Radiative forcing (or climate forcing [2] ) is a concept used to quantify a change to the balance of energy flowing through a planetary atmosphere. Various factors contribute to this change in energy balance, such as concentrations of greenhouse gases and aerosols, and changes in surface albedo and solar irradiance. In more technical terms, it is defined as "the change in the net, downward minus upward, radiative flux (expressed in W/m2) due to a change in an external driver of climate change." [3] : 2245 These external drivers are distinguished from feedbacks and variability that are internal to the climate system, and that further influence the direction and magnitude of imbalance. Radiative forcing on Earth is meaningfully evaluated at the tropopause and at the top of the stratosphere. It is quantified in units of watts per square meter, and often summarized as an average over the total surface area of the globe.
A planet in radiative equilibrium with its parent star and the rest of space can be characterized by net zero radiative forcing and by a planetary equilibrium temperature. [4]
Radiative forcing is not a thing in the sense that a single instrument can independently measure it. Rather it is a scientific concept and entity whose strength can be estimated from more fundamental physics principles. Scientists use measurements of changes in atmospheric parameters to calculate the radiative forcing. [5] : 1–4
The IPCC summarized the current scientific consensus about radiative forcing changes as follows: "Human-caused radiative forcing of 2.72 W/m2 in 2019 relative to 1750 has warmed the climate system. This warming is mainly due to increased GHG concentrations, partly reduced by cooling due to increased aerosol concentrations". [1] : 11
The atmospheric burden of greenhouse gases due to human activity has grown especially rapidly during the last several decades (since about year 1950). For carbon dioxide, the 50% increase (C/C0 = 1.5) realized as of year 2020 since 1750 corresponds to a cumulative radiative forcing change (ΔF) of +2.17 W/m2. [6] Assuming no change in the emissions growth path, a doubling of concentrations (C/C0 = 2) within the next several decades would correspond to a cumulative radiative forcing change (ΔF) of +3.71 W/m2.
Radiative forcing can be a useful way to compare the growing warming influence of different anthropogenic greenhouse gases over time. The radiative forcing of long-lived and well-mixed greenhouse gases have been increasing in earth's atmosphere since the industrial revolution. [6] Carbon dioxide has the biggest impact on total forcing, while methane and chlorofluorocarbons (CFCs) play smaller roles as time goes on. [6] The five major greenhouse gases account for about 96% of the direct radiative forcing by long-lived greenhouse gas increases since 1750. The remaining 4% is contributed by the 15 minor halogenated gases.
Radiative forcing is defined in the IPCC Sixth Assessment Report as follows: "The change in the net, downward minus upward, radiative flux (expressed in W/m2) due to a change in an external driver of climate change, such as a change in the concentration of carbon dioxide (CO2), the concentration of volcanic aerosols or the output of the Sun." [3] : 2245
There are some different types of radiative forcing as defined in the literature: [3] : 2245
The radiation balance of the Earth (i.e. the balance between absorbed and radiated energy) determines the average global temperature. This balance is also called Earth's energy balance. Changes to this balance occur due to factors such as the intensity of solar energy, reflectivity of clouds or gases, absorption by various greenhouse gases or surfaces and heat emission by various materials. Any such alteration is a radiative forcing, which along with its climate feedbacks, ultimately changes the balance. This happens continuously as sunlight hits the surface of Earth, clouds and aerosols form, the concentrations of atmospheric gases vary and seasons alter the groundcover.
Positive radiative forcing means Earth receives more incoming energy from sunlight than it radiates to space. This net gain of energy will cause global warming. Conversely, negative radiative forcing means that Earth loses more energy to space than it receives from the Sun, which produces cooling (global dimming).
Transport of energy and matter in the Earth-atmosphere system is governed by the principles of equilibrium thermodynamics and more generally non-equilibrium thermodynamics. During the first half of the 20th century, physicists developed a comprehensive description of radiative transfer that they began to apply to stellar and planetary atmospheres in radiative equilibrium. Studies of radiative-convective equilibrium (RCE) followed and matured through the 1960s and 1970s. RCE models began to account for more complex material flows within the energy balance, such as those from a water cycle, and thereby described observations better.
Another application of equilibrium models is that a perturbation in the form of an externally imposed intervention can estimate a change in state. The RCE work distilled this into a forcing-feedback framework for change, and produced climate sensitivity results agreeing with those from GCMs. This conceptual framework asserts that a homogeneous disturbance (effectively imposed onto the top-of-atmosphere energy balance) will be met by slower responses (correlated more or less with changes in a planet's surface temperature) to bring the system to a new equilibrium state. Radiative forcing was a term used to describe these disturbances and gained widespread traction in the literature by the 1980s. [5] : 19–23
The concept of radiative forcing has been evolving from the initial proposal, named nowadays instantaneous radiative forcing (IRF), to other proposals that aim to relate better the radiative imbalance with global warming (global surface mean temperature). For example, researchers explained in 2003 how the adjusted troposphere and stratosphere forcing can be used in general circulation models. [7]
The adjusted radiative forcing, in its different calculation methodologies, estimates the imbalance once the stratosphere temperatures has been modified to achieve a radiative equilibrium in the stratosphere (in the sense of zero radiative heating rates). This new methodology is not estimating any adjustment or feedback that could be produced on the troposphere (in addition to stratospheric temperature adjustments), for that goal another definition, named effective radiative forcing has been introduced. [8] In general the ERF is the recommendation of the CMIP6 radiative forcing analysis [9] although the stratospherically adjusted methodologies are still being applied in those cases where the adjustments and feedbacks on the troposphere are considered not critical, like in the well mixed greenhouse gases and ozone. [10] [11] A methodology named radiative kernel approach allows to estimate the climate feedbacks within an offline calculation based on a linear approximation [12]
Radiative forcing is used to quantify the strengths of different natural and man-made drivers of Earth's energy imbalance over time. The detailed physical mechanisms by which these drivers cause the planet to warm or cool are varied. Radiative forcing allows the contribution of any one driver to be compared against others.
Another metric called effective radiative forcing or ERF removes the effect of rapid adjustments (so-called "fast feedbacks") within the atmosphere that are unrelated to longer term surface temperature responses. ERF means that climate change drivers can be placed onto a more level playing field to enable comparison of their effects and a more consistent view of how global surface temperature responds to various types of human forcing. [14]
Radiative forcing and climate feedbacks can be used together to estimate a subsequent change in steady-state (often denoted "equilibrium") surface temperature (ΔTs) via the equation:
where is commonly denoted the climate sensitivity parameter, usually with units K/(W/m2), and ΔF is the radiative forcing in W/m2. [15] An estimate for is obtained from the inverse of the climate feedback parameter having units (W/m2)/K. An estimated value of gives an increase in global temperature of about 1.6 K above the 1750 reference temperature due to the increase in CO2 over that time (278 to 405 ppm, for a forcing of 2.0 W/m2), and predicts a further warming of 1.4 K above present temperatures if the CO2 mixing ratio in the atmosphere were to become double its pre-industrial value. Both of these calculations assume no other forcings. [16]
Historically, radiative forcing displays the best predictive capacity for specific types of forcing such as greenhouse gases. It is less effective for other anthropogenic influences like soot. [14]
Earth's global radiation balance fluctuates as the planet rotates and orbits the Sun, and as global-scale thermal anomalies arise and dissipate within the terrestrial, oceanic and atmospheric systems (e.g. ENSO). [17] Consequently, the planet's 'instantaneous radiative forcing' (IRF) is also dynamic and naturally fluctuates between states of overall warming and cooling. The combination of periodic and complex processes that give rise to these natural variations will typically revert over periods lasting as long as a few years to produce a net-zero average IRF. Such fluctuations also mask the longer-term (decade-long) forcing trends due to human activities, and thus make direct observation of such trends challenging. [18]
Earth's radiation balance has been continuously monitored by NASA's Clouds and the Earth's Radiant Energy System (CERES) instruments since year 1998. [20] [21] Each scan of the globe provides an estimate of the total (all-sky) instantaneous radiation balance. This data record captures both the natural fluctuations and human influences on IRF; including changes in greenhouse gases, aerosols, land surface, etc. The record also includes the lagging radiative responses to the radiative imbalances; occurring mainly by way of Earth system feedbacks in temperature, surface albedo, atmospheric water vapor and clouds. [22] [23]
Researchers have used measurements from CERES, AIRS, CloudSat and other satellite-based instruments within NASA's Earth Observing System to parse out contributions by the natural fluctuations and system feedbacks. Removing these contributions within the multi-year data record allows observation of the anthropogenic trend in top-of-atmosphere (TOA) IRF. The data analysis has also been done in a way that is computationally efficient and independent of most related modelling methods and results. Radiative forcing was thus directly observed to have risen by +0.53 W m−2 (±0.11 W m−2) from years 2003 to 2018. About 20% of the increase was associated with a reduction in the atmospheric aerosol burden, and most of the remaining 80% was attributed to the rising burden of greenhouse gases. [18] [24] [25]
A rising trend in the radiative imbalance due to increasing global CO2 has been previously observed by ground-based instruments. For example, such measurements have been separately gathered under clear-sky conditions at two Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Alaska. [26] Each direct observation found that the associated radiative (infrared) heating experienced by surface dwellers rose by +0.2 W m−2 (±0.07 W m−2) during the decade ending 2010. [27] [28] In addition to its focus on longwave radiation and the most influential forcing gas (CO2) only, this result is proportionally less than the TOA forcing due to its buffering by atmospheric absorption.
Radiative forcing can be evaluated for its dependence on different factors which are external to the climate system. [29] Basic estimates summarized in the following sections have been derived (assembled) in accordance with first principles of the physics of matter and energy. Forcings (ΔF) are expressed as changes over the total surface of the planet and over a specified time interval. Estimates may be significant in the context of global climate forcing for times spanning decades or longer. [5] Gas forcing estimates presented in the IPCC's AR6 report have been adjusted to include so-called "fast" feedbacks (positive or negative) which occur via atmospheric responses (i.e. effective radiative forcing).
For a well-mixed greenhouse gas, radiative transfer codes that examine each spectral line for atmospheric conditions can be used to calculate the forcing ΔF as a function of a change in its concentration. These calculations may be simplified into an algebraic formulation that is specific to that gas.
A simplified first-order approximation expression for carbon dioxide (CO2) is: [30]
where C0 is a reference concentration in parts per million (ppm) by volume and ΔC is the concentration change in ppm. For the purpose of some studies (e.g. climate sensitivity), C0 is taken as the concentration prior to substantial anthropogenic changes and has a value of 278 ppm as estimated for the year 1750.
Baseline concentration, C0 | Concentration change, ΔC | Radiative forcing change, ΔF (W m−2) | |
---|---|---|---|
1979–1989 | 336.8 | +16.0 | +0.248 |
1989–1999 | 352.8 | +15.0 | +0.222 |
1999–2009 | 367.8 | +18.7 | +0.266 |
2009–2019 | 386.5 | +23.6 | +0.316 |
The atmospheric burden of greenhouse gases due to human activity has grown especially rapidly during the last several decades (since about year 1950). For carbon dioxide, the 50% increase (C/C0 = 1.5) realized as of year 2020 since 1750 corresponds to a cumulative radiative forcing change (delta F) of +2.17 W/m2. [6] Assuming no change in the emissions growth path, a doubling of concentrations (C/C0 = 2) within the next several decades would correspond to a cumulative radiative forcing change (delta F) of +3.71 W/m2.
The relationship between CO2 and radiative forcing is logarithmic at concentrations up to around eight times the current value. [31] Constant concentration increases thus have a progressively smaller warming effect. However, the first-order approximation is inaccurate at higher concentrations and there is no saturation in the absorption of infrared radiation by CO2. [32] Various mechanism behind the logarithmic scaling has been proposed but the spectrum distribution of the carbon dioxide seems to be essential, [33] particularly a broadening in the relevant 15-μm band coming from a Fermi resonance present in the molecule. [34] [35] [36]
Somewhat different formulae apply for other trace greenhouse gases such as methane and N
2O (square-root dependence) or CFCs (linear), with coefficients that may be found for example in the IPCC reports. [37] A year 2016 study suggests a significant revision to the methane IPCC formula. [38] Forcings by the most influential trace gases in Earth's atmosphere are included in the section describing recent growth trends, and in the IPCC list of greenhouse gases.
Water vapor is Earth's primary greenhouse gas currently responsible for about half of all atmospheric gas forcing. Its overall atmospheric concentration depends almost entirely on the average planetary temperature, and has the potential to increase by as much as 7% with every degree (°C) of temperature rise (see also: Clausius–Clapeyron relation). [39] Thus over long time scales, water vapor behaves as a system feedback that amplifies the radiative forcing driven by the growth of carbon dioxide and other trace gases. [40] [41]
The intensity of solar irradiance including all wavelengths is the Total Solar Irradiance (TSI) and on average is the solar constant. It is equal to about 1361 W m−2 at the distance of Earth's annual-mean orbital radius of one astronomical unit and as measured at the top of the atmosphere. [42] Earth TSI varies with both solar activity and planetary orbital dynamics. Multiple satellite-based instruments including ERB, ACRIM 1-3, VIRGO, and TIM [43] [44] have continuously measured TSI with improving accuracy and precision since 1978. [45]
Approximating Earth as a sphere, the cross-sectional area exposed to the Sun () is equal to one quarter the area of the planet's surface (). The globally and annually averaged amount of solar irradiance per square meter of Earth's atmospheric surface () is therefore equal to one quarter of TSI, and has a nearly constant value of .
Earth follows an elliptical orbit around the Sun, so that the TSI received at any instant fluctuates between about 1321 W m−2 (at aphelion in early July) and 1412 W m−2 (at perihelion in early January), and thus by about ±3.4% over each year. [46] This change in irradiance has minor influences on Earth's seasonal weather patterns and its climate zones, which primarily result from the annual cycling in Earth's relative tilt direction. [47] Such repeating cycles contribute a net-zero forcing (by definition) in the context of decades-long climate changes.
Average annual TSI varies between about 1360 W m−2 and 1362 W m−2 (±0.05%) over the course of a typical 11-year sunspot activity cycle. [48] Sunspot observations have been recorded since about year 1600 and show evidence of lengthier oscillations (Gleissberg cycle, Devries/Seuss cycle, etc.) which modulate the 11-year cycle (Schwabe cycle). Despite such complex behavior, the amplitude of the 11-year cycle has been the most prominent variation throughout this long-term observation record. [49]
TSI variations associated with sunspots contribute a small but non-zero net forcing in the context of decadal climate changes. [45] Some research suggests they may have partly influenced climate shifts during the Little Ice Age, along with concurrent changes in volcanic activity and deforestation. [50] Since the late 20th century, average TSI has trended slightly lower along with a downward trend in sunspot activity. [51]
Climate forcing caused by variations in solar irradiance have occurred during Milankovitch cycles, which span periods of about 40,000 to 100,000 years. Milankovitch cycles consist of long-duration cycles in Earth's orbital eccentricity (or ellipticity), cycles in its orbital obliquity (or axial tilt), and precession of its relative tilt direction. [52] Among these, the 100,000 year cycle in eccentricity causes TSI to fluctuate by about ±0.2%. [53] Currently, Earth's eccentricity is nearing its least elliptic (most circular) causing average annual TSI to very slowly decrease. [52] Simulations also indicate that Earth's orbital dynamics will remain stable including these variations for least the next 10 million years. [54]
The Sun has consumed about half its hydrogen fuel since forming approximately 4.5 billion years ago. [55] TSI will continue to slowly increase during the aging process at a rate of about 1% each 100 million years. Such rate of change is far too small to be detectable within measurements and is insignificant on human timescales.
Δτ | Radiative forcing change ΔF (W m−2) | |
---|---|---|
Annual cycle | ±0.034 [46] | 0 (net) |
Sunspot activity | ±5×10−4 [48] | ±0.1 [51] [56] |
Orbital shift | −4×10−7 [53] | −1×10−4 |
Sun aging | +1×10−9 [55] | +2×10−7 |
The maximum fractional variations (Δτ) in Earth's solar irradiance during the last decade are summarized in the accompanying table. Each variation previously discussed contributes a forcing of:
where R=0.30 is Earth's reflectivity. The radiative and climate forcings arising from changes in the Sun's insolation are expected to continue to be minor, notwithstanding some as-of-yet undiscovered solar physics. [51] [57]
This article needs to be updated.(April 2024) |
A fraction of incident solar radiation is reflected by clouds and aerosols, oceans and landforms, snow and ice, vegetation, and other natural and man-made surface features. The reflected fraction is known as Earth's bond albedo (R), is evaluated at the top of the atmosphere, and has an average annual global value of about 0.30 (30%). The overall fraction of solar power absorbed by Earth is then (1−R) or 0.70 (70%). [58]
Atmospheric components contribute about three-quarters of Earth albedo, and clouds alone are responsible for half. The major roles of clouds and water vapor are linked with the majority presence of liquid water covering the planet's crust. Global patterns in cloud formation and circulation are highly complex, with couplings to ocean heat flows, and with jet streams assisting their rapid transport. Moreover, the albedos of Earth's northern and southern hemispheres have been observed to be essentially equal (within 0.2%). This is noteworthy since more than two-thirds of land and 85% of the human population are in the north. [59]
Multiple satellite-based instruments including MODIS, VIIRs, and CERES have continuously monitored Earth's albedo since 1998. [60] Landsat imagery, available since 1972, has also been used in some studies. [61] Measurement accuracy has improved and results have converged in recent years, enabling more confident assessment of the recent decadal forcing influence of planetary albedo. [59] Nevertheless, the existing data record is still too short to support longer-term predictions or to address other related questions.
Seasonal variations in planetary albedo can be understood as a set of system feedbacks that occur largely in response to the yearly cycling of Earth's relative tilt direction. Along with the atmospheric responses, most apparent to surface dwellers are the changes in vegetation, snow, and sea-ice coverage. Intra-annual variations of about ±0.02 (± 7%) around Earth's mean albedo have been observed throughout the course of a year, with maxima occurring twice per year near the time of each solar equinox. [59] This repeating cycle contributes net-zero forcing in the context of decades-long climate changes.
Regional albedos change from year to year due to shifts arising from natural processes, human actions, and system feedbacks. For example, human acts of deforestion typically raise Earth's reflectivity while introducing water storage and irrigation to arid lands may lower it. Likewise considering feedbacks, ice loss in arctic regions decreases albedo while expanding desertification at low to middle latitudes increases it.
During years 2000-2012, no overall trend in Earth's albedo was discernible within the 0.1% standard deviation of values measured by CERES. [59] Along with the hemispherical equivalence, some researchers interpret the remarkably small interannual differences as evidence that planetary albedo may currently be constrained by the action of complex system feedbacks. Nevertheless, historical evidence also suggests that infrequent events such as major volcanic eruptions can significantly perturb the planetary albedo for several years or longer. [62]
Fractional variations (Δα) in Earth's albedo | Radiative forcing change ΔF (W m−2) | |
---|---|---|
Annual cycle | ± 0.07 [59] | 0 (net) |
Interannual variation | ± 0.001 [59] | ∓ 0.1 |
The measured fractional variations (Δα) in Earth's albedo during the first decade of the 21st century are summarized in the accompanying table. Similar to TSI, the radiative forcing due to a fractional change in planetary albedo (Δα) is:
Satellite observations show that various Earth system feedbacks have stabilized planetary albedo despite recent natural and human-caused shifts. [60] On longer timescales, it is more uncertain whether the net forcing which results from such external changes will remain minor.
The IPCC summarized the current scientific consensus about radiative forcing changes as follows: "Human-caused radiative forcing of 2.72 [1.96 to 3.48] W/m2 in 2019 relative to 1750 has warmed the climate system. This warming is mainly due to increased GHG concentrations, partly reduced by cooling due to increased aerosol concentrations". [1] : 11
Radiative forcing can be a useful way to compare the growing warming influence of different anthropogenic greenhouse gases over time.
The radiative forcing of long-lived and well-mixed greenhouse gases have been increasing in earth's atmosphere since the industrial revolution. [6] The table includes the direct forcing contributions from carbon dioxide (CO2), methane (CH
4), nitrous oxide (N
2O); chlorofluorocarbons (CFCs) 12 and 11;[ failed verification ] and fifteen other halogenated gases. [65] These data do not include the significant forcing contributions from shorter-lived and less-well-mixed gases or aerosols; including those indirect forcings from the decay of methane and some halogens. They also do not account for changes in land use or solar activity.
Click at right to show/hide table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
These data show that CO2 dominates the total forcing, with methane and chlorofluorocarbons (CFC) becoming relatively smaller contributors to the total forcing over time. [6] The five major greenhouse gases account for about 96% of the direct radiative forcing by long-lived greenhouse gas increases since 1750. The remaining 4% is contributed by the 15 minor halogenated gases.
It might be observed that the total forcing for year 2016, 3.027 W m−2, together with the commonly accepted value of climate sensitivity parameter λ, 0.8 K /(W m−2), results in an increase in global temperature of 2.4 K, much greater than the observed increase, about 1.2 K. [66] [ failed verification ] Part of this difference is due to lag in the global temperature achieving steady state with the forcing. The remainder of the difference is due to negative aerosol forcing (compare climate effects of particulates), climate sensitivity being less than the commonly accepted value, or some combination thereof. [67]
The table also includes an "Annual Greenhouse Gas Index" (AGGI), which is defined as the ratio of the total direct radiative forcing due to long-lived greenhouse gases for any year for which adequate global measurements exist to that which was present in 1990. [6] 1990 was chosen because it is the baseline year for the Kyoto Protocol. This index is a measure of the inter-annual changes in conditions that affect carbon dioxide emission and uptake, methane and nitrous oxide sources and sinks, the decline in the atmospheric abundance of ozone-depleting chemicals related to the Montreal Protocol. and the increase in their substitutes (hydrogenated CFCs (HCFCs) and hydrofluorocarbons (HFC). Most of this increase is related to CO2. For 2013, the AGGI was 1.34 (representing an increase in total direct radiative forcing of 34% since 1990). The increase in CO2 forcing alone since 1990 was about 46%. The decline in CFCs considerably tempered the increase in net radiative forcing.
An alternative table prepared for use in climate model intercomparisons conducted under the auspices of IPCC and including all forcings, not just those of greenhouse gases. [68]
Albedo is the fraction of sunlight that is diffusely reflected by a body. It is measured on a scale from 0 to 1. Surface albedo is defined as the ratio of radiosity Je to the irradiance Ee received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time.
The scientific community has been investigating the causes of climate change for decades. After thousands of studies, it came to a consensus, where it is "unequivocal that human influence has warmed the atmosphere, ocean and land since pre-industrial times." This consensus is supported by around 200 scientific organizations worldwide, The dominant role in this climate change has been played by the direct emissions of carbon dioxide from the burning of fossil fuels. Indirect CO2 emissions from land use change, and the emissions of methane, nitrous oxide and other greenhouse gases play major supporting roles.
The greenhouse effect occurs when greenhouse gases in a planet's atmosphere insulate the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source as in the case of Jupiter, or from its host star as in the case of the Earth. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases. The absorption of longwave radiation prevents it from reaching space, reducing the rate at which the Earth can cool off.
Global warming potential (GWP) is an index to measure how much infrared thermal radiation a greenhouse gas would absorb over a given time frame after it has been added to the atmosphere. The GWP makes different greenhouse gases comparable with regard to their "effectiveness in causing radiative forcing". It is expressed as a multiple of the radiation that would be absorbed by the same mass of added carbon dioxide, which is taken as a reference gas. Therefore, the GWP has a value of 1 for CO2. For other gases it depends on how strongly the gas absorbs infrared thermal radiation, how quickly the gas leaves the atmosphere, and the time frame being considered.
Cloud feedback is a type of climate change feedback, where the overall cloud frequency, height, and the relative fraction of the different types of clouds are altered due to climate change, and these changes then affect the Earth's energy balance. On their own, clouds are already an important part of the climate system, as they consist of water vapor, which acts as a greenhouse gas and so contributes to warming; at the same time, they are bright and reflective of the Sun, which causes cooling. Clouds at low altitudes have a stronger cooling effect, and those at high altitudes have a stronger warming effect. Altogether, clouds make the Earth cooler than it would have been without them.
This glossary of climate change is a list of definitions of terms and concepts relevant to climate change, global warming, and related topics.
Earth's energy budget is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also takes into account how energy moves through the climate system. The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.
Climate sensitivity is a key measure in climate science and describes how much Earth's surface will warm for a doubling in the atmospheric carbon dioxide (CO2) concentration. Its formal definition is: "The change in the surface temperature in response to a change in the atmospheric carbon dioxide (CO2) concentration or other radiative forcing." This concept helps scientists understand the extent and magnitude of the effects of climate change.
A runaway greenhouse effect will occur when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating water into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation and continues to heat up until it can radiate outside of the absorption bands of the water vapour.
Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere, the lithosphere and the biosphere. Climate is the statistical characterization of the climate system. It represents the average weather, typically over a period of 30 years, and is determined by a combination of processes, such as ocean currents and wind patterns. Circulation in the atmosphere and oceans transports heat from the tropical regions to regions that receive less energy from the Sun. Solar radiation is the main driving force for this circulation. The water cycle also moves energy throughout the climate system. In addition, certain chemical elements are constantly moving between the components of the climate system. Two examples for these biochemical cycles are the carbon and nitrogen cycles.
In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It is also referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.
In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of three main greenhouse gases in the atmosphere of Earth. The concentration of carbon dioxide in the atmosphere reached 427 ppm (0.04%) in 2024. This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity.
The temperatures of a planet's surface and atmosphere are governed by a delicate balancing of their energy flows. The idealized greenhouse model is based on the fact that certain gases in the Earth's atmosphere, including carbon dioxide and water vapour, are transparent to the high-frequency solar radiation, but are much more opaque to the lower frequency infrared radiation leaving Earth's surface. Thus heat is easily let in, but is partially trapped by these gases as it tries to leave. Rather than get hotter and hotter, Kirchhoff's law of thermal radiation says that the gases of the atmosphere also have to re-emit the infrared energy that they absorb, and they do so, also at long infrared wavelengths, both upwards into space as well as downwards back towards the Earth's surface. In the long-term, the planet's thermal inertia is surmounted and a new thermal equilibrium is reached when all energy arriving on the planet is leaving again at the same rate. In this steady-state model, the greenhouse gases cause the surface of the planet to be warmer than it would be without them, in order for a balanced amount of heat energy to finally be radiated out into space from the top of the atmosphere.
Solar radiation modification (SRM), also known as solar radiation management, or solar geoengineering, refers to a range of approaches to limit global warming by increasing the amount of sunlight that the atmosphere reflects back to space or by reducing the trapping of outgoing thermal radiation. Among the multiple potential approaches, stratospheric aerosol injection is the most-studied, followed by marine cloud brightening. SRM could be a temporary measure to limit climate-change impacts while greenhouse gas emissions are reduced and carbon dioxide is removed, but would not be a substitute for reducing emissions. SRM is a form of climate engineering.
The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.
Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).
Ice–albedo feedback is a climate change feedback, where a change in the area of ice caps, glaciers, and sea ice alters the albedo and surface temperature of a planet. Because ice is very reflective, it reflects far more solar energy back to space than open water or any other land cover. It occurs on Earth, and can also occur on exoplanets.
Atmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methane is increasing due to methane emissions, and is causing climate change. Methane is one of the most potent greenhouse gases. Methane's radiative forcing (RF) of climate is direct, and it is the second largest contributor to human-caused climate forcing in the historical period. Methane is a major source of water vapour in the stratosphere through oxidation; and water vapour adds about 15% to methane's radiative forcing effect. The global warming potential (GWP) for methane is about 84 in terms of its impact over a 20-year timeframe, and 28 in terms of its impact over a 100-year timeframe.
The history of the scientific discovery of climate change began in the early 19th century when ice ages and other natural changes in paleoclimate were first suspected and the natural greenhouse effect was first identified. In the late 19th century, scientists first argued that human emissions of greenhouse gases could change Earth's energy balance and climate. The existence of the greenhouse effect, while not named as such, was proposed as early as 1824 by Joseph Fourier. The argument and the evidence were further strengthened by Claude Pouillet in 1827 and 1838. In 1856 Eunice Newton Foote demonstrated that the warming effect of the sun is greater for air with water vapour than for dry air, and the effect is even greater with carbon dioxide.
Climate change feedbacks are natural processes that impact how much global temperatures will increase for a given amount of greenhouse gas emissions. Positive feedbacks amplify global warming while negative feedbacks diminish it. Feedbacks influence both the amount of greenhouse gases in the atmosphere and the amount of temperature change that happens in response. While emissions are the forcing that causes climate change, feedbacks combine to control climate sensitivity to that forcing.
{{cite book}}
: CS1 maint: location missing publisher (link){{citation}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)