite journal}}: CS1 maint: uses authors parameter (link) M. F. Loutre, A. Berger, "Future Climatic Changes: Are We Entering an Exceptionally Long Interglacial?", Climatic Change 46 (2000), 61-90.
  41. Berger, A.; Loutre, M.F. (2002-08-23). "An Exceptionally Long Interglacial Ahead?" (PDF). Science . 297 (5585): 1287–8. doi:10.1126/science.1076120. PMID   12193773. S2CID   128923481.
  42. Tans, Pieter. "Trends in Atmospheric Carbon Dioxide – Mauna Loa". National Oceanic and Atmospheric Administration . Retrieved 2016-05-06.
  43. Christiansen, Eric (2014). Dynamic Earth. p. 441. ISBN   9781449659028.
  44. "Global Warming Good News: No More Ice Ages". LiveScience. 2007.
  45. "Human-made climate change suppresses the next ice age". Potsdam Institute for Climate Impact Research in Germany. 2016.

Wiktionary-logo-en-v2.svg The dictionary definition of glaciation at Wiktionary