Ecosystem-based adaptation

Last updated

Ecosystem-based adaptation (EBA or EbA) encompasses a broad set of approaches to adapt to climate change. They all involve the management of ecosystems and their services to reduce the vulnerability of human communities to the impacts of climate change. The Convention on Biological Diversity defines EBA as "the use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change". [1] [2]

Contents

EbA involves the conservation, sustainable management and restoration of ecosystems, such as forests, grasslands, wetlands, mangroves or coral reefs to reduce the harmful impacts of climate hazards including shifting patterns or levels of rainfall, changes in maximum and minimum temperatures, stronger storms, and increasingly variable climatic conditions. EbA measures can be implemented on their own or in combination with engineered approaches (such as the construction of water reservoirs or dykes), hybrid measures (such as artificial reefs) and approaches that strengthen the capacities of individuals and institutions to address climate risks (such as the introduction of early warning systems).

Collaborative planning between scientists, policy makers, and community members is an essential element of Ecosystem-Based Adaptation. By drawing on the expertise of outside experts and local residents alike, EbA seeks to develop unique solutions to unique problems, rather than simply replicating past projects. [2]

EbA is nested within the broader concept of nature-based solutions and complements and shares common elements with a wide variety of other approaches to building the resilience of social-ecological systems. [3] These approaches include community-based adaptation, ecosystem-based disaster risk reduction, climate-smart agriculture, and green infrastructure, and often place emphasis on using participatory and inclusive processes and community/stakeholder engagement. The concept of EbA has been promoted through international fora, including the processes of the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). A number of countries make explicit references to EbA in their strategies for adaptation to climate change and their Nationally Determined Contributions (NDCs) under the Paris Agreement. [4]

While the barriers to widespread uptake of EbA by public and private sector stakeholders and decision makers are substantial, cooperation toward generating a greater understanding of the potential of EbA is well established among researchers, advocates, and practitioners from nature conservation and sustainable development groups. EbA is increasingly viewed as an effective means of addressing the linked challenges of climate change and poverty in developing countries, where many people are dependent on natural resources for their lives and livelihoods. [5]

Overview

Ecosystem-based Adaptation (EbA) describes a variety of approaches for adapting to climate change, all of which involve the management of ecosystems to reduce the vulnerability of human communities to the impacts of climate change such as storm and flood damage to physical assets, coastal erosion, salinisation of freshwater resources, and loss of agricultural productivity. EbA lies at the intersection of climate change adaptation, socio-economic development, and biodiversity conservation (see Figure 1).

While ecosystem services have always been used by societies, the term Ecosystem-based Adaptation was coined in 2008 by the International Union for Conservation of Nature (IUCN) and its member institutions at the UN Climate Change Convention Conference in 2008. [6] EbA was officially defined in 2009 at the UN Convention on Biological Diversity Conference. [1]

Adaptation to climate change hazards

Healthy ecosystems provide important ecosystem services that can contribute to climate change adaptation. For example, healthy mangrove ecosystems provide protection from the impacts of climate change, often for some of the world's most vulnerable people, by absorbing wave energy and storm surges, adapting to rising sea levels, and stabilizing shorelines from erosion. EbA focuses on benefits that humans derive from biodiversity and ecosystem services and how these benefits can be used for managing risk to climate change impacts. Adaptation to climate change is particularly urgent in developing countries and many Small Island Developing States that are already experiencing some of the most severe impacts of climate change, have economies that are highly sensitive to disruptions, and that have lower adaptive capacity.

Making active use of biodiversity and ecosystem services

EbA can involve a wide range of ecosystem management activities that aim to reduce the vulnerability of people to climate change hazards (such as rising sea levels, changing rainfall patterns, and stronger storms) through using nature. For example, EbA measures include coastal habitat restoration in ecosystems such as; coral reefs, mangrove forests, and marshes to protect communities and infrastructure from storm surges; agroforestry to increase resilience of crops to droughts or excessive rainfall; integrated water resource management to cope with consecutive dry days and change in rainfall patterns; and sustainable forest management interventions to stabilise slopes, prevent landslides, and regulate water flow to prevent flash flooding (see Table 1 and Figure 2).

Co-benefits of EbA

By deploying EbA, proponents cite that many other benefits to people and nature are delivered simultaneously. These correlated benefits include improved human health, socioeconomic development, food security and water security, disaster risk reduction, carbon sequestration, and biodiversity conservation. For example, restoration of ecosystems such as forests and coastal wetlands can contribute to food security and enhance livelihoods through the collection of non-timber forest products, maintain watershed functionality, and sequester carbon to mitigate global warming. Restoration of mangrove ecosystems can help increase food and livelihood security by supporting fisheries, and reduce disaster risk by decreasing wave height and strength during hurricanes and storms.

Implementation and examples

Examples of EBA measures and outcomes

Particular ecosystems can provide a variety of specific climate change adaptation benefits (or services). The most suitable EbA measures will depend on local context, the health of the ecosystem and the primary climate change hazard that needs to be addressed. The below table provides an overview of these factors, common EbA measures and intended outcomes.

Table 1. Examples of EBA measures and outcomesThe table shows climate hazards and their potential impacts on people, as well as examples of corresponding EbA measures. Many of the same climate hazards affect different ecosystems and have similar impacts on people, as such, the table illustrates the overlap between impacts, EbA measures and adaptation outcomes. Adapted from the PANORAMA database
Climate change hazardsPotential impacts on peopleEBA measures by ecosystem typeExpected outcomes
Erratic rainfall

Floods

Shift of seasons

Temperature increases

Drought

Extreme heat

Higher flood risks for people and infrastructure;

Decrease in agricultural (and livestock) production;

Food insecurities;

Economic losses and/or insecurities;

Threats to human health and well-being;

Higher risk of heat strokes

Lack of water

Mountains and forests:
  • Sustainable mountain wetland management
  • Forest and pasture restoration

Inland waters:

  • Conservation of wetlands and peat lands
  • River basin restoration
  • Trans-boundary water governance and ecosystem restoration

Agriculture and drylands:

  • Ecosystem restoration and agroforestry
  • Using trees to adapt to changing seasons
  • Intercropping of adapted species
  • Sustainable livestock management and pasture restoration
  • Sustainable dryland management

Urban areas:

  • Green aeration corridors for cities
  • Storm water management using green spaces
  • River restoration in urban areas
  • Green facades for buildings
Improved water regulation;

Erosion prevention;

Improved water storage capacity;

Flood risk reduction;

Improved water provisioning;

Improved water storage capacity;

Adaptation to higher temperatures; Heat wave buffering

Storm surges

Cyclones

Sea level rise

Salinisation

Coastal erosion

Higher flood risks for people and infrastructure;

Higher storm and cyclone risk for people and infrastructure;

Decrease in agricultural (and livestock) production;

Food insecurities;

Economic losses and/or insecurities; Threats to human health and well-being; Lack of potable water

Marine and coastal:
  • Mangrove restoration and coastal protection
  • Coastal realignment
  • Sustainable fishing and mangrove rehabilitation
  • Coastal reef restoration
Storm and cyclone reduction;

Flood risk reduction;

Improved water quality; Adaptation to higher temperatures

Principles and standards for implementing EBA

Since the evolution of the concept and practice of EBA, various principles and standards have been developed to guide best practices for implementation. [7] [8] The guidelines adopted by the CBD build on these efforts and include a set of principles to guide planning and implementation. [9] The principles are broadly clustered into four themes:

  1. Building resilience and enhancing adaptive capacity through EBA interventions;
  2. Ensuring inclusivity and equity in planning and implementation;
  3. Consideration of multiple spatial and temporal scales in the design of EBA interventions;
  4. Improving the effectiveness and efficiency of EBA, for example, by incorporating adaptive management, identifying limitations and trade-offs, integrating the knowledge of indigenous peoples and local communities.

These principles are complemented by safeguards, which are social and environmental measures to avoid unintended consequences of EBA to people, ecosystems and biodiversity.

Standards have also been developed to help practitioners understand what interventions qualify as EBA, including the elements of helping people adapt to climate change, making active use of biodiversity and ecosystem services, and being part of an overall adaptation strategy. [8] Challenges

Although interest in Ecosystem-based Adaptation has grown, and meta-analyses of case studies are demonstrating the efficacy and cost-effectiveness of EbA interventions, [5] there are recognized challenges that should be addressed or considered to increase adoption of the approach. These include:

Potential limitations of ecosystem services under a changing climate. One challenge facing EbA is the identification of limits and thresholds beyond which EbA might not deliver adaptation benefits and the extent ecosystems can provide ecosystem services under a changing climate. [10] [11]

Difficulty in monitoring, evaluation, and establishing the evidence base for effective EbA. Confusion around what Ecosystem-based Adaptation means has led to an array of different methodologies used for assessments, and the lack of consistent and comparable quantitative measures of EbA success and failure makes it difficult to argue the case for EbA in socio-economic terms. [11] [12] EbA research has also relied heavily on Western scientific knowledge without due consideration of local and traditional knowledge. [12] In addition, it can be difficult to implement a plan for monitoring and evaluation due to potentially long timescales required to observe the impacts of EbA.

Governance and institutional constraints. Because EbA is a multi-sectoral policy issue, the challenges of governing and planning are immense. [11] This is due in part to the fact that EbA involves both the sectors that manage ecosystems and those that benefit from ecosystem services. [11]

Economic and financial constraints. Broad macroeconomic considerations such as economic development, poverty, and access to financial capital to implement climate adaptation options are contributing factors to constraints impeding greater uptake of EbA. [11] Public and multilateral funding for EbA projects thus far has been available through the International Climate Initiative of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, the Global Environment Facility, the Green Climate Fund, the European Union, the Department for International Development of the Government of the United Kingdom, the Swedish International Development Cooperation Agency and the Danish International Development Agency, among other sources.

Social and cultural barriers. A clear factor constraining EbA is varying perceptions of risks and cultural preferences for particular types of management approaches such as cultural preferences for what a particular landscape should look like. [11] Potential stakeholders can hold negative perceptions about particular types of EbA strategies. [13]

Policy frameworks

Several international policy fora have acknowledged the multiple roles that ecosystems play in delivering services and addressing global challenges, including those related to climate change, natural disasters, sustainable development, and biodiversity conservation.

Climate change policy

The Paris Agreement explicitly recognises nature's role in helping people and societies address climate change, calling on all Parties to acknowledge "the importance of ensuring the integrity of all ecosystems, including oceans, and the protection of biodiversity, recognised by some cultures as Mother Earth"; its Articles include several references to ecosystems, natural resources and forests.

This notion has translated into high-level national intent, as revealed by comparative analyses of the Nationally Determined Contributions (NDCs) submitted to the UN Framework Convention on Climate Change (UNFCCC) by signatories of the Paris Agreement. [14] [15] [16] The UNFCCC also established the national adaptation plan (NAP) process as a way to facilitate adaptation planning in least developed countries (LDCs) and other developing countries. Because of their lower level of development, climate change risks magnify development challenges for LDCs.

Disaster risk reduction policy

Measures and interventions applied as part of EbA are often closely linked or similar to those employed under ecosystem-based disaster risk reduction (Eco-DRR). The Sendai Framework for Disaster Risk Reduction acknowledges that in order to strengthen disaster risk governance and manage disaster risk and risk reduction at global and regional levels, it is important "to promote transboundary cooperation to enable policy and planning for the implementation of ecosystem-based approaches with regard to shared resources, such as within river basins and along coastlines, to build resilience and reduce disaster risk, including epidemic and displacement risk".

Sustainable development policy

The Sustainable Development Goals (SDGs) are a collection of 17 global goals set by the United Nations General Assembly in 2015. Biodiversity and ecosystems feature prominently across many of the SDGs and associated targets. They contribute directly to human well-being and development priorities. Biodiversity is at the centre of many economic activities, particularly those related to crop and livestock agriculture, forestry, and fisheries. Globally, nearly half of the human population is directly dependent on natural resources for its livelihood, and many of the most vulnerable people depend directly on biodiversity to fulfil their daily subsistence needs. [17] Ecosystem-based Adaptation offers potential to contribute towards the implementation of numerous SDGs, including the goals related to climate adaptation (SDG 13), eliminating poverty and hunger (SDGs 1 and 2), ensuring livelihoods and economic growth (SDG 8) and life on land and life under water (SDGs 14 and 15), among others.

Biodiversity conservation policy

The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets, under the Convention on Biological Diversity (CBD), aim to halt the loss of biodiversity to ensure ecosystems are resilient and continue to provide essential services. Most recently, the Conference of the Parties has adopted voluntary guidelines for the design and effective implementation of ecosystem-based approaches to adaptation and disaster risk reduction. [9]

EbA and similar approaches have been called for in other policy frameworks, including the United Nations Convention to Combat Desertification (UNCCD) and the Ramsar Convention.

Related Research Articles

<span class="mw-page-title-main">Convention on Biological Diversity</span> International treaty on biological diversity

The Convention on Biological Diversity (CBD), known informally as the Biodiversity Convention, is a multilateral treaty. The Convention has three main goals: the conservation of biological diversity ; the sustainable use of its components; and the fair and equitable sharing of benefits arising from genetic resources. Its objective is to develop national strategies for the conservation and sustainable use of biological diversity, and it is often seen as the key document regarding sustainable development.

Rio Convention relates to the following three conventions, which were agreed at the Earth Summit held in Rio de Janeiro in June 1992.

<span class="mw-page-title-main">Global Environment Facility</span> A multilateral environmental Foundation that protects the climate

The Global Environment Facility (GEF) is a multilateral environmental fund that provides grants and blended finance for projects related to biodiversity, climate change, international waters, land degradation, persistent organic pollutants (POPs), mercury, sustainable forest management, food security, and sustainable cities in developing countries. It is the largest source of multilateral funding for biodiversity globally, and distributes more than $1 billion a year on average to address inter-related environmental challenges.

<span class="mw-page-title-main">Climate change adaptation</span> Process of adjusting to effects of climate change

Climate change adaptation strate is the process of adjusting to the effects of climate change. These can be both current or expected impacts. Adaptation aims to moderate or avoid harm for people, and is usually done alongside climate change mitigation. It also aims to exploit opportunities. Humans may also intervene to help adjustment for natural systems. There are many adaptation strategies or options. They can help manage impacts and risks to people and nature. The four types of adaptation actions are infrastructural, institutional, behavioural and nature-based options.

<span class="mw-page-title-main">Landscape-scale conservation</span> Holistic approach to landscape management

Landscape-scale conservation is a holistic approach to landscape management, aiming to reconcile the competing objectives of nature conservation and economic activities across a given landscape. Landscape-scale conservation may sometimes be attempted because of climate change. It can be seen as an alternative to site based conservation.

<span class="mw-page-title-main">Ecological resilience</span> Capacity of ecosystems to resist and recover from change

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

<span class="mw-page-title-main">Climate and Development Knowledge Network</span> Network for Climate knowledge and development

The Climate and Development Knowledge Network (CDKN) works to enhance the quality of life for the poorest and most vulnerable to climate change. CDKN does this by combining research, advisory services and knowledge management in support of locally owned and managed policy processes. It works in partnership with decision-makers in the public, private and non-governmental sectors nationally, regionally and globally.

<span class="mw-page-title-main">Climate change in Nepal</span> Emissions, impacts and responses of Nepal related to climate change

Globally, Nepal is ranked fourth in terms of vulnerability to climate change. Floods spread across the foothills of the Himalayas and bring landslides, leaving tens of thousands of houses and vast areas of farmland and roads destroyed. In the 2020 edition of Germanwatch's Climate Risk Index, it was judged to be the ninth hardest-hit nation by climate calamities during the period 1999 to 2018. Nepal is a least developed country, with 28.6 percent of the population living in multidimensional poverty. Analysis of trends from 1971 to 2014 by the Department of Hydrology and Meteorology (DHM) shows that the average annual maximum temperature has been increasing by 0.056 °C per year. Precipitation extremes are found to be increasing. A national-level survey on the perception-based survey on climate change reported that locals accurately perceived the shifts in temperature but their perceptions of precipitation change did not converge with the instrumental records. Data reveals that more than 80 percent of property loss due to disasters is attributable to climate hazards, particularly water-related events such as floods, landslides and glacial lake outburst floods (GLOFs).

Climate resilience is a concept to describe how well people or ecosystems are prepared to bounce back from certain climate hazard events. The formal definition of the term is the "capacity of social, economic and ecosystems to cope with a hazardous event or trend or disturbance". For example, climate resilience can be the ability to recover from climate-related shocks such as floods and droughts. Methods of coping include suitable responses to maintain relevant functions of societies and ecosystems. To increase climate resilience means one has to reduce the climate vulnerability of people and countries. Efforts to increase climate resilience include a range of social, economic, technological, and political strategies. They have to be implemented at all scales of society, from local community action all the way to global treaties.

Community resilience is the sustained ability of a community to use available resources to respond to, withstand, and recover from adverse situations. This allows for the adaptation and growth of a community after disaster strikes. Communities that are resilient are able to minimize any disaster, making the return to normal life as effortless as possible. By implementing a community resilience plan, a community can come together and overcome any disaster, while rebuilding physically and economically.

<span class="mw-page-title-main">UN Campus, Bonn</span> United Nations offices in Bonn, Germany

The UN Campus in Bonn, Germany, is seat to 18 organizations of the United Nations. It was opened in July 2006 by then-Secretary-General Kofi Annan and then-Chancellor of Germany Angela Merkel and expanded in July 2013.

<span class="mw-page-title-main">Buffelsdraai Landfill Site Community Reforestation Project</span>

The Buffelsdraai Community Reforestation Project was initiated in 2008 to alleviate climate change impacts associated with hosting elements of the 2010 FIFA World Cup in Durban. The proposed carbon offset was to be achieved through the planting of more than 500 000 indigenous trees within the buffer zone of the Buffelsdraai Landfill Site. Restoring the forest ecosystem was identified as a way of "absorbing event-related greenhouse gas emissions while enhancing the capacity of people and biodiversity to adapt to the inevitable effects of climate change".

<span class="mw-page-title-main">Nature-based solutions</span> Sustainable management and use of nature for tackling socio-environmental challenges

Nature-based solutions is the sustainable management and use of natural features and processes to tackle socio-environmental issues. These issues include for example climate change, water security, food security, preservation of biodiversity, and disaster risk reduction. Through the use of NBS healthy, resilient, and diverse ecosystems can provide solutions for the benefit of both societies and overall biodiversity. The 2019 UN Climate Action Summit highlighted nature-based solutions as an effective method to combat climate change. For example, NBS in the context of climate action can include natural flood management, restoring natural coastal defences, providing local cooling, restoring natural fire regimes.

<span class="mw-page-title-main">UN Decade on Ecosystem Restoration</span>

The United Nations Decade on Ecosystem Restoration runs from 2021 to 2030. Similar to other nature related international decades, its purpose is to promote the United Nation's environmental goals. Specifically, to facilitate global cooperation for the restoration of degraded and destroyed ecosystems. Along with fostering efforts to combat climate change, safeguard biodiversity, food security, and water supply. While much focus is on promoting restoration activity by national governments, the UN also wishes to promote such efforts from other actors, ranging from the private sector and NGOs to regular individuals.

The United Nations Development Programme (UNDP) in South Africa is one of the 177 offices of the UNDP’s global networks located in the country's capital, Pretoria. As a part of the wider UNDP's development efforts, the local office is responsible for supporting the government to develop and implement policies to accelerate the attainment of the Sustainable Development Goals (SDG) in South Africa. UNDP interventions in South Africa focus on promoting actions that contribute to address the triple challenge of inequality, poverty and unemployment that the county faces. In that regard, the interventions include the promotion of youth employment; building resilience to climate change impacts; biodiversity conservation; water management; promotion of access to sustainable, clean and affordable energy; and promotion of citizens participation in democratic processes. Leaving no-one behind, gender mainstreaming and innovation are in the center of all UNDP cooperation.

<span class="mw-page-title-main">Sustainable Development Goal 15</span> 15th of 17 Sustainable Development Goals to protect life on land

Sustainable Development Goal 15 is about "Life on land". One of the 17 Sustainable Development Goals established by the United Nations in 2015, the official wording is: "Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss". The Goal has 12 targets to be achieved by 2030. Progress towards targets will be measured by 14 indicators.

<span class="mw-page-title-main">Sustainable Development Goal 14</span> 14th of 17 Sustainable Development Goals to conserve life below water

Sustainable Development Goal 14 is about "Life below water" and is one of the 17 Sustainable Development Goals established by the United Nations in 2015. The official wording is to "Conserve and sustainably use the oceans, seas and marine resources for sustainable development". The Goal has ten targets to be achieved by 2030. Progress towards each target is being measured with one indicator each.

<span class="mw-page-title-main">Sustainable Development Goal 13</span> UN goal to combat climate change

Sustainable Development Goal 13 is to limit and adapt to climate change. It is one of 17 Sustainable Development Goals established by the United Nations General Assembly in 2015. The official mission statement of this goal is to "Take urgent action to combat climate change and its impacts". SDG 13 and SDG 7 on clean energy are closely related and complementary.

<span class="mw-page-title-main">Disability and climate change</span>

The United Nations Framework Convention on Climate Change (UNFCCC), the Paris Agreement, the Sustainable Development Goals (SDGs), and the United Nations Convention on the Rights of Persons with Disabilities (CRPD) are connected through their common goals of addressing global challenges and promoting sustainable development through policies and international cooperation.

<span class="mw-page-title-main">Climate change adaptation in the Philippines</span>

Climate change adaptation in the Philippines is being incorporated into development plans and policies that specifically target national and local climate vulnerabilities. As a developing country and an archipelago, the Philippines is particularly vulnerable to a variety of climatic threats like intensifying tropical cyclones, drastic changes in rainfall patterns, rising sea levels, and rising temperatures. According to the UN Office for the Coordination of Humanitarian Affairs (OCHA), the Philippines is one of the most disaster-prone countries in the world. In 2021, the Global Climate Risk Index ranked the Philippines fourth of the ten countries most affected between the years 2000 and 2019. The need for managing climate risks through climate change adaptation has become increasingly evident. Adaptation can reduce, moderate or avoid current and expected climate effects or take advantage of beneficial climatic events. Developing greater resilience to various threats can be a major goal of comprehensive disaster risk reduction strategy. The Philippines is therefore working on a number of national and local adaptation and disaster risk reduction strategies to build the country's climate resilience.

References

  1. 1 2 CBD (2009). Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change. Montreal, Technical Series No. 41, 126 pages.
  2. 1 2 "ebaflagship.org" (PDF). Archived from the original (PDF) on 11 February 2015. Retrieved 11 May 2015.
  3. Cohen-Shacham, E., Walters, G., Janzen, C. and Maginnis, S. (eds.) (2016). Nature-based Solutions to address global societal challenges. Gland, Switzerland: IUCN. xiii + 97pp.
  4. Seddon, N., Hou-Jones, X., Pye, T., Reid, H., Roe, D., Mountain, D. and Rizvi, A.R. (2016). Ecosystem based adaptation: a win–win formula for sustainability in a warming world? IIED Briefing. London: International Institute for Environment and Development.
  5. 1 2 Reid, H. et al. (2019). Is ecosystem-based adaptation effective? Results and lessons learned from 13 project sites. In press.
  6. UNFCCC. 2008. Ideas and proposals on the elements contained in paragraph 1 of the Bali Action Plan. Submissions from intergovernmental organizations. Addendum. FCCC/AWGLCA/2008/MISC.6/Add.2
  7. Andrade, A., Córdoba, R., Dave, R., Girot, P., Herrera-F, B., Munroe, R., Vergar, W. (2011). Draft Principles and Guidelines for Integrating Ecosystem-Based Approaches to Adaptation in Project and Policy Design: A Discussion Document. Retrieved from IUCN- CEM, CATIE, Turrialba, Costa Rica.
  8. 1 2 FEBA (Friends of Ecosystem-based Adaptation) (2017). Making Ecosystem-based Adaptation Effective: A Framework for Defining Qualification Criteria and Quality Standards (FEBA technical paper developed for UNFCCC-SBSTA 46). Bertram, M., Barrow, E., Blackwood, K., Rizvi, A.R., Reid, H., and von Scheliha-Dawid, S. (authors). GIZ, Bonn, Germany, IIED, London, UK, and IUCN, Gland, Switzerland.
  9. 1 2 CBD (2018). Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity: 14/5 Biodiversity and climate change. CBD/COP/DEC/14/5.
  10. Roberts, D., Boon, R., Diederichs, N., Douwes, E., Govender, N., Mcinnes, A., et al. (2012). Exploring ecosystem-based adaptation in Durban, South Africa: "learning-by-doing" at the local government coal face. Environ. Urban. 24 (1), 167–195.
  11. 1 2 3 4 5 6 Nalau, J., Becken, S., and B. Mackey (2018). "Ecosystem-based Adaptation: A review of the constraints." Environmental Science & Policy 89: 357-364.
  12. 1 2 Doswald, N., Munroe, R., Roe, D., Giuliani, A., Castelli, I., Stephens, J., et al. (2014). Effectiveness of ecosystem-based approaches for adaptation: a review of the evidence base. Clim. Dev. 6 (2), 185–201
  13. Doswald, N. and Osti, M. (2011). Ecosystem-based Approaches to Adaptation and Mitigation: Good Practice Examples and Lessons Learned in Europe. BfN, Federal Agency for Nature Conservation
  14. Seddon, N, Daniels, E, Davis, R, Harris, R, Hou-Jones, X, et al. (in review). Global recognition that ecosystems are key to human resilience in a warming world. Nat. Clim. Chang.
  15. Seddon N., Espinosa, M.G., Hauler, I., Herr, D., Sengupta, S. and Rizvi, A.R. (in press). Nature-based Solutions and the Nationally Determined Contributions: a synthesis and recommendations for enhancing ambition and action by 2020. A report prepared by IUCN and Oxford University.
  16. "Nature-based Solutions Policy Platform". University of Oxford.
  17. CBD (2016). Biodiversity and the 2030 Agenda for Sustainable Development: Technical note. Montreal, 25 pages.