Paleoclimatology

Last updated

Paleoclimatology (British spelling, palaeoclimatology) is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. [1] As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.

Contents

Paleoclimatology uses a variety of proxy methods from Earth and life sciences to obtain data previously preserved within rocks, sediments, boreholes, ice sheets, tree rings, corals, shells, and microfossils. Combined with techniques to date the proxies, the paleoclimate records are used to determine the past states of Earth's atmosphere.

The scientific field of paleoclimatology came to maturity in the 20th century. Notable periods studied by paleoclimatologists include the frequent glaciations that Earth has undergone, rapid cooling events like the Younger Dryas, and the rapid warming during the Paleocene–Eocene Thermal Maximum. Studies of past changes in the environment and biodiversity often reflect on the current situation, specifically the impact of climate on mass extinctions and biotic recovery and current global warming. [2] [3]

History

Notions of a changing climate most likely evolved in ancient Egypt, Mesopotamia, the Indus Valley and China, where prolonged periods of droughts and floods were experienced. [4] In the seventeenth century, Robert Hooke postulated that fossils of giant turtles found in Dorset could only be explained by a once warmer climate, which he thought could be explained by a shift in Earth's axis. [4] Fossils were, at that time, often explained as a consequence of a biblical flood. [5] Systematic observations of sunspots started by amateur astronomer Heinrich Schwabe in the early 19th century, starting a discussion of the Sun's influence on Earth's climate. [4]

The scientific study of paleoclimatology began to take shape in the early 19th century, when discoveries about glaciations and natural changes in Earth's past climate helped to understand the greenhouse effect. It was only in the 20th century that paleoclimatology became a unified scientific field. Before, different aspects of Earth's climate history were studied by a variety of disciplines. [5] At the end of the 20th century, the empirical research into Earth's ancient climates started to be combined with computer models of increasing complexity. A new objective also developed in this period: finding ancient analog climates that could provide information about current climate change. [5]

Reconstructing ancient climates

Preliminary results from a Smithsonian Institution project, showing Earth's average surface temperature over the past 500 million years Earth's average surface temperature over the past 500 million years.png
Preliminary results from a Smithsonian Institution project, showing Earth's average surface temperature over the past 500 million years
Palaeotemperature graphs placed together All palaeotemps.svg
Palaeotemperature graphs placed together
The oxygen content in the atmosphere over the last billion years Sauerstoffgehalt-1000mj2.png
The oxygen content in the atmosphere over the last billion years

Paleoclimatologists employ a wide variety of techniques to deduce ancient climates. The techniques used depend on which variable has to be reconstructed (this could be temperature, precipitation, or something else) and how long ago the climate of interest occurred. For instance, the deep marine record, the source of most isotopic data, exists only on oceanic plates, which are eventually subducted; the oldest remaining material is 200 million years old. Older sediments are also more prone to corruption by diagenesis. This is due to the millions of years of disruption experienced by the rock formations, such as pressure, tectonic activity, and fluid flowing. These factors often result in a lack of quality or quantity of data, which causes resolution and confidence in the data decrease over time.

Specific techniques used to make inferences on ancient climate conditions are the use of lake sediment cores and speleothems. These utilize an analysis of sediment layers and rock growth formations respectively, amongst element-dating methods utilizing oxygen, carbon and uranium.

Proxies for climate

Direct Quantitative Measurements

The Direct Quantitative Measurements method is the most direct approach to understand the change in a climate. Comparisons between recent data to older data allows a researcher to gain a basic understanding of weather and climate changes within an area. There is a disadvantage to this method. Data of the climate only started being recorded in the mid-1800s. This means that researchers can only utilize 150 years of data. That is not helpful when trying to map the climate of an area 10,000 years ago. This is where more complex methods can be used. [8]

Ice

Mountain glaciers and the polar ice caps/ice sheets provide much data in paleoclimatology. Ice-coring projects in the ice caps of Greenland and Antarctica have yielded data going back several hundred thousand years, over 800,000 years in the case of the EPICA project.

  • Air trapped within fallen snow becomes encased in tiny bubbles as the snow is compressed into ice in the glacier under the weight of later years' snow. The trapped air has proven a tremendously valuable source for direct measurement of the composition of air from the time the ice was formed.
  • Layering can be observed because of seasonal pauses in ice accumulation and can be used to establish chronology, associating specific depths of the core with ranges of time.
  • Changes in the layering thickness can be used to determine changes in precipitation or temperature.
  • Oxygen-18 quantity changes (δ18O) in ice layers represent changes in average ocean surface temperature. Water molecules containing the heavier O-18 evaporate at a higher temperature than water molecules containing the normal Oxygen-16 isotope. The ratio of O-18 to O-16 will be higher as temperature increases but it also depends on factors such as water salinity and the volume of water locked up in ice sheets. Various cycles in isotope ratios have been detected.
  • Pollen has been observed in the ice cores and can be used to understand which plants were present as the layer formed. Pollen is produced in abundance and its distribution is typically well understood. A pollen count for a specific layer can be produced by observing the total amount of pollen categorized by type (shape) in a controlled sample of that layer. Changes in plant frequency over time can be plotted through statistical analysis of pollen counts in the core. Knowing which plants were present leads to an understanding of precipitation and temperature, and types of fauna present. Palynology includes the study of pollen for these purposes.
  • Volcanic ash is contained in some layers, and can be used to establish the time of the layer's formation. Volcanic events distribute ash with a unique set of properties (shape and color of particles, chemical signature). Establishing the ash's source will give a time period to associate with the layer of ice.

A multinational consortium, the European Project for Ice Coring in Antarctica (EPICA), has drilled an ice core in Dome C on the East Antarctic ice sheet and retrieved ice from roughly 800,000 years ago. [9] The international ice core community has, under the auspices of International Partnerships in Ice Core Sciences (IPICS), defined a priority project to obtain the oldest possible ice core record from Antarctica, an ice core record reaching back to or towards 1.5 million years ago. [10]

Dendroclimatology

Climatic information can be obtained through an understanding of changes in tree growth. Generally, trees respond to changes in climatic variables by speeding up or slowing down growth, which in turn is generally reflected by a greater or lesser thickness in growth rings. Different species however, respond to changes in climatic variables in different ways. A tree-ring record is established by compiling information from many living trees in a specific area. This is done by comparing the number, thickness, ring boundaries, and pattern matching of tree growth rings.

The differences in thickness displayed in the growth rings in trees can often indicate the quality of conditions in the environment, and the fitness of the tree species evaluated. Different species of trees will display different growth responses to the changes in the climate. An evaluation of multiple trees within the same species, along with one of trees in different species, will allow for a more accurate analysis of the changing variables within the climate and how they affected the surrounding species. [11]

Older intact wood that has escaped decay can extend the time covered by the record by matching the ring depth changes to contemporary specimens. By using that method, some areas have tree-ring records dating back a few thousand years. Older wood not connected to a contemporary record can be dated generally with radiocarbon techniques. A tree-ring record can be used to produce information regarding precipitation, temperature, hydrology, and fire corresponding to a particular area.

Sedimentary content

On a longer time scale, geologists must refer to the sedimentary record for data.

  • Sediments, sometimes lithified to form rock, may contain remnants of preserved vegetation, animals, plankton, or pollen, which may be characteristic of certain climatic zones.
  • Biomarker molecules such as the alkenones may yield information about their temperature of formation.
  • Chemical signatures, particularly Mg/Ca ratio of calcite in Foraminifera tests, can be used to reconstruct past temperature.
  • Isotopic ratios can provide further information. Specifically, the δ18O record responds to changes in temperature and ice volume, and the δ13C record reflects a range of factors, which are often difficult to disentangle.
Sea floor core sample labelled to identify the exact spot on the sea floor where the sample was taken. Sediments from nearby locations can show significant differences in chemical and biological composition. Core+Repository+core samples2.jpg
Sea floor core sample labelled to identify the exact spot on the sea floor where the sample was taken. Sediments from nearby locations can show significant differences in chemical and biological composition.
Sedimentary facies

On a longer time scale, the rock record may show signs of sea level rise and fall, and features such as "fossilised" sand dunes can be identified. Scientists can get a grasp of long-term climate by studying sedimentary rock going back billions of years. The division of Earth history into separate periods is largely based on visible changes in sedimentary rock layers that demarcate major changes in conditions. Often, they include major shifts in climate.

Sclerochronology

Corals (see also sclerochronology)

Coral “rings'' share similar evidence of growth to that of trees, and thus can be dated in similar ways. A primary difference is their environments and the conditions within those that they respond to. Examples of these conditions for coral include water temperature, freshwater influx, changes in pH, and wave disturbances. From there, specialized equipment, such as the Advanced Very High Resolution Radiometer (AVHRR) instrument, can be used to derive the sea surface temperature and water salinity from the past few centuries. The δ18O of coralline red algae provides a useful proxy of the combined sea surface temperature and sea surface salinity at high latitudes and the tropics, where many traditional techniques are limited. [12] [13]

Landscapes and landforms

Within climatic geomorphology, one approach is to study relict landforms to infer ancient climates. [14] Being often concerned about past climates climatic geomorphology is considered sometimes to be a theme of historical geology. [15] Evidence of these past climates to be studied can be found in the landforms they leave behind. Examples of these landforms are those such as glacial landforms (moraines, striations), desert features (dunes, desert pavements), and coastal landforms (marine terraces, beach ridges). [16] Climatic geomorphology is of limited use to study recent (Quaternary, Holocene) large climate changes since there are seldom discernible in the geomorphological record. [17]

Timing of proxies

The field of geochronology has scientists working on determining how old certain proxies are. For recent proxy archives of tree rings and corals the individual year rings can be counted, and an exact year can be determined. Radiometric dating uses the properties of radioactive elements in proxies. In older material, more of the radioactive material will have decayed and the proportion of different elements will be different from newer proxies. One example of radiometric dating is radiocarbon dating. In the air, cosmic rays constantly convert nitrogen into a specific radioactive carbon isotope, 14C. When plants then use this carbon to grow, this isotope is not replenished anymore and starts decaying. The proportion of 'normal' carbon and Carbon-14 gives information of how long the plant material has not been in contact with the atmosphere. [18]

Notable climate events in Earth history

Knowledge of precise climatic events decreases as the record goes back in time, but some notable climate events are known:

History of the atmosphere

Earliest atmosphere

The first atmosphere would have consisted of gases in the solar nebula, primarily hydrogen. In addition, there would probably have been simple hydrides such as those now found in gas giants like Jupiter and Saturn, notably water vapor, methane, and ammonia. As the solar nebula dissipated, the gases would have escaped, partly driven off by the solar wind. [19]

Second atmosphere

The next atmosphere, consisting largely of nitrogen, carbon dioxide, and inert gases, was produced by outgassing from volcanism, supplemented by gases produced during the late heavy bombardment of Earth by huge asteroids. [19] A major part of carbon dioxide emissions were soon dissolved in water and built up carbonate sediments.

Water-related sediments have been found dating from as early as 3.8 billion years ago. [20] About 3.4 billion years ago, nitrogen was the major part of the then stable "second atmosphere". An influence of life has to be taken into account rather soon in the history of the atmosphere because hints of early life forms have been dated to as early as 3.5 to 4.3 billion years ago. [21] The fact that it is not perfectly in line with the 30% lower solar radiance (compared to today) of the early Sun has been described as the "faint young Sun paradox".

The geological record, however, shows a continually relatively warm surface during the complete early temperature record of Earth with the exception of one cold glacial phase about 2.4 billion years ago. In the late Archaean eon, an oxygen-containing atmosphere began to develop, apparently from photosynthesizing cyanobacteria (see Great Oxygenation Event) which have been found as stromatolite fossils from 2.7 billion years ago. The early basic carbon isotopy (isotope ratio proportions) was very much in line with what is found today, suggesting that the fundamental features of the carbon cycle were established as early as 4 billion years ago.

Third atmosphere

The constant rearrangement of continents by plate tectonics influences the long-term evolution of the atmosphere by transferring carbon dioxide to and from large continental carbonate stores. Free oxygen did not exist in the atmosphere until about 2.4 billion years ago, during the Great Oxygenation Event, and its appearance is indicated by the end of the banded iron formations. Until then, any oxygen produced by photosynthesis was consumed by oxidation of reduced materials, notably iron. Molecules of free oxygen did not start to accumulate in the atmosphere until the rate of production of oxygen began to exceed the availability of reducing materials. That point was a shift from a reducing atmosphere to an oxidizing atmosphere. O2 showed major variations until reaching a steady state of more than 15% by the end of the Precambrian. [22] The following time span was the Phanerozoic eon, during which oxygen-breathing metazoan life forms began to appear.

The amount of oxygen in the atmosphere has fluctuated over the last 600 million years, reaching a peak of 35% [23] during the Carboniferous period, significantly higher than today's 21%. Two main processes govern changes in the atmosphere: plants use carbon dioxide from the atmosphere, releasing oxygen and the breakdown of pyrite and volcanic eruptions release sulfur into the atmosphere, which oxidizes and hence reduces the amount of oxygen in the atmosphere. However, volcanic eruptions also release carbon dioxide, which plants can convert to oxygen. The exact cause of the variation of the amount of oxygen in the atmosphere is not known. Periods with much oxygen in the atmosphere are associated with rapid development of animals. Today's atmosphere contains 21% oxygen, which is high enough for rapid development of animals. [24]

Climate during geological ages

Timeline of glaciations, shown in blue GlaciationsinEarthExistancelicenced annotated.jpg
Timeline of glaciations, shown in blue

In 2020 scientists published a continuous, high-fidelity record of variations in Earth's climate during the past 66 million years and identified four climate states, separated by transitions that include changing greenhouse gas levels and polar ice sheets volumes. They integrated data of various sources. The warmest climate state since the time of the dinosaur extinction, "Hothouse", endured from 56 Mya to 47 Mya and was ~14 °C warmer than average modern temperatures. [25] [26]

Precambrian climate

The Precambrian took place between the time when Earth first formed 4.6 billion years (Ga) ago, and 542 million years ago. The Precambrian can be split into two eons, the Archean and the Proterozoic, which can be further subdivided into eras. [27] The reconstruction of the Precambrian climate is difficult for various reasons including the low number of reliable indicators and a, generally, not well-preserved or extensive fossil record (especially when compared to the Phanerozoic eon). [28] [29] Despite these issues, there is evidence for a number of major climate events throughout the history of the Precambrian: The Great Oxygenation Event, which started around 2.3 Ga ago (the beginning of the Proterozoic) is indicated by biomarkers which demonstrate the appearance of photosynthetic organisms. Due to the high levels of oxygen in the atmosphere from the GOE, CH4 levels fell rapidly cooling the atmosphere causing the Huronian glaciation. For about 1 Ga after the glaciation (2-0.8 Ga ago), the Earth likely experienced warmer temperatures indicated by microfossils of photosynthetic eukaryotes, and oxygen levels between 5 and 18% of the Earth's current oxygen level. At the end of the Proterozoic, there is evidence of global glaciation events of varying severity causing a 'Snowball Earth'. [30] Snowball Earth is supported by different indicators such as, glacial deposits, significant continental erosion called the Great Unconformity, and sedimentary rocks called cap carbonates that form after a deglaciation episode. [31]

Phanerozoic climate

Changes in oxygen-18 ratios over the last 500 million years, indicating environmental change Phanerozoic Climate Change.png
Changes in oxygen-18 ratios over the last 500 million years, indicating environmental change

Major drivers for the preindustrial ages have been variations of the Sun, volcanic ashes and exhalations, relative movements of the Earth towards the Sun, and tectonically induced effects as for major sea currents, watersheds, and ocean oscillations. In the early Phanerozoic, increased atmospheric carbon dioxide concentrations have been linked to driving or amplifying increased global temperatures. [32] Royer et al. 2004 [33] found a climate sensitivity for the rest of the Phanerozoic which was calculated to be similar to today's modern range of values.

The difference in global mean temperatures between a fully glacial Earth and an ice free Earth is estimated at 10 °C, though far larger changes would be observed at high latitudes and smaller ones at low latitudes.[ citation needed ] One requirement for the development of large scale ice sheets seems to be the arrangement of continental land masses at or near the poles. The constant rearrangement of continents by plate tectonics can also shape long-term climate evolution. However, the presence or absence of land masses at the poles is not sufficient to guarantee glaciations or exclude polar ice caps. Evidence exists of past warm periods in Earth's climate when polar land masses similar to Antarctica were home to deciduous forests rather than ice sheets.

The relatively warm local minimum between Jurassic and Cretaceous goes along with an increase of subduction and mid-ocean ridge volcanism [34] due to the breakup of the Pangea supercontinent.

Superimposed on the long-term evolution between hot and cold climates have been many short-term fluctuations in climate similar to, and sometimes more severe than, the varying glacial and interglacial states of the present ice age. Some of the most severe fluctuations, such as the Paleocene-Eocene Thermal Maximum, may be related to rapid climate changes due to sudden collapses of natural methane clathrate reservoirs in the oceans. [35]

A similar, single event of induced severe climate change after a meteorite impact has been proposed as reason for the Cretaceous–Paleogene extinction event. Other major thresholds are the Permian-Triassic, and Ordovician-Silurian extinction events with various reasons suggested.

Quaternary climate

Ice core data for the past 800,000 years (x-axis values represent "age before 1950", so today's date is on the left side of the graph and older time on the right). Blue curve is temperature, red curve is atmospheric CO2 concentrations, and brown curve is dust fluxes. Note length of glacial-interglacial cycles averages ~100,000 years. "EDC TempCO2Dust".svg
Ice core data for the past 800,000 years (x-axis values represent "age before 1950", so today's date is on the left side of the graph and older time on the right). Blue curve is temperature, red curve is atmospheric CO2 concentrations, and brown curve is dust fluxes. Note length of glacial-interglacial cycles averages ~100,000 years.
Holocene temperature variations Holocene Temperature Variations.png
Holocene temperature variations

The Quaternary geological period includes the current climate. There has been a cycle of ice ages for the past 2.2–2.1 million years (starting before the Quaternary in the late Neogene Period).

Note in the graphic on the right the strong 120,000-year periodicity of the cycles, and the striking asymmetry of the curves. This asymmetry is believed to result from complex interactions of feedback mechanisms. It has been observed that ice ages deepen by progressive steps, but the recovery to interglacial conditions occurs in one big step.

The graph on the left shows the temperature change over the past 12,000 years, from various sources; the thick black curve is an average.

Climate forcings

Climate forcing is the difference between radiant energy (sunlight) received by the Earth and the outgoing longwave radiation back to space. Such radiative forcing is quantified based on the CO2 amount in the tropopause, in units of watts per square meter to the Earth's surface. [40] Dependent on the radiative balance of incoming and outgoing energy, the Earth either warms up or cools down. Earth radiative balance originates from changes in solar insolation and the concentrations of greenhouse gases and aerosols. Climate change may be due to internal processes in Earth sphere's and/or following external forcings. [41]

One example of a way this can be applied to study climatology is analyzing how the varying concentrations of CO2 affect the overall climate. This is done by using various proxies to estimate past greenhouse gas concentrations and compare those to that of the present day. Researchers are then able to assess their role in progression of climate change throughout Earth’s history. [42]

Internal processes and forcings

The Earth's climate system involves the atmosphere, biosphere, cryosphere, hydrosphere, and lithosphere, [43] and the sum of these processes from Earth's spheres is what affects the climate. Greenhouse gasses act as the internal forcing of the climate system. Particular interests in climate science and paleoclimatology focus on the study of Earth climate sensitivity, in response to the sum of forcings. Analyzing the sum of these forcings contributes to the ability of scientists to make broad conclusive estimates on the Earth’s climate system. These estimates include the evidence for systems such as long term climate variability (eccentricity, obliquity precession), feedback mechanisms (Ice-Albedo Effect), and anthropogenic influence. [44]

Examples:

External forcings

Mechanisms

On timescales of millions of years, the uplift of mountain ranges and subsequent weathering processes of rocks and soils and the subduction of tectonic plates, are an important part of the carbon cycle. [47] [48] [49] The weathering sequesters CO2, by the reaction of minerals with chemicals (especially silicate weathering with CO2) and thereby removing CO2 from the atmosphere and reducing the radiative forcing. The opposite effect is volcanism, responsible for the natural greenhouse effect, by emitting CO2 into the atmosphere, thus affecting glaciation (Ice Age) cycles. Jim Hansen suggested that humans emit CO2 10,000 times faster than natural processes have done in the past. [50]

Ice sheet dynamics and continental positions (and linked vegetation changes) have been important factors in the long term evolution of the Earth's climate. [51] There is also a close correlation between CO2 and temperature, where CO2 has a strong control over global temperatures in Earth's history. [52]

See also

Related Research Articles

<span class="mw-page-title-main">Ice age</span> Period of long-term reduction in temperature of Earths surface and atmosphere

An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages, and greenhouse periods during which there are no glaciers on the planet. Earth is currently in the ice age called Quaternary glaciation. Individual pulses of cold climate within an ice age are termed glacial periods, and intermittent warm periods within an ice age are called interglacials or interstadials.

<span class="mw-page-title-main">Supercontinent</span> Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

<span class="mw-page-title-main">Snowball Earth</span> Worldwide glaciation episodes during the Proterozoic eon

The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became entirely or nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically referred period of such global glaciation is believed to have occurred sometime before 650 mya during the Cryogenian period.

<span class="mw-page-title-main">Climate variability and change</span> Change in the statistical distribution of climate elements for an extended period

Climate variability includes all the variations in the climate that last longer than individual weather events, whereas the term climate change only refers to those variations that persist for a longer period of time, typically decades or more. Climate change may refer to any time in Earth's history, but the term is now commonly used to describe contemporary climate change, often popularly referred to as global warming. Since the Industrial Revolution, the climate has increasingly been affected by human activities.

<span class="mw-page-title-main">Proxy (climate)</span> Preserved physical characteristics allowing reconstruction of past climatic conditions

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

<span class="mw-page-title-main">Dansgaard–Oeschger event</span> Rapid climate fluctuation in the last glacial period

Dansgaard–Oeschger events, named after palaeoclimatologists Willi Dansgaard and Hans Oeschger, are rapid climate fluctuations that occurred 25 times during the last glacial period. Some scientists say that the events occur quasi-periodically with a recurrence time being a multiple of 1,470 years, but this is debated. The comparable climate cyclicity during the Holocene is referred to as Bond events.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The Last Glacial Period ended about 15,000 years ago. The Holocene is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

<span class="mw-page-title-main">Mesoarchean</span> Third era of the Archean Eon

The Mesoarchean is a geologic era in the Archean Eon, spanning 3,200 to 2,800 million years ago, which contains the first evidence of modern-style plate subduction and expansion of microbial life. The era is defined chronometrically and is not referenced to a specific level in a rock section on Earth.

<span class="mw-page-title-main">Global temperature record</span> Fluctuations of the Earths temperature over time

The global temperature record shows the fluctuations of the temperature of the atmosphere and the oceans through various spans of time. There are numerous estimates of temperatures since the end of the Pleistocene glaciation, particularly during the current Holocene epoch. Some temperature information is available through geologic evidence, going back millions of years. More recently, information from ice cores covers the period from 800,000 years before the present time until now. A study of the paleoclimate covers the time period from 12,000 years ago to the present. Tree rings and measurements from ice cores can give evidence about the global temperature from 1,000-2,000 years before the present until now. The most detailed information exists since 1850, when methodical thermometer-based records began. Modifications on the Stevenson-type screen were made for uniform instrument measurements around 1880.

The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (109) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.

<span class="mw-page-title-main">Marine isotope stages</span> Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data derived from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are lows in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

The Huronian glaciation was a period where at least three ice ages occurred during the deposition of Huronian Supergroup. Deposition of this largely sedimentary succession extended from approximately 2.5 to 2.2 billion years ago (Gya), during the Siderian and Rhyacian periods of the Paleoproterozoic era. Evidence for glaciation is mainly based on the recognition of diamictite, that is interpreted to be of glacial origin. Deposition of the Huronian succession is interpreted to have occurred within a rift basin that evolved into a largely marine passive margin setting. The glacial diamictite deposits within the Huronian are on par in thickness with Quaternary analogs.

<span class="mw-page-title-main">Oxygen isotope ratio cycle</span> Cyclical variations in the ratio of the abundance of oxygen

Oxygen isotope ratio cycles are cyclical variations in the ratio of the abundance of oxygen with an atomic mass of 18 to the abundance of oxygen with an atomic mass of 16 present in some substances, such as polar ice or calcite in ocean core samples, measured with the isotope fractionation. The ratio is linked to ancient ocean temperature which in turn reflects ancient climate. Cycles in the ratio mirror climate changes in the geological history of Earth.

<span class="mw-page-title-main">Quaternary glaciation</span> Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma and is ongoing. Although geologists describe this entire period up to the present as an "ice age", in popular culture this term usually refers to the most recent glacial period, or to the Pleistocene epoch in general. Since Earth still has polar ice sheets, geologists consider the Quaternary glaciation to be ongoing, though currently in an interglacial period.

<span class="mw-page-title-main">Climate of Mars</span> Climate patterns of the planet Mars

The climate of Mars has been a topic of scientific curiosity for centuries, in part because it is the only terrestrial planet whose surface can be easily directly observed in detail from the Earth with help from a telescope.

<span class="mw-page-title-main">100,000-year problem</span> Discrepancy between past temperatures and the amount of incoming solar radiation

The 100,000-year problem of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over the past 800,000 years. Due to variations in the Earth's orbit, the amount of insolation varies with periods of around 21,000, 40,000, 100,000, and 400,000 years. Variations in the amount of incident solar energy drive changes in the climate of the Earth, and are recognised as a key factor in the timing of initiation and termination of glaciations.

<span class="mw-page-title-main">Carbon dioxide in Earth's atmosphere</span> Atmospheric constituent and greenhouse gas

In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of several greenhouse gases in the atmosphere of Earth. The current global average concentration of carbon dioxide (CO2) in the atmosphere is 421 ppm as of May 2022 (0.04%). This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity.

The Middle Miocene Climatic Transition (MMCT) was a relatively steady period of climatic cooling that occurred around the middle of the Miocene, roughly 14 million years ago (Ma), during the Langhian stage, and resulted in the growth of ice sheet volumes globally, and the reestablishment of the ice of the East Antarctic Ice Sheet (EAIS). The term Middle Miocene disruption, alternatively the Middle Miocene extinction or Middle Miocene extinction peak, refers to a wave of extinctions of terrestrial and aquatic life forms that occurred during this climatic interval. This period was preceded by the Middle Miocene Climatic Optimum (MMCO), a period of relative warmth from 18 to 14 Ma. Cooling that led to the Middle Miocene disruption is primarily attributed CO2 being pulled out of the Earth's atmosphere by organic material before becoming caught in different locations like the Monterey Formation. These may have been amplified by changes in oceanic and atmospheric circulation due to continental drift. Additionally, orbitally paced factors may also have played a role.

Throughout Earth's climate history (Paleoclimate) its climate has fluctuated between two primary states: greenhouse and icehouse Earth. Both climate states last for millions of years and should not be confused with glacial and interglacial periods, which occur as alternate phases within an icehouse period and tend to last less than 1 million years. There are five known Icehouse periods in Earth's climate history, which are known as the Huronian, Cryogenian, Andean-Saharan, Late Paleozoic, and Late Cenozoic glaciations. The main factors involved in changes of the paleoclimate are believed to be the concentration of atmospheric carbon dioxide, changes in Earth's orbit, long-term changes in the solar constant, and oceanic and orogenic changes from tectonic plate dynamics. Greenhouse and icehouse periods have played key roles in the evolution of life on Earth by directly and indirectly forcing biotic adaptation and turnover at various spatial scales across time.

Deglaciation is the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume. Thus, it refers to the retreat of a glacier, an ice sheet or frozen surface layer, and the resulting exposure of the Earth's surface. The decline of the cryosphere due to ablation can occur on any scale from global to localized to a particular glacier. After the Last Glacial Maximum, the last deglaciation begun, which lasted until the early Holocene. Around much of Earth, deglaciation during the last 100 years has been accelerating as a result of climate change, partly brought on by anthropogenic changes to greenhouse gases.

References

Notes

  1. Bradley, Raymond (2015). Paleoclimatology: Reconstructing Climates of the Quaternary. Oxford: Elsevier. p. 1. ISBN   978-0-12-386913-5.
  2. Sahney, S. & Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC   2596898 . PMID   18198148.
  3. Cronin 2010 , p. 1
  4. 1 2 3 Fairbridge, Rhodes (31 October 2008). "history of paleoclimatology". In Gornitz, Vivien (ed.). Encyclopedia of Paleoclimatology and Ancient Environments. Springer Nature. pp. 414–426. ISBN   978-1-4020-4551-6.
  5. 1 2 3 Cronin, Thomas M. (1999). Principles of Paleoclimatology. Columbia University Press. pp. 8–10. ISBN   9780231503044.
  6. "What's the hottest Earth's ever been?". www.climate.gov. NOAA. 22 November 2023. Retrieved 3 June 2024.
  7. Soul, Laura (24 April 2018). "Leading Scientists Convene to Chart 500M Years of Global Climate Change". Smithsonian Magazine. Retrieved 3 June 2024.
  8. Saltzman, Barry (2002). Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Google Scholar: Academic Press. ISBN   978-0-12-617331-4 . Retrieved 1 April 2024.
  9. Jouzel, Jean; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; et al. (10 August 2007). "Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years" (PDF). Science. 317 (5839): 793–796. Bibcode:2007Sci...317..793J. doi:10.1126/science.1141038. PMID   17615306. S2CID   30125808.
  10. "Page 1 1 International Partnerships in Ice Core Sciences (IPICS) The oldest ice core: A 1.5 million year record of climate and greenhouse gases from Antarctica" . Retrieved 22 September 2011.
  11. Frank, David; Esper, Jan; Zorita, Eduardo; Wilson, Rob (14 May 2010). "A noodle, hockey stick, and spaghetti plate: a perspective on high-resolution paleoclimatology". WIREs Climate Change. 1 (4): 507–516. Bibcode:2010WIRCC...1..507F. doi:10.1002/wcc.53. ISSN   1757-7780.
  12. Halfar, J.; Steneck, R.S.; Joachimski, M.; Kronz, A.; Wanamaker, A.D. (2008). "Coralline red algae as high-resolution climate recorders". Geology. 36 (6): 463. Bibcode:2008Geo....36..463H. doi:10.1130/G24635A.1. S2CID   129376515.
  13. Cobb, K.; Charles, C. D.; Cheng, H; Edwards, R. L. (2003). "El Nino/Southern Oscillation and tropical Pacific climate during the past millennium". Nature. 424 (6946): 271–6. Bibcode:2003Natur.424..271C. doi:10.1038/nature01779. PMID   12867972. S2CID   6088699.
  14. Gutiérrez, Mateo; Gutiérrez, Francisco (2013). "Climatic Geomorphology". Treatise on Geomorphology. Vol. 13. pp. 115–131.
  15. Gutiérrez, Mateo, ed. (2005). "Chapter 1 Climatic geomorphology". Developments in Earth Surface Processes. Vol. 8. pp. 3–32. doi:10.1016/S0928-2025(05)80051-3. ISBN   978-0-444-51794-4.
  16. Douglas, Peter; Brenner, Mark; Curtis, Jason (27 February 2016). "Methods and future directions for paleoclimatology in the Maya Lowlands. Global and Planetary Change". doi:10.1016/j.gloplacha.2015.07.008.
  17. Goudie, A.S. (2004). "Climatic geomorphology". In Goudie, A.S. (ed.). Encyclopedia of Geomorphology. pp. 162–164.
  18. Cronin 2010 , pp. 32–34.
  19. 1 2 Zahnle, K.; Schaefer, L.; Fegley, B. (2010). "Earth's Earliest Atmospheres". Cold Spring Harbor Perspectives in Biology. 2 (10): a004895. doi:10.1101/cshperspect.a004895. PMC   2944365 . PMID   20573713.
  20. B. Windley: The Evolving Continents. Wiley Press, New York 1984
  21. J. Schopf: Earth's Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, N.J., 1983
  22. Christopher R. Scotese, Back to Earth History: Summary Chart for the Precambrian, Paleomar Project
  23. Beerling, David (2007). The emerald planet: how plants changed Earth's history . Oxford University press. p.  47. ISBN   9780192806024.
  24. Peter Ward: Out of Thin Air: Dinosaurs, Birds, and Earth's Ancient Atmosphere
  25. "High-fidelity record of Earth's climate history puts current changes in context". phys.org. Retrieved 8 October 2020.
  26. Westerhold, Thomas; Marwan, Norbert; Drury, Anna Joy; Liebrand, Diederik; Agnini, Claudia; Anagnostou, Eleni; Barnet, James S. K.; Bohaty, Steven M.; Vleeschouwer, David De; Florindo, Fabio; Frederichs, Thomas; Hodell, David A.; Holbourn, Ann E.; Kroon, Dick; Lauretano, Vittoria; Littler, Kate; Lourens, Lucas J.; Lyle, Mitchell; Pälike, Heiko; Röhl, Ursula; Tian, Jun; Wilkens, Roy H.; Wilson, Paul A.; Zachos, James C. (11 September 2020). "An astronomically dated record of Earth's climate and its predictability over the last 66 million years" (PDF). Science. 369 (6509): 1383–1387. Bibcode:2020Sci...369.1383W. doi:10.1126/science.aba6853. hdl:11577/3351324. ISSN   0036-8075. PMID   32913105. S2CID   221593388 . Retrieved 8 October 2020.
  27. Goddéris, Yves; Ramstein, Gilles; Le Hir, Guillaume (2021), Ramstein, Gilles; Landais, Amaëlle; Bouttes, Nathaelle; Sepulchre, Pierre (eds.), "The Precambrian Climate", Paleoclimatology, Frontiers in Earth Sciences, Cham: Springer International Publishing, pp. 343–358, doi:10.1007/978-3-030-24982-3_26, ISBN   978-3-030-24982-3 , retrieved 9 February 2024
  28. Goddéris, Yves; Ramstein, Gilles; Le Hir, Guillaume (2021), Ramstein, Gilles; Landais, Amaëlle; Bouttes, Nathaelle; Sepulchre, Pierre (eds.), "The Precambrian Climate", Paleoclimatology, Frontiers in Earth Sciences, Cham: Springer International Publishing, pp. 343–358, doi:10.1007/978-3-030-24982-3_26, ISBN   978-3-030-24982-3 , retrieved 9 February 2024
  29. Cosgrove, Grace I. E.; Colombera, Luca; Mountney, Nigel P. (1 March 2024). "The Precambrian continental record: A window into early Earth environments". Precambrian Research. 402: 107286. Bibcode:2024PreR..40207286C. doi: 10.1016/j.precamres.2023.107286 . ISSN   0301-9268.
  30. Goddéris, Yves; Ramstein, Gilles; Le Hir, Guillaume (2021), Ramstein, Gilles; Landais, Amaëlle; Bouttes, Nathaelle; Sepulchre, Pierre (eds.), "The Precambrian Climate", Paleoclimatology, Frontiers in Earth Sciences, Cham: Springer International Publishing, pp. 343–358, doi:10.1007/978-3-030-24982-3_26, ISBN   978-3-030-24982-3 , retrieved 9 February 2024
  31. Stern, Robert J.; Miller, Nathan R. (1 January 2021), "Neoproterozoic Glaciation—Snowball Earth Hypothesis", in Alderton, David; Elias, Scott A. (eds.), Encyclopedia of Geology (Second Edition), Oxford: Academic Press, pp. 546–556, ISBN   978-0-08-102909-1 , retrieved 9 February 2024
  32. Came, Rosemarie E.; Eiler, John M.; Veizer, Jan; Azmy, Karem; Brand, Uwe; Weidman, Christopher R (September 2007). "Coupling of surface temperatures and atmospheric CO2 concentrations during the Palaeozoic era" (PDF). Nature. 449 (7159): 198–201. Bibcode:2007Natur.449..198C. doi:10.1038/nature06085. PMID   17851520. S2CID   4388925.
  33. Royer, Dana L.; Berner, Robert A.; Montañez, Isabel P.; Tabor, Neil J.; Beerling, David J. (July 2004). "CO2 as a primary driver of Phanerozoic climate". GSA Today. 14 (3): 4–10. Bibcode:2004GSAT...14c...4R. doi: 10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2 .
  34. Douwe G. Van Der Meer; Richard E. Zeebe; Douwe J. J. van Hinsbergen; Appy Sluijs; Wim Spakman; Trond H. Torsvik (February 2014). "Plate tectonic controls on atmospheric CO2 levels since the Triassic". PNAS. 111 (12): 4380–4385. Bibcode:2014PNAS..111.4380V. doi: 10.1073/pnas.1315657111 . PMC   3970481 . PMID   24616495.
  35. Frieling, Joost; Svensen, Henrik H.; Planke, Sverre; Cramwinckel, Margot J.; Selnes, Haavard; Sluijs, Appy (25 October 2016). "Thermogenic methane release as a cause for the long duration of the PETM". Proceedings of the National Academy of Sciences. 113 (43): 12059–12064. Bibcode:2016PNAS..11312059F. doi: 10.1073/pnas.1603348113 . ISSN   0027-8424. PMC   5087067 . PMID   27790990.
  36. Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J. M. (10 August 2007). "Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years" (PDF). Science. 317 (5839): 793–796. Bibcode:2007Sci...317..793J. doi:10.1126/science.1141038. ISSN   0036-8075. PMID   17615306. S2CID   30125808.
  37. Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard; Blunier, Thomas; Barnola, Jean-Marc; Siegenthaler, Urs; Raynaud, Dominique; Jouzel, Jean; Fischer, Hubertus (15 May 2008). "High-resolution carbon dioxide concentration record 650,000–800,000 years before present" (PDF). Nature. 453 (7193): 379–382. Bibcode:2008Natur.453..379L. doi: 10.1038/nature06949 . ISSN   0028-0836. PMID   18480821. S2CID   1382081.
  38. Lambert, F.; Delmonte, B.; Petit, J. R.; Bigler, M.; Kaufmann, P. R.; Hutterli, M. A.; Stocker, T. F.; Ruth, U.; Steffensen, J. P. (3 April 2008). "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core". Nature. 452 (7187): 616–619. Bibcode:2008Natur.452..616L. doi: 10.1038/nature06763 . ISSN   0028-0836. PMID   18385736.
  39. Lambert, F.; Bigler, M.; Steffensen, J. P.; Hutterli, M.; Fischer, H. (2012). "Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica". Climate of the Past. 8 (2): 609–623. Bibcode:2012CliPa...8..609L. doi: 10.5194/cp-8-609-2012 .
  40. IPCC (2007). "Concept of Radiative Forcing". IPCC. Archived from the original on 4 January 2014. Retrieved 14 April 2014.
  41. IPCC (2007). "What are Climate Change and Climate Variability?". IPCC.
  42. Summerhayes, Colin P. (8 September 2020). Paleoclimatology: From Snowball Earth to the Anthropocene. John Wiley & Sons. ISBN   978-1-119-59138-2.
  43. "Glossary, Climate system". NASA. March 2020.
  44. Saltzman, Barry (2002). Dynamical Paleoclimatology: Generalized Theory of Global Climate Change. Academic Press. ISBN   978-0-12-617331-4.
  45. 1 2 "Annex III: Glossary" (PDF). IPCC AR5. Climate change may be due to natural internal processes or external forcings, such as modulations of the solar cycles, volcanic eruptions, and persistent anthropogenic changes in the composition of the atmosphere or in land use.
  46. Gornitz, Vivien (31 October 2008). Encyclopedia of Paleoclimatology and Ancient Environments. Springer Science & Business Media. ISBN   978-1-4020-4551-6.
  47. Caldeira, Ken (18 June 1992). "Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate". Nature. 357 (6379): 578–581. Bibcode:1992Natur.357..578C. doi:10.1038/357578a0. S2CID   45143101.
  48. Cin-Ty Aeolus Lee; Douglas M. Morton; Mark G. Little; Ronald Kistler; Ulyana N. Horodyskyj; William P. Leeman; Arnaud Agranier (28 January 2008). "Regulating continent growth and composition by chemical weathering". PNAS. 105 (13): 4981–4986. Bibcode:2008PNAS..105.4981L. doi: 10.1073/pnas.0711143105 . PMC   2278177 . PMID   18362343.
  49. van der Meer, Douwe (25 March 2014). "Plate tectonic controls on Atmospheric CO2 since the Triassic". PNAS. 111 (12): 4380–4385. Bibcode:2014PNAS..111.4380V. doi: 10.1073/pnas.1315657111 . PMC   3970481 . PMID   24616495.
  50. James Hansen (2009). "The 8 Minute Epoch 65 million Years with James Hansen". University of Oregon. Archived from the original on 11 December 2021.
  51. Royer, D. L.; Pagani, M.; Beerling, David J. (1 July 2012). "Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic". Geobiology. 10 (4): 298–310. Bibcode:2012Gbio...10..298R. CiteSeerX   10.1.1.933.8880 . doi:10.1111/j.1472-4669.2012.00320.x. PMID   22353368. S2CID   32023645.
  52. Royer, Dana L. (1 December 2006). "CO2-forced climate thresholds during the Phanerozoic". Geochimica et Cosmochimica Acta. 70 (23): 5665–5675. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031.

Bibliography