Wetland

Last updated
USGS image cropped.jpg
Freshwater swamp forest in Gowainghat Sylhet Bangladesh photo taken in July 2016.jpg
Tourbiere 03 - Parc de Frontenac - Juillet 2008.jpg
Remediated wetlands at the Mount Polley mine.jpg
Wetlands come in different sizes, types, and locations. Clockwise from top left: Upland vs. wetland vs. lacustrine zones; Freshwater swamp forest in Bangladesh; A freshwater cattail (Typha) marsh that develops with standing water and high soil fertility; Peat bogs are freshwater wetlands that develop in areas with standing water and low soil fertility.

A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently for years or decades or seasonally for a shorter periods. Flooding results in oxygen-free anoxic processes prevailing, especially in the soils. [1] The primary factor that distinguishes wetlands from terrestrial land forms or water bodies is the characteristic vegetation of aquatic plants, adapted to the unique anoxic hydric soils. [2] Wetlands are considered among the most biologically diverse of all ecosystems, serving as home to a wide range of plant and animal species. Methods for assessing wetland functions, wetland ecological health, and general wetland condition have been developed for many regions of the world. These methods have contributed to wetland conservation partly by raising public awareness of the functions some wetlands provide. [3] Constructed wetlands are designed and built to treat municipal and industrial wastewater as well as to divert stormwater runoff. Constructed wetlands may also play a role in water-sensitive urban design.

Contents

Wetlands occur naturally on every continent. [4] The water in wetlands is either freshwater, brackish, or saltwater. [2] The main wetland types are classified based on the dominant plants and/or the source of the water. For example, marshes are wetlands dominated by emergent vegetation such as reeds, cattails and sedges; swamps are ones dominated by woody vegetation such as trees and shrubs (although reed swamps in Europe are dominated by reeds, not trees).

Besides being prominent and abundant modern environments and ecosystems, wetlands were also very common throughout Earth history and many sedimentary rock units have been interpreted as representing the geological record of ancient freshwater [5] or coastal wetlands. [6]

Examples of wetlands classified by their sources of water include tidal wetlands (oceanic tides), estuaries (mixed tidal and river waters), floodplains (excess water from overflowed rivers or lakes), springs, seeps and fens (groundwater discharge out onto the surface), and bogs and vernal ponds (rainfall or meltwater). [1] [7] Some wetlands have multiple types of plants and are fed by multiple sources of water, making them difficult to classify. The world's largest wetlands include the Amazon River basin, the West Siberian Plain, [8] the Pantanal in South America, [9] and the Sundarbans in the Ganges-Brahmaputra delta. [10]

Wetlands contribute a number of functions that benefit people. These are called ecosystem services and include water purification, groundwater replenishment, stabilization of shorelines and storm protection, water storage and flood control, processing of carbon (carbon fixation, decomposition and sequestration), other nutrients and pollutants, and support of plants and animals. [11] Wetlands are reservoirs of biodiversity and provide wetland products. According to the UN Millennium Ecosystem Assessment, wetlands are more affected by environmental degradation than any other ecosystem on Earth. [12] Wetlands can be important sources and sinks of carbon, depending on the specific wetland, and thus will play an important role in climate change and need to be considered in attempts to mitigate climate change. However, some wetlands are a significant source of methane emissions and some are also emitters of nitrous oxide. [13] [14]

Definitions and terminology

Marshlands are often noted within wetlands, as seen here at the Jamaica Bay Wildlife Refuge in New York City. A somewhat smoggy Midtown Manhattan skyline as seen from Jamaica Bay - panoramio (cropped).jpg
Marshlands are often noted within wetlands, as seen here at the Jamaica Bay Wildlife Refuge in New York City.

Technical definitions

A simplified definition of wetland is "an area of land that is usually saturated with water". [15] More precisely, wetlands are areas where "water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season". [16] A patch of land that develops pools of water after a rain storm would not necessarily be considered a "wetland", even though the land is wet. Wetlands have unique characteristics: they are generally distinguished from other water bodies or landforms based on their water level and on the types of plants that live within them. Specifically, wetlands are characterized as having a water table that stands at or near the land surface for a long enough period each year to support aquatic plants. [17] [18]

A more concise definition is a community composed of hydric soil and hydrophytes. [1]

Wetlands have also been described as ecotones, providing a transition between dry land and water bodies. [19] Wetlands exist "...at the interface between truly terrestrial ecosystems and aquatic systems, making them inherently different from each other, yet highly dependent on both." [20]

In environmental decision-making, there are subsets of definitions that are agreed upon to make regulatory and policy decisions.

Under the Ramsar international wetland conservation treaty, wetlands are defined as follows: [21]

An ecological definition of a wetland is "an ecosystem that arises when inundation by water produces soils dominated by anaerobic and aerobic processes, which, in turn, forces the biota, particularly rooted plants, to adapt to flooding". [1]

Sometimes a precise legal definition of a wetland is required. The definition used for regulation by the United States government is: 'The term "wetlands" means those areas that are inundated or saturated by surface or ground water at a frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally included swamps, marshes, bogs, and similar areas.' [22]

For each of these definitions and others, regardless of the purpose, hydrology is emphasized (shallow waters, water-logged soils). The soil characteristics and the plants and animals controlled by the wetland hydrology are often additional components of the definitions. [23]

Types

Sunrise at Viru Bog, Estonia Sunrise at viru bog.jpg
Sunrise at Viru Bog, Estonia

Wetlands can be tidal (inundated by tides) or non-tidal. [16] The water in wetlands is either freshwater, brackish, saline, or alkaline. [2] There are four main kinds of wetlands marsh, swamp, bog, and fen (bogs and fens being types of peatlands or mires). Some experts also recognize wet meadows and aquatic ecosystems as additional wetland types. [1] Sub-types include mangrove forests, carrs, pocosins, floodplains, [1] peatlands, vernal pools, sinks, and many others. [24]

The following three groups are used within Australia to classify wetland by type: Marine and coastal zone wetlands, inland wetlands and human-made wetlands. [25] In the US, the best known classifications are the Cowardin classification system [26] and the hydrogeomorphic (HGM) classification system. The Cowardin system includes five main types of wetlands: marine (ocean-associated), estuarine (mixed ocean- and river-associated), riverine (within river channels), lacustrine (lake-associated) and palustrine (inland nontidal habitats).

Peatlands

Peatlands are a unique kind of wetland where lush plant growth and slow decay of dead plants (under anoxic conditions) results in organic peat accumulating; bogs, fens, and mires are different names for peatlands.

Wetland names

Variations of names for wetland systems:

Some wetlands have localized names unique to a region such as the prairie potholes of North America's northern plain, pocosins, Carolina bays and baygalls [27] [28] of the Southeastern US, mallines of Argentina, Mediterranean seasonal ponds of Europe and California, turloughs of Ireland, billabongs of Australia, among many others.

Locations

By temperature zone

Wetlands contrast the hot, arid landscape around Middle Spring, Fish Springs National Wildlife Refuge, Utah MiddleSpring.JPG
Wetlands contrast the hot, arid landscape around Middle Spring, Fish Springs National Wildlife Refuge, Utah

Wetlands are found throughout the world in different climates. [16] Temperatures vary greatly depending on the location of the wetland. Many of the world's wetlands are in the temperate zones, midway between the North or South Poles and the equator. In these zones, summers are warm and winters are cold, but temperatures are not extreme. In subtropical zone wetlands, such as along the Gulf of Mexico, average temperatures might be 11 °C (52 °F). Wetlands in the tropics are subjected to much higher temperatures for a large portion of the year. Temperatures for wetlands on the Arabian Peninsula can exceed 50 °C (122 °F) and these habitats would therefore be subject to rapid evaporation. In northeastern Siberia, which has a polar climate, wetland temperatures can be as low as −50 °C (−58 °F). Peatlands in arctic and subarctic regions insulate the permafrost, thus delaying or preventing its thawing during summer, as well as inducing its formation. [29]

By precipitation amount

The amount of precipitation a wetland receives varies widely according to its area. Wetlands in Wales, Scotland, and western Ireland typically receive about 1,500 mm (59 in) per year.[ citation needed ] In some places in Southeast Asia, where heavy rains occur, they can receive up to 10,000 mm (390 in).[ citation needed ] In some drier regions, wetlands exist where as little as 180 mm (7.1 in) precipitation occurs each year.[ citation needed ]

Temporal variation: [30]

Surface flow may occur in some segments, with subsurface flow in other segments.

Processes

Wetlands vary widely due to local and regional differences in topography, hydrology, vegetation, and other factors, including human involvement. Other important factors include fertility, natural disturbance, competition, herbivory, burial and salinity. [1] When peat accumulates, bogs and fens arise.

Hydrology

The wetlands of Cape May, New Jersey, U.S. comprise an extensive hydrological network that makes them an ornithologically important location to study the many birds which use the preserve as a place to nest. Wetlands Cape May New Jersey.jpg
The wetlands of Cape May, New Jersey, U.S. comprise an extensive hydrological network that makes them an ornithologically important location to study the many birds which use the preserve as a place to nest.

The most important factor producing wetlands is hydrology, or flooding. The duration of flooding or prolonged soil saturation by groundwater determines whether the resulting wetland has aquatic, marsh or swamp vegetation. Other important factors include soil fertility, natural disturbance, competition, herbivory, burial, and salinity. [1] When peat from dead plants accumulates, bogs and fens develop.

Wetland hydrology is associated with the spatial and temporal dispersion, flow, and physio-chemical attributes of surface and ground waters. Sources of hydrological flows into wetlands are predominantly precipitation, surface water (saltwater or freshwater), and groundwater. Water flows out of wetlands by evapotranspiration, surface flows and tides, and subsurface water outflow. Hydrodynamics (the movement of water through and from a wetland) affects hydro-periods (temporal fluctuations in water levels) by controlling the water balance and water storage within a wetland. [31]

Landscape characteristics control wetland hydrology and water chemistry. The O2 and CO2 concentrations of water depend upon temperature, atmospheric pressure and mixing with the air (from winds or water flows). Water chemistry within wetlands is determined by the pH, salinity, nutrients, conductivity, soil composition, hardness, and the sources of water. Water chemistry varies across landscapes and climatic regions. Wetlands are generally minerotrophic (waters contain dissolved materials from soils) with the exception of ombrotrophic bogs that are fed only by water from precipitation.

Because bogs receive most of their water from precipitation and humidity from the atmosphere, their water usually has low mineral ionic composition. In contrast, wetlands fed by groundwater or tides have a higher concentration of dissolved nutrients and minerals.

Fen peatlands receive water both from precipitation and ground water in varying amounts so their water chemistry ranges from acidic with low levels of dissolved minerals to alkaline with high accumulation of calcium and magnesium. [32]

Role of salinity

Salinity has a strong influence on wetland water chemistry, particularly in coastal wetlands [1] [33] and in arid and semiarid regions with large precipitation deficits. Natural salinity is regulated by interactions between ground and surface water, which may be influenced by human activity. [34]

Soil

Carbon is the major nutrient cycled within wetlands. Most nutrients, such as sulfur, phosphorus, carbon, and nitrogen are found within the soil of wetlands. Anaerobic and aerobic respiration in the soil influences the nutrient cycling of carbon, hydrogen, oxygen, and nitrogen, [35] and the solubility of phosphorus [36] thus contributing to the chemical variations in its water. Wetlands with low pH and saline conductivity may reflect the presence of acid sulfates [37] and wetlands with average salinity levels can be heavily influenced by calcium or magnesium. Biogeochemical processes in wetlands are determined by soils with low redox potential. [38] Wetland soils are identified by redoxymorphic mottles (often from iron oxide rust) or low chroma intensity, as determined by the Munsell Color System.

Water chemistry

Due to the low dissolved oxygen (DO) content, and relatively low nutrient balance of wetland environments, most wetlands are very susceptible to alterations in water chemistry. Key factors that are assessed to determine water quality include:

These chemical factors can be used to quantify wetland disturbances, and often provide information as to whether a wetland is fed by precipitation, surface water or groundwater, due to the different ion characteristics of the different water sources. [39] Wetlands are adept at impacting the water chemistry of streams or water bodies that interact with them, and can process ions that result from water pollution such as acid mine drainage or urban runoff., [40] [41]

Biota

The biota of a wetland system includes its plants (flora) and animals (fauna) and microbes (bacteria, fungi). The most important factor affecting the biota is the hydroperiod, or the duration of flooding. [1] Other important factors include fertility and salinity of the water or soils. The chemistry of water flowing into wetlands depends on the source of water, the geological material that it flows through [42] and the nutrients discharged from organic matter in the soils and plants at higher elevations. [43] Biota may vary within a wetland seasonally or in response to flood regimes.

Humid wetland in Pennsylvania before a rain. Temperate wetlands in Pennsylvania.jpg
Humid wetland in Pennsylvania before a rain.

Flora

Bud of water lotus (Nelumbo nucifera), an aquatic plant. Nelumbo nucifera LOTUS bud.jpg
Bud of water lotus (Nelumbo nucifera), an aquatic plant.

There are four main groups of hydrophytes that are found in wetland systems throughout the world. [44]

Submerged wetland vegetation can grow in saline and fresh-water conditions. Some species have underwater flowers, while others have long stems to allow the flowers to reach the surface. [45] Submerged species provide a food source for native fauna, habitat for invertebrates, and also possess filtration capabilities. Examples include seagrasses and eelgrass.

Floating water plants or floating vegetation are usually small, like those in the Lemnoideae subfamily (duckweeds). Emergent vegetation like the cattails ( Typha spp.), sedges ( Carex spp.) and arrow arum ( Peltandra virginica ) rise above the surface of the water.

When trees and shrubs comprise much of the plant cover in saturated soils, those areas in most cases are called swamps. [1] The upland boundary of swamps is determined partly by water levels. This can be affected by dams [46] Some swamps can be dominated by a single species, such as silver maple swamps around the Great Lakes. [47] Others, like those of the Amazon basin, have large numbers of different tree species. [48] Other examples include cypress ( Taxodium ) and mangrove swamps.

Fauna

Many species of frogs live in wetlands, while others visit them each year to lay eggs. Northern Leopard Frog (Lithobates pipiens).jpg
Many species of frogs live in wetlands, while others visit them each year to lay eggs.
Snapping turtles are one of the many kinds of turtles found in wetlands. Snapping turtle 3 md.jpg
Snapping turtles are one of the many kinds of turtles found in wetlands.

Many species of fish are highly dependent on wetland ecosystems. [49] [50] Seventy-five percent of the United States' commercial fish and shellfish stocks depend solely on estuaries to survive. [51] Tropical fish species need mangroves for critical hatchery and nursery grounds and the coral reef system for food.

Amphibians such as frogs and salamanders need both terrestrial and aquatic habitats in which to reproduce and feed. Because amphibians often inhabit depressional wetlands like prairie potholes and Carolina bays, the connectivity among these isolated wetlands is an important control of regional populations. [52] While tadpoles feed on algae, adult frogs forage on insects. Frogs are sometimes used as an indicator of ecosystem health because their thin skin permits absorption of nutrients and toxins from the surrounding environment resulting in increased extinction rates in unfavorable and polluted environmental conditions. [53]

Reptiles such as snakes, lizards, turtles, alligators and crocodiles are common in wetlands of some regions. In freshwater wetlands of the Southeastern US, alligators are common and a freshwater species of crocodile occurs in South Florida. The Florida Everglades is the only place in the world where both crocodiles and alligators coexist. [54] The saltwater crocodile inhabits estuaries and mangroves and can be seen along the Eastern coastline of Australia. [55] Snapping turtles are one of the many kinds of turtles found in wetlands. [56]

Birds, particularly waterfowl and wading birds, use wetlands extensively. [57]

Mammals of wetlands [58] include numerous small and medium-sized species such as voles, bats, [59] muskrats [60] and platypus in addition to large herbivorous and apex predator species such as the beaver, [61] coypu, swamp rabbit, Florida panther, [62] and moose. Wetlands attract many mammals due to abundant seeds, berries, and other vegetation as food for herbivores, as well as abundant populations of invertebrates, small reptiles and amphibians as prey for predators. [63]

Invertebrates of wetlands include aquatic insects (such as dragonflies, aquatic bugs and beetles, midges, mosquitoes), crustaceans (such as crabs, crayfish, shrimps, microcrustaceans), mollusks (such as clams, mussels, snails), and worms (such as polychaetes, oligochaetes, leeches), among others. Invertebrates comprise more than half of the known animal species in wetlands, and are considered the primary food web link between plants and higher animals (such as fish and birds). [64] The low oxygen conditions in wetland water and their frequent flooding and drying (daily in tidal wetlands, seasonally in temporary ponds and floodplains) prevent many invertebrates from inhabiting wetlands, and thus the invertebrate fauna of wetlands is often less diverse than some other kinds of habitat (such as streams, coral reefs, and forests). Some wetland invertebrates thrive in habitats that lack predatory fish. Many insects only inhabit wetlands as aquatic immatures (nymphs, larvae) and the flying adults inhabit upland habitats, returning to the wetlands to lay eggs. For instance, a common hoverfly Syritta pipiens inhabits wetlands as larvae (maggots), living in wet, rotting organic matter; these insects then visit terrestrial flowers as adult flies.

Algae

Algae are diverse plant-like organisms that can vary in size, color, and shape. Algae occur naturally in habitats such as inland lakes, inter-tidal zones, and damp soil and provide a food source for many animals, including some invertebrates, fish, turtles, and frogs. There are several groups of algae:

  • Phytoplankton are microscopic, free-floating algae. These algae are so tiny that on average, 50 of these lined up end-to-end would only measure one millimeter. Phytoplankton are the basis of the food web in many water bodies being responsible for much of the primary production using photosynthesis to fix carbon. Filamentous algae are long strands of algal cells that can form floating mats. Periphyton (or epiphyton) are algae that grow as surface biofilms on plants, wood, and other substrates. [65]
  • Chara and Nitella algae are upright algae that look like a submerged plants with roots. [66]

Disturbances and human impacts

Wetlands, the functions and services they provide as well as their flora and fauna, can be affected by several types of disturbances. [67] The disturbances (sometimes termed stressors or alterations) can be human-associated or natural, direct or indirect, reversible or not, and isolated or cumulative. Disturbances exceed the levels or patterns normally found within wetlands of a particular class in a particular region. Predominant disturbances of wetlands include: [68] [69]

Disturbances can be further categorized as follows:

Just a few of the many sources of these disturbances include: [71]

They can be manifested partly as:

Biodiversity loss occurs in wetland systems through land use changes, habitat destruction, pollution, exploitation of resources, and invasive species. Vulnerable, threatened, and endangered species include 17% of waterfowl, 38% of fresh-water dependent mammals, 33% of freshwater fish, 26% of freshwater amphibians, 72% of freshwater turtles, 86% of marine turtles, 43% of crocodilians and 27% of coral reef-building species. Introduced aquatic plants in different wetland systems can have large impacts. The introduction of water hyacinth, a native plant of South America into Lake Victoria in East Africa as well as duckweed into non-native areas of Queensland, Australia, have overtaken entire wetland systems overwhelming the habitats and reducing the diversity of native plants and animals. This is largely due to the phenomenal growth rates of the plants and their ability to float and grow across the entire surface of the water.

Conversion to dry land

To increase economic productivity, wetlands are often converted into dry land with dykes and drains and used for agricultural purposes. The construction of dykes, and dams, has negative consequences for individual wetlands and entire watersheds. [1] :497 Their proximity to lakes and rivers means that they are often developed for human settlement. [73] Once settlements are constructed and protected by dykes, the settlements then become vulnerable to land subsidence and ever increasing risk of flooding. [1] :497 The Mississippi River Delta around New Orleans, Louisiana is a well-known example; [74] the Danube Delta in Europe is another. [75]

Ecosystem services

Depending on a wetland's geographic and topographic location, [76] the functions it performs can support multiple ecosystem services, values, or benefits. United Nations Millennium Ecosystem Assessment and Ramsar Convention described wetlands as a whole to be of biosphere significance and societal importance in the following areas: [77]

According to the Ramsar Convention:[ citation needed ]

The economic worth of the ecosystem services provided to society by intact, naturally functioning wetlands is frequently much greater than the perceived benefits of converting them to 'more valuable' intensive land use – particularly as the profits from unsustainable use often go to relatively few individuals or corporations, rather than being shared by society as a whole.

Unless otherwise cited, ecosystem services information is based on the following series of references. [51]

To replace these wetland ecosystem services, enormous amounts of money would need to be spent on water purification plants, dams, levees, and other hard infrastructure, and many of the services are impossible to replace.

Storage reservoirs and flood protection

Floodplains and closed-depression wetlands can provide the functions of storage reservoirs and flood protection.

The wetland system of floodplains is formed from major rivers downstream from their headwaters. "The floodplains of major rivers act as natural storage reservoirs, enabling excess water to spread out over a wide area, which reduces its depth and speed. Wetlands close to the headwaters of streams and rivers can slow down rainwater runoff and spring snowmelt so that it doesn't run straight off the land into water courses. This can help prevent sudden, damaging floods downstream." [51] Notable river systems that produce wide floodplains include the Nile River, the Niger river inland delta, the Zambezi River flood plain, the Okavango River inland delta, the Kafue River flood plain, the Lake Bangweulu flood plain (Africa), Mississippi River (USA), Amazon River (South America), Yangtze River (China), Danube River (Central Europe) and Murray-Darling River (Australia).

Drainage of floodplains or development activities that narrow floodplain corridors (such as the construction of levees) reduces the ability of coupled river-floodplain systems to control flood damage. That is because modified and less expansive systems must still manage the same amount of precipitation, causing flood peaks to be higher or deeper and floodwaters to travel faster.

Water management engineering developments in the past century have degraded floodplain wetlands through the construction of artificial embankments such as dykes, bunds, levees, weirs, barrages and dams. All concentrate water into a main channel and waters that historically spread slowly over a large, shallow area are concentrated. Loss of wetland floodplains results in more severe and damaging flooding. Catastrophic human impact in the Mississippi River floodplains was seen in death of several hundred individuals during a levee breach in New Orleans caused by Hurricane Katrina. Human-made embankments along the Yangtze River floodplains have caused the main channel of the river to become prone to more frequent and damaging flooding. [78] Some of these events include the loss of riparian vegetation, a 30% loss of the vegetation cover throughout the river's basin, a doubling of the percentage of the land affected by soil erosion, and a reduction in reservoir capacity through siltation build-up in floodplain lakes. [51]

Groundwater replenishment

Groundwater replenishment can be achieved for example by marsh, swamp, and subterranean karst and cave hydrological systems.

The surface water visibly seen in wetlands only represents a portion of the overall water cycle, which also includes atmospheric water (precipitation) and groundwater. Many wetlands are directly linked to groundwater and they can be a crucial regulator of both the quantity and quality of water found below the ground. Wetlands that have permeable substrates like limestone or occur in areas with highly variable and fluctuating water tables have especially important roles in groundwater replenishment or water recharge. [79] Substrates that are porous allow water to filter down through the soil and underlying rock into aquifers which are the source of much of the world's drinking water. Wetlands can also act as recharge areas when the surrounding water table is low and as a discharge zone when it is high. Karst (cave) systems are a unique example of this system and can be a connection of underground rivers influenced by rain and other forms of precipitation to the surface.

Shoreline stabilization and storm protection

Mangroves, coral reefs, salt marsh can help with shoreline stabilization and storm protection.

Tidal and inter-tidal wetland systems protect and stabilize coastal zones. [80] Coral reefs provide a protective barrier to coastal shoreline. Mangroves stabilize the coastal zone from the interior and will migrate with the shoreline to remain adjacent to the boundary of the water. The main conservation benefit these systems have against storms and storm surges is the ability to reduce the speed and height of waves and floodwaters.

The number of people who live and work near the coast is expected to grow immensely over the next fifty years. From an estimated 200 million people that currently live in low-lying coastal regions, the development of urban coastal centers is projected to increase the population by fivefold within 50 years. [81] The United Kingdom has begun the concept of managed coastal realignment. This management technique provides shoreline protection through restoration of natural wetlands rather than through applied engineering. In East Asia, reclamation of coastal wetlands has resulted in widespread transformation of the coastal zone, and up to 65% of coastal wetlands have been destroyed by coastal development. [82] [83] One analysis using the impact of hurricanes versus storm protection provided naturally by wetlands projected the value of this service at US$33,000/hectare/year. [84]

Water purification

Water purification can be provided by floodplains, closed-depression wetlands, mudflat, freshwater marsh, salt marsh, mangroves.

Nutrient retention: Wetlands cycle both sediments and nutrients, sometimes serving as buffers between terrestrial and aquatic ecosystems. A natural function of wetland vegetation is the up-take, storage, and (for nitrate) the removal of nutrients found in runoff water from the surrounding landscapes. [85] In many wetlands, microbial processes convert soluble nutrients to a gaseous form, such as denitrification of nitrate, which then moves the nitrate to the atmosphere mostly as harmless nitrogen gas.

Sediment and heavy metal traps: Precipitation and surface runoff induces soil erosion, transporting sediment in suspension into and through waterways. These sediments move towards larger and more sizable waterways through a natural process that moves water towards oceans. All types of sediments whether composed of clay, silt, sand or gravel and rock can be carried into wetland systems through erosion. Wetland vegetation acts as a physical barrier to slow water flow and then trap sediment for both short or long periods of time. Suspended sediment can contain heavy metals that are also retained when wetlands trap the sediment. In some cases, certain metals are taken up through wetland plant stems, roots, and leaves. For example, many floating plant species such as water hyacinth (Eichhornia crassipes), duckweed (Lemna) and water fern (Azolla) store iron and copper found in wastewater; these plants also extract pathogens. Fast-growing plants rooted in the soils of wetlands such as cattail (Typha) and reed (Phragmites) also contribute to heavy metal up-take. Animals such as the oyster can filter more than 200 litres (53 US gal) of water per day while grazing for food, removing nutrients, suspended sediments, and chemical contaminants in the process. On the other hand, some types of wetlands facilitate the mobilization and bioavailability of mercury (another heavy metal), which in its methyl mercury form increases the risk of bioaccumulation in fish important to animal food webs and harvested for human consumption.

Capacity: The ability of wetland systems to store or remove nutrients and trap sediment and associated metals is highly efficient and effective but each system has a threshold. An overabundance of nutrient input from fertilizer run-off, sewage effluent, or non-point pollution will cause eutrophication. Upstream erosion from deforestation can overwhelm wetlands making them shrink in size and cause dramatic biodiversity loss through excessive sedimentation load. Retaining high levels of metals in sediments is problematic if the sediments become resuspended or oxygen and pH levels change at a future time. The capacity of wetland vegetation to store heavy metals depends on the particular metal, oxygen and pH status of wetland sediments and overlying water, water flow rate (detention time), wetland size, season, climate, type of plant, and other factors.

The capacity of a wetland to store sediment, nutrients, and metals can be diminished if sediments are compacted such as by vehicles or heavy equipment, or are regularly tilled. Unnatural changes in water levels and water sources also can affect the water purification function. If water purification functions are impaired, excessive loads of nutrients enter waterways and cause eutrophication. This is of particular concern in temperate coastal systems. [86] [87] The main sources of coastal eutrophication are industrially made nitrogen, which is used as fertilizer in agricultural practices, as well as septic waste runoff. [88] Nitrogen is the limiting nutrient for photosynthetic processes in saline systems, however in excess, it can lead to an overproduction of organic matter that then leads to hypoxic and anoxic zones within the water column. [89] Without oxygen, other organisms cannot survive, including economically important finfish and shellfish species.

Wastewater treatment

Constructed wetlands are built for wastewater treatment.

Constructed wetland in an ecological settlement in Flintenbreite near Lubeck, Germany Flintenbreite constructed wetland.jpg
Constructed wetland in an ecological settlement in Flintenbreite near Lübeck, Germany

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. [90] [91] It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter (measured as biochemical oxygen demand and chemical oxygen demand). [92]

Similar to natural wetlands, constructed wetlands also act as a biofilter and/or can remove a range of pollutants (such as organic matter, nutrients, pathogens, heavy metals) from the water. Constructed wetlands are designed to remove water pollutants such as suspended solids, organic matter and nutrients (nitrogen and phosphorus). [92] All types of pathogens (i.e., bacteria, viruses, protozoans and helminths) are expected to be removed to some extent in a constructed wetland. Subsurface wetlands provide greater pathogen removal than surface wetlands. [92]

There are two main types of constructed wetlands: subsurface flow and surface flow. The planted vegetation plays an important role in contaminant removal. The filter bed, consisting usually of sand and gravel, has an equally important role to play. [93] Some constructed wetlands may also serve as a habitat for native and migratory wildlife, although that is not their main purpose. Subsurface flow constructed wetlands are designed to have either horizontal flow or vertical flow of water through the gravel and sand bed. Vertical flow systems have a smaller space requirement than horizontal flow systems.

An example of how a natural wetland is used to provide some degree of sewage treatment is the East Kolkata Wetlands in Kolkata, India. The wetlands cover 125 square kilometres (48 sq mi), and are used to treat Kolkata's sewage. The nutrients contained in the wastewater sustain fish farms and agriculture.

Reservoirs of biodiversity

Wetland systems' rich biodiversity has become a focal point catalysed by the Ramsar Convention and World Wildlife Fund. [94] The impact of maintaining biodiversity is seen at the local level through job creation, sustainability, and community productivity. A good example is the Lower Mekong basin which runs through Cambodia, Laos, and Vietnam, supporting over 55 million people.

Biodiverse river basins: The Amazon holds more than 3,000 species of freshwater fish species within the boundaries of its basin. [95] Fishes consuming fallen fruit, e.g., the large-bodied characid, Colossoma macropomum, enter the Amazonian floodplains during annual floods egesting viable seeds thus acting as an important agent of dispersal. [96] A key species which is overfished, [97] the Piramutaba catfish, Brachyplatystoma vaillantii , migrates more than 3,300 km (2,100 mi) from its nursery grounds near the mouth of the Amazon River to its spawning grounds in Andean tributaries, 400 m (1,300 ft) above sea level, distributing plant seeds along the route.

Productive intertidal zones: Intertidal mudflats have a level of productivity similar to that of some wetlands even while possessing a low number of species. The abundant invertebrates found within the mud are a food source for migratory waterfowl. [98]

Critical life-stage habitat: Mudflats, saltmarshes, mangroves, and seagrass beds have high levels of both species richness and productivity, and are home to important nursery areas for many commercial fish stocks.

Genetic diversity: Populations of many species are confined geographically to only one or a few wetland systems, often due to the long period of time that the wetlands have been physically isolated from other aquatic sources. For example, the number of endemic species in the Selenga River Delta of Lake Baikal in Russia classifies it as a hotspot for biodiversity and one of the most biodiverse wetlands in the entire world. [99]

Wetland products

Wetland at the Broadmoor Wildlife Sanctuary in Massachusetts, United States, in February Broadmoor Wildlife Sanctuary marsh.jpg
Wetland at the Broadmoor Wildlife Sanctuary in Massachusetts, United States, in February

Wetland productivity is linked to the climate, wetland type, and nutrient availability. Low water and occasional drying of the wetland bottom during droughts (dry marsh phase) stimulates plant recruitment from a diverse seed bank and increases productivity by mobilizing nutrients. In contrast, high water during deluges (lake marsh phase) causes turnover in plant populations and increases open water, but lowers overall productivity. From open water to complete vegetation cover, annual net primary productivity may vary 20-fold. [100] The grasses of fertile floodplains such as the Nile can be highly productive, especially plants such as Arundo donax (giant reed), Cyperus papyrus (papyrus), Phragmites (reed) and Typha (cattail).[ citation needed ]

Wetlands naturally produce an array of vegetation and other ecological products that can be harvested for personal and commercial use. [101] Many fishes have all or part of their life-cycle occurring within a wetland system. Fresh and saltwater fish are the main source of protein for about one billion people [102] and comprise 15% of an additional 3.5 billion people's protein intake. [103] Another food staple found in wetland systems is rice, a popular grain that is consumed at the rate of one fifth of the total global calorie count. In Bangladesh, Cambodia and Vietnam, where rice paddies are predominant on the landscape, rice consumption reach 70%. [104] Some native wetland plants in the Caribbean and Australia are harvested sustainably for medicinal compounds; these include the red mangrove ( Rhizophora mangle ) which possesses antibacterial, wound-healing, anti-ulcer effects, and antioxidant properties. [104]

The nipa palm of Asia (sugar, vinegar, alcohol, and fodder) and honey collection from mangroves contribute to human diets and people's income. Coastal Thailand villages earn the key portion of their income from sugar production while Cuba relocates thousands of beehives each year to track the seasonal flowering of the mangrove Avicennia . [105] Other mangrove-derived products include fuelwood, salt (produced by evaporating seawater), animal fodder, traditional medicines (e.g. from mangrove bark), fibers for textiles and dyes and tannins. [106]

Over-fishing is a major problem for sustainable use of wetlands. Concerns are developing over certain aspects of farm fishing, which uses natural wetlands and waterways to harvest fish for human consumption. Aquaculture is continuing to develop rapidly throughout the Asia-Pacific region especially in China where 90% of the total number of aquaculture farms occur, contributing 80% of global value. [104] Some aquaculture has eliminated massive areas of wetland through practices such as the shrimp farming industry's destruction of mangroves. Even though the damaging impact of large-scale shrimp farming on the coastal ecosystem in many Asian countries has been widely recognized for quite some time now, it has proved difficult to mitigate since other employment avenues for people are lacking. Also burgeoning demand for shrimp globally has provided a large and ready market. [107]

Additional services and uses of wetlands

Some types of wetlands can serve as fire breaks that help slow the spread of minor wildfires. Larger wetland systems can influence local precipitation patterns. Some boreal wetland systems in catchment headwaters may help extend the period of flow and maintain water temperature in connected downstream waters. [108] Pollination services are supported by many wetlands which may provide the only suitable habitat for pollinating insects, birds, and mammals in highly developed areas. [109]

Conservation

Fog rising over the Mukri bog near Mukri, Estonia. The bog has an area of 2,147 hectares (5,310 acres) and has been protected since 1992. Hommik Mukri rabas.jpg
Fog rising over the Mukri bog near Mukri, Estonia. The bog has an area of 2,147 hectares (5,310 acres) and has been protected since 1992.

Wetlands have historically subjected to large draining efforts for development (real estate or agriculture), and flooding to create recreational lakes or generate hydropower. Some of the world's most important agricultural areas were wetlands that have been converted to farmland. [110] [111] [112] [113] Since the 1970s, more focus has been put on preserving wetlands for their natural functions. Since 1900 between 65 and 70% of the world's wetlands have been lost. [114] In order to maintain wetlands and sustain their functions, alterations and disturbances that are outside the normal range of variation should be minimized.

Balancing wetland conservation with the needs of people

Wetlands are vital ecosystems that enhance the livelihoods for the millions of people who live in and around them. The Millennium Development Goals (MDGs) called for different sectors to join forces to secure wetland environments in the context of sustainable development and improving human wellbeing. Studies have shown that it is possible to conserve wetlands while improving the livelihoods of people living among them. Case studies conducted in Malawi and Zambia looked at how dambos – wet, grassy valleys or depressions where water seeps to the surface – can be farmed sustainably. Project outcomes included a high yield of crops, development of sustainable farming techniques, and water management strategies that generate enough water for irrigation. [115]

Ramsar Convention

The Convention on Wetlands of International Importance, especially as Waterfowl Habitat, or Ramsar Convention, is an international treaty designed to address global concerns regarding wetland loss and degradation. The primary purposes of the treaty are to list wetlands of international importance and to promote their wise use, with the ultimate goal of preserving the world's wetlands. Methods include restricting access to some wetland areas, as well as educating the public to combat the misconception that wetlands are wastelands. The Convention works closely with five International Organisation Partners (IOPs). These are: Birdlife International, the IUCN, the International Water Management Institute, Wetlands International and the World Wide Fund for Nature. The partners provide technical expertise, help conduct or facilitate field studies and provide financial support. The IOPs also participate regularly as observers in all meetings of the Conference of the Parties and the Standing Committee and as full members of the Scientific and Technical Review Panel.

Restoration

Restoration and restoration ecologists intend to return wetlands to their natural trajectory by aiding directly with the natural processes of the ecosystem. [70] These direct methods vary with respect to the degree of physical manipulation of the natural environment and each are associated with different levels of restoration. [70] Restoration is needed after disturbance or perturbation of a wetland. [70] Disturbances include exogenous factors such as flooding or drought. [70] Other external damage may be anthropogenic disturbance caused by clear-cut harvesting of trees, oil and gas extraction, poorly defined infrastructure installation, over grazing of livestock, ill-considered recreational activities, alteration of wetlands including dredging, draining, and filling, and other negative human impacts. [70] [20] Disturbance puts different levels of stress on an environment depending on the type and duration of disturbance. [70] There is no one way to restore a wetland and the level of restoration required will be based on the level of disturbance although, each method of restoration does require preparation and administration. [70]

Levels of restoration

Factors influencing selected approach may include [70] budget, time scale limitations, project goals, level of disturbance, landscape and ecological constraints, political and administrative agendas and socioeconomic priorities.

Prescribed natural or assisted regeneration

For this strategy, there is no biophysical manipulation and the ecosystem is left to recover based on the process of succession alone. [70] The focus is to eliminate and prevent further disturbance from occurring and for this type of restoration requires prior research to understand the probability that the wetland will recover naturally. This is likely to be the first method of approach since it is the least intrusive and least expensive although some biophysical non-intrusive manipulation may be required to enhance the rate of succession to an acceptable level. [70] Example methods include prescribed burns to small areas, promotion of site specific soil microbiota and plant growth using nucleation planting whereby plants radiate from an initial planting site, [116] and promotion of niche diversity or increasing the range of niches to promote use by a variety of different species. [70] These methods can make it easier for the natural species to flourish by removing environmental impediments and can speed up the process of succession.

Partial reconstruction

For this strategy, a mixture of natural regeneration and manipulated environmental control is used. This may require some engineering, and more intensive biophysical manipulations including ripping of subsoil, agrichemical applications of herbicides or insecticides, laying of mulch, mechanical seed dispersal, and tree planting on a large scale. [70] In these circumstances the wetland is impaired and without human assistance it would not recover within an acceptable period of time as determined by ecologists. Methods of restoration used will have to be determined on a site by site basis as each location will require a different approach based on levels of disturbance and the local ecosystem dynamics. [70]

Complete reconstruction

This most expensive and intrusive method of reconstruction requires engineering and ground up reconstruction. Because there is a redesign of the entire ecosystem it is important that the natural trajectory of the ecosystem be considered and that the plant species promoted will eventually return the ecosystem towards its natural trajectory. [70]

In many cases constructed wetlands are often designed to treat stormwater/wastewater runoff. They can be used in developments as part of Water-sensitive urban design systems and have benefits such as flood mitigation, removing pollutants, carbon sequestration, providing habitat for wildlife and biodiversity in often highly urbanised and fragmented landscapes. [117]

Traditional knowledge

Traditional ecological knowledge or local ecological knowledge is a detailed knowledge of the interactions between the environment that has been accumulated by generations of indigenous or local peoples who have shared a direct relationship with the environment. This includes expertise on flora, fauna, and natural phenomena, as well as the development of technologies needed for survival such as fishing, agriculture, and forestry. [118] The ideas from traditional ecological knowledge can be applied as a holistic approach to the restoration of wetlands. These ideas focus more on responding to the observations detected from the environment considering that each part of a wetland ecosystem is interconnected. Applying these practices on specific locations of wetlands increase productivity, biodiversity, and improve its resilience. These practices include monitoring wetland resources, planting propagules, and addition of key species in order to create a self-sustaining wetland ecosystem. [119] A community of wetland plant harvesters in the Pátzcuaro wetlands used local ecological knowledge to control invasive species and protect native species present in this wetland. [120]

Climate change aspects

Greenhouse gas emissions

In Southeast Asia, peat swamp forests and soils are being drained, burnt, mined, and overgrazed, contributing to climate change. [71] As a result of peat drainage, the organic carbon that had built up over thousands of years and is normally under water is suddenly exposed to the air. The peat decomposes and is converted into carbon dioxide (CO2), which is then released into the atmosphere. Peat fires cause the same process to occur rapidly and in addition create enormous clouds of smoke that cross international borders, which now happens almost yearly in Southeast Asia. While peatlands constitute only 3% of the world's land area, their degradation produces 7% of all CO2 emissions.

Methane emissions from wetlands.webm

Greenhouse gas emissions from wetlands of concern consist primarily of methane and nitrous oxide emissions. Wetlands are the largest natural source of atmospheric methane in the world, and are therefore a major area of concern with respect to climate change. [121] [122] [123] Wetlands account for approximately 20 - 30% of atmospheric methane through emissions from soils and plants, and contribute an approximate average of 161 Tg of methane to the atmosphere per year. [124]

Wetlands are characterized by water-logged soils and distinctive communities of plant and animal species that have adapted to the constant presence of water. This high level of water saturation creates conditions conducive to methane production. Most methanogenesis, or methane production, occurs in oxygen-poor environments. Because the microbes that live in warm, moist environments consume oxygen more rapidly than it can diffuse in from the atmosphere, wetlands are the ideal anaerobic environments for fermentation as well as methanogen activity. However, levels of methanogenesis fluctuates due to the availability of oxygen, soil temperature, and the composition of the soil. A warmer, more anaerobic environment with soil rich in organic matter would allow for more efficient methanogenesis. [125]

Some wetlands are a significant source of methane emissions [126] [127] and some are also emitters of nitrous oxide. [128] [129] Nitrous oxide is a greenhouse gas with a global warming potential 300 times that of carbon dioxide and is the dominant ozone-depleting substance emitted in the 21st century. [130] Wetlands can also act as a sink for greenhouse gases. [131]

Climate change mitigation

Studies have favorably identified the potential for coastal wetlands (also called blue carbon ecosystems) to provide some degree of climate change mitigation in two ways: by conservation, reducing the greenhouse gas emissions arising from the loss and degradation of such habitats, and by restoration, to increase carbon dioxide drawdown and its long-term storage. [132] However, CO2 removal using coastal blue carbon restoration has questionable cost-effectiveness when considered only as a climate mitigation action, either for carbon-offsetting or for inclusion in Nationally Determined Contributions. [132]

When wetlands are restored they have mitigation effects through their ability to sink carbon, converting a greenhouse gas (carbon dioxide) to solid plant material through the process of photosynthesis, and also through their ability to store and regulate water. [133] [134]

Wetlands store approximately 44.6 million tonnes of carbon per year globally (estimate from 2003). [135] In salt marshes and mangrove swamps in particular, the average carbon sequestration rate is 210 g CO2 m−2 y−1 while peatlands sequester approximately 20–30 g CO2 m−2 y−1. [135] [136]

Coastal wetlands, such as tropical mangroves and some temperate salt marshes, are known to be sinks for carbon that otherwise contribute to climate change in its gaseous forms (carbon dioxide and methane). [137] The ability of many tidal wetlands to store carbon and minimize methane flux from tidal sediments has led to sponsorship of blue carbon initiatives that are intended to enhance those processes. [138] [139]

Climate change adaptation

The restoration of coastal blue carbon ecosystems is highly advantageous for climate change adaptation, coastal protection, food provision and biodiversity conservation. [132]

Since the middle of the 20th century, human-caused climate change has resulted in observable changes in the global water cycle. [140] :85 A warming climate makes extremely wet and very dry occurrences more severe, causing more severe floods and droughts. For this reason, some of the ecosystem services that wetlands provide (e.g. water storage and flood control, groundwater replenishment, shoreline stabilization and storm protection) are important for climate change adaptation measures. [141] In most parts of the world and under all emission scenarios, water cycle variability and accompanying extremes are anticipated to rise more quickly than the changes of average values. [140] :85

Valuation

The value of a wetland to local communities typically involves first mapping a region's wetlands, then assessing the functions and ecosystem services the wetlands provide individually and cumulatively, and finally evaluating that information to prioritize or rank individual wetlands or wetland types for conservation, management, restoration, or development. [142] Over the longer term, it requires keeping inventories [143] of known wetlands and monitoring a representative sample of the wetlands to determine changes due to both natural and human factors.

Assessment

Rapid assessment methods are used to score, rank, rate, or categorize various functions, ecosystem services, species, communities, levels of disturbance, and/or ecological health of a wetland or group of wetlands. [144] This is often done to prioritize particular wetlands for conservation (avoidance) or to determine the degree to which loss or alteration of wetland functions should be compensated, such as by restoring degraded wetlands elsewhere or providing additional protections to existing wetlands. Rapid assessment methods are also applied before and after a wetland has been restored or altered, to help monitor or predict the effects of those actions on various wetland functions and the services they provide. Assessments are typically considered to be "rapid" when they require only a single visit to the wetland lasting less than one day, which in some cases may include interpretation of aerial imagery and geographic information system (GIS) analyses of existing spatial data, but not detailed post-visit laboratory analyses of water or biological samples.

To achieve consistency among persons doing the assessment, rapid methods present indicator variables as questions or checklists on standardized data forms, and most methods standardize the scoring or rating procedure that is used to combine question responses into estimates of the levels of specified functions relative to the levels estimated in other wetlands ("calibration sites") assessed previously in a region. [145] Rapid assessment methods, partly because they often use dozens of indicators pertaining to conditions surrounding a wetland as well as within the wetland itself, aim to provide estimates of wetland functions and services that are more accurate and repeatable than simply describing a wetland's class type. [3] A need for wetland assessments to be rapid arises mostly when government agencies set deadlines for decisions affecting a wetland, or when the number of wetlands needing information on their functions or condition is large.

Inventory

Although developing a global inventory of wetlands has proven to be a large and difficult undertaking, many efforts at more local scales have been successful. [146] Current efforts are based on available data, but both classification and spatial resolution have sometimes proven to be inadequate for regional or site-specific environmental management decision-making. It is difficult to identify small, long, and narrow wetlands within the landscape. Many of today's remote sensing satellites do not have sufficient spatial and spectral resolution to monitor wetland conditions, although multispectral IKONOS [147] and QuickBird [148] data may offer improved spatial resolutions once it is 4 m or higher. Majority of the pixels are just mixtures of several plant species or vegetation types and are difficult to isolate which translates into an inability to classify the vegetation that defines the wetland. The growing availability of 3D vegetation and topography data from LiDAR has partially addressed the limitation of traditional multispectral imagery, as demonstrated in some case studies across the world. [149]

Monitoring and mapping

A wetland needs to be monitored [150] over time to assess whether it is functioning at an ecologically sustainable level or whether it is becoming degraded. [151] Degraded wetlands will suffer a loss in water quality, loss of sensitive species, and aberrant functioning of soil geochemical processes.

Practically, many natural wetlands are difficult to monitor from the ground as they quite often are difficult to access and may require exposure to dangerous plants and animals as well as diseases borne by insects or other invertebrates. Remote sensing such as aerial imagery and satellite imaging [152] provides effective tools to map and monitor wetlands across large geographic regions and over time. Many remote sensing methods can be used to map wetlands. The integration of multi-sourced data such as LiDAR and aerial photos proves more effective at mapping wetlands than the use of aerial photos alone, [149] especially with the aid of modern machine learning methods (e.g., deep learning). Overall, using digital data provides a standardized data-collection procedure and an opportunity for data integration within a geographic information system.

Legislation

International efforts

The Ramsar Convention on Wetlands of International Importance Especially as Waterfowl Habitat is an international treaty for the conservation and sustainable use of Ramsar sites (wetlands). [153] It is also known as the Convention on Wetlands. It is named after the city of Ramsar in Iran, where the convention was signed in 1971.

Every three years, representatives of the contracting parties meet as the Conference of the Contracting Parties (COP), the policy-making organ of the convention which adopts decisions (site designations, resolutions and recommendations) to administer the work of the convention and improve the way in which the parties are able to implement its objectives. [154] In 2022, COP14 was co-held in Wuhan, China, and Geneva, Switzerland.

The Upper Navua Conservation Area Ramsar site in Fiji Upper Navua Ramsar Site, Fiji.jpg
The Upper Navua Conservation Area Ramsar site in Fiji
Sustainable fishing in India, an example of wise use. Wise use.jpg
Sustainable fishing in India, an example of wise use.

National efforts

United States

Each country and region tends to have its own definition of wetlands for legal purposes. In the United States, wetlands are defined as "those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs and similar areas". [155] This definition has been used in the enforcement of the Clean Water Act. Some US states, such as Massachusetts and New York, have separate definitions that may differ from the federal government's.

In the United States Code, the term wetland is defined "as land that (A) has a predominance of hydric soils, (B) is inundated or saturated by surface or groundwater at a frequency and duration sufficient to support a prevalence of hydrophytic vegetation typically adapted for life in saturated soil conditions and (C) under normal circumstances supports a prevalence of such vegetation." Related to these legal definitions, "normal circumstances" are expected to occur during the wet portion of the growing season under normal climatic conditions (not unusually dry or unusually wet), and in the absence of significant disturbance. It is not uncommon for a wetland to be dry for long portions of the growing season but under normal environmental conditions, the soils will be saturated to the surface or inundated creating anaerobic conditions persisting through the wet portion of the growing season. [156]

Canada

  • The Federal Policy on Wetland Conservation [157]
  • Other Individual Provincial and Territorial Based Policies [157]

Examples

The world's largest wetlands include the swamp forests of the Amazon River basin, the peatlands of the West Siberian Plain, [8] the Pantanal in South America, [9] and the Sundarbans in the Ganges-Brahmaputra delta. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Marsh gas</span> Gas produced naturally within marshes, swamps and bogs

Marsh gas, also known as swamp gas or bog gas, is a mixture primarily of methane and smaller amounts of hydrogen sulfide, carbon dioxide, and trace phosphine that is produced naturally within some geographical marshes, swamps, and bogs.

<span class="mw-page-title-main">Mangrove</span> Shrub growing in brackish water

A mangrove is a shrub or tree that grows mainly in coastal saline or brackish water. Mangroves grow in an equatorial climate, typically along coastlines and tidal rivers. They have special adaptations to take in extra oxygen and to remove salt, which allow them to tolerate conditions that would kill most plants. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse, as a result of convergent evolution in several plant families. They occur worldwide in the tropics and subtropics and even some temperate coastal areas, mainly between latitudes 30° N and 30° S, with the greatest mangrove area within 5° of the equator. Mangrove plant families first appeared during the Late Cretaceous to Paleocene epochs, and became widely distributed in part due to the movement of tectonic plates. The oldest known fossils of mangrove palm date to 75 million years ago.

<span class="mw-page-title-main">Swamp</span> A forested wetland

A swamp is a forested wetland. Swamps are considered to be transition zones because both land and water play a role in creating this environment. Swamps vary in size and are located all around the world. The water of a swamp may be fresh water, brackish water, or seawater. Freshwater swamps form along large rivers or lakes where they are critically dependent upon rainwater and seasonal flooding to maintain natural water level fluctuations. Saltwater swamps are found along tropical and subtropical coastlines. Some swamps have hammocks, or dry-land protrusions, covered by aquatic vegetation, or vegetation that tolerates periodic inundation or soil saturation. The two main types of swamp are "true" or swamp forests and "transitional" or shrub swamps. In the boreal regions of Canada, the word swamp is colloquially used for what is more formally termed a bog, fen, or muskeg. Some of the world's largest swamps are found along major rivers such as the Amazon, the Mississippi, and the Congo.

<span class="mw-page-title-main">Fen</span> Type of wetland fed by mineral-rich ground or surface water

A fen is a type of peat-accumulating wetland fed by mineral-rich ground or surface water. It is one of the main types of wetlands along with marshes, swamps, and bogs. Bogs and fens, both peat-forming ecosystems, are also known as mires. The unique water chemistry of fens is a result of the ground or surface water input. Typically, this input results in higher mineral concentrations and a more basic pH than found in bogs. As peat accumulates in a fen, groundwater input can be reduced or cut off, making the fen ombrotrophic rather than minerotrophic. In this way, fens can become more acidic and transition to bogs over time.

<span class="mw-page-title-main">Marsh</span> Low-lying and seasonally waterlogged land

A marsh is — according to ecological definitions — a wetland that is dominated by herbaceous rather than woody plant species. More in general, the word can be used for any low-lying and seasonally waterlogged terrain. In Europe and in agricultural literature low-lying meadows that require draining and embanked polderlands are also referred to as marshes or marshland.

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes, ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation. There are three basic types of freshwater ecosystems: Lentic, lotic and wetlands. Freshwater ecosystems contain 41% of the world's known fish species.

<span class="mw-page-title-main">Tidal marsh</span> Marsh subject to tidal change in water

A tidal marsh is a marsh found along rivers, coasts and estuaries which floods and drains by the tidal movement of the adjacent estuary, sea or ocean. Tidal marshes experience many overlapping persistent cycles, including diurnal and semi-diurnal tides, day-night temperature fluctuations, spring-neap tides, seasonal vegetation growth and decay, upland runoff, decadal climate variations, and centennial to millennial trends in sea level and climate.

<span class="mw-page-title-main">Aquatic ecosystem</span> Ecosystem in a body of water

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Peat swamp forest</span> Tropical moist forests where waterlogged soil prevents dead leaves and wood from fully decomposing

Peat swamp forests are tropical moist forests where waterlogged soil prevents dead leaves and wood from fully decomposing. Over time, this creates a thick layer of acidic peat. Large areas of these forests are being logged at high rates.

<span class="mw-page-title-main">Mangrove forest</span> Productive wetlands that occur in coastal intertidal zones

Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangroves cannot withstand freezing temperatures. There are about 80 different species of mangroves, all of which grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate.

<span class="mw-page-title-main">Riparian zone</span> Interface between land and a river or stream

A riparian zone or riparian area is the interface between land and a river or stream. In some regions, the terms riparian woodland, riparian forest, riparian buffer zone,riparian corridor, and riparian strip are used to characterize a riparian zone. The word riparian is derived from Latin ripa, meaning "river bank".

<span class="mw-page-title-main">Freshwater swamp forest</span> Forest growing on an alluvial zone

Freshwater swamp forests, or flooded forests, are forests which are inundated with freshwater, either permanently or seasonally. They normally occur along the lower reaches of rivers and around freshwater lakes. Freshwater swamp forests are found in a range of climate zones, from boreal through temperate and subtropical to tropical.

<span class="mw-page-title-main">Environmental impact of reservoirs</span>

The environmental impact of reservoirs comes under ever-increasing scrutiny as the global demand for water and energy increases and the number and size of reservoirs increases.

<span class="mw-page-title-main">Wetland conservation</span> Conservation of wet areas

Wetland conservation is aimed at protecting and preserving areas of land including marshes, swamps, bogs, and fens that are covered by water seasonally or permanently due to a variety of threats from both natural and anthropogenic hazards. Some examples of these hazards include habitat loss, pollution, and invasive species. Wetland vary widely in their salinity levels, climate zones, and surrounding geography and play a crucial role in maintaining biodiversity, ecosystem services, and support human communities. Wetlands cover at least six percent of the Earth and have become a focal issue for conservation due to the ecosystem services they provide. More than three billion people, around half the world's population, obtain their basic water needs from inland freshwater wetlands. They provide essential habitats for fish and various wildlife species, playing a vital role in purifying polluted waters and mitigating the damaging effects of floods and storms. Furthermore, they offer a diverse range of recreational activities, including fishing, hunting, photography, and wildlife observation.

Classification of wetlands has been a problematical task, with the commonly accepted definition of what constitutes a wetland being among the major difficulties. A number of national wetland classifications exist. In the 1970s, the Ramsar Convention on Wetlands of International Importance introduced a first attempt to establish an internationally acceptable wetland classification scheme.

<span class="mw-page-title-main">William J. Mitsch</span> American ecologist

William Mitsch is an ecosystem ecologist and ecological engineer who was co-laureate of the 2004 Stockholm Water Prize in August 2004 as a result of a career in wetland ecology and restoration, ecological engineering, and ecological modelling.

<span class="mw-page-title-main">Riparian-zone restoration</span> Ecological restoration of river banks and floodplains

Riparian-zone restoration is the ecological restoration of riparian-zonehabitats of streams, rivers, springs, lakes, floodplains, and other hydrologic ecologies. A riparian zone or riparian area is the interface between land and a river or stream. Riparian is also the proper nomenclature for one of the fifteen terrestrial biomes of the earth; the habitats of plant and animal communities along the margins and river banks are called riparian vegetation, characterized by aquatic plants and animals that favor them. Riparian zones are significant in ecology, environmental management, and civil engineering because of their role in soil conservation, their habitat biodiversity, and the influence they have on fauna and aquatic ecosystems, including grassland, woodland, wetland or sub-surface features such as water tables. In some regions the terms riparian woodland, riparian forest, riparian buffer zone, or riparian strip are used to characterize a riparian zone.

<span class="mw-page-title-main">Greenhouse gas emissions from wetlands</span> Source of gas emissions

Greenhouse gas emissions from wetlands of concern consist primarily of methane and nitrous oxide emissions. Wetlands are the largest natural source of atmospheric methane in the world, and are therefore a major area of concern with respect to climate change. Wetlands account for approximately 20 - 30% of atmospheric methane through emissions from soils and plants, and contribute an approximate average of 161 Tg of methane to the atmosphere per year.

<span class="mw-page-title-main">Peatland</span> Wetland terrain without forest cover, dominated by living, peat-forming plants

A peatland is a type of wetland whose soils consist of organic matter from decaying plants, forming layers of peat. Peatlands arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. Like coral reefs, peatlands are unusual landforms that derive mostly from biological rather than physical processes, and can take on characteristic shapes and surface patterning.

<span class="mw-page-title-main">Sedimentation enhancing strategy</span>

Sedimentation enhancing strategies are environmental management projects aiming to restore and facilitate land-building processes in deltas. Sediment availability and deposition are important because deltas naturally subside and therefore need sediment accumulation to maintain their elevation, particularly considering increasing rates of sea-level rise. Sedimentation enhancing strategies aim to increase sedimentation on the delta plain primarily by restoring the exchange of water and sediments between rivers and low-lying delta plains. Sedimentation enhancing strategies can be applied to encourage land elevation gain to offset sea-level rise. Interest in sedimentation enhancing strategies has recently increased due to their ability to raise land elevation, which is important for the long-term sustainability of deltas.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Keddy, P.A. (2010). Wetland ecology: principles and conservation (2nd ed.). New York: Cambridge University Press. ISBN   978-0521519403. Archived from the original on 2023-03-17. Retrieved 2020-06-03.
  2. 1 2 3 "Official page of the Ramsar Convention" . Retrieved 2011-09-25.
  3. 1 2 Dorney, J.; Savage, R.; Adamus, P.; Tiner, R., eds. (2018). Wetland and Stream Rapid Assessments: Development, Validation, and Application. London; San Diego, CA: Academic Press. ISBN   978-0-12-805091-0. OCLC   1017607532.
  4. Davidson, N.C. (2014). "How much wetland has the world lost? Long-term and recent trends in global wetland area". Marine and Freshwater Research. 65 (10): 934–941. doi:10.1071/MF14173. S2CID   85617334.
  5. Wright, V. P.; Platt, N. H. (1995-10-01). "Seasonal wetland carbonate sequences and dynamic catenas: a re-appraisal of palustrine limestones". Sedimentary Geology. 99 (2): 65–71. Bibcode:1995SedG...99...65W. doi:10.1016/0037-0738(95)00080-R. ISSN   0037-0738.
  6. Suarez-Gonzalez, P.; Quijada, I. E.; Benito, M. I.; Mas, R. (2015-01-27). "Sedimentology of Ancient Coastal Wetlands: Insights From A Cretaceous Multifaceted Depositional System". Journal of Sedimentary Research. 85 (2): 95–117. Bibcode:2015JSedR..85...95S. doi:10.2110/jsr.2015.07. ISSN   1527-1404.
  7. "US EPA". 2015. Retrieved 2011-09-25.
  8. 1 2 Fraser, L.; Keddy, P.A., eds. (2005). The World's Largest Wetlands: Their Ecology and Conservation. Cambridge, UK: Cambridge University Press. ISBN   978-0521834049.
  9. 1 2 "WWF Pantanal Programme" . Retrieved 2011-09-25.
  10. 1 2 Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. (2007). "Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000". Estuarine, Coastal and Shelf Science. 73 (1–2): 91–100. Bibcode:2007ECSS...73...91G. doi:10.1016/j.ecss.2006.12.019.
  11. "Wetlands". USDA- Natural Resource Conservation Center. 2023.
  12. Davidson, N.C.; D'Cruz, R. & Finlayson, C.M. (2005). Ecosystems and Human Well-being: Wetlands and Water Synthesis: a report of the Millennium Ecosystem Assessment (PDF). Washington, DC: World Resources Institute. ISBN   978-1-56973-597-8.
  13. Bange, H. W. (2006). "Nitrous oxide and methane in European coastal waters". Estuarine, Coastal and Shelf Science. 70 (3): 361–374. Bibcode:2006ECSS...70..361B. doi:10.1016/j.ecss.2006.05.042.
  14. Thompson, A. J.; Giannopoulos, G.; Pretty, J.; Baggs, E. M.; Richardson, D. J. (2012). "Biological sources and sinks of nitrous oxide and strategies to mitigate emissions". Philosophical Transactions of the Royal Society B. 367 (1593): 1157–1168. doi:10.1098/rstb.2011.0415. PMC   3306631 . PMID   22451101.
  15. "Home: Oxford English Dictionary". www.oed.com. Retrieved 2022-07-08.
  16. 1 2 3 US EPA, OW (2015-09-18). "What is a Wetland?". US EPA. Retrieved 2022-07-08.
  17. "Glossary of Terms". Carpinteria Valley Water District. Archived from the original on April 25, 2012. Retrieved 2012-05-23.
  18. "Glossary". Mapping2.orr.noaa.gov. Archived from the original on 2012-04-25. Retrieved 2012-05-23.
  19. "Glossary". Alabama Power. Archived from the original on 2012-03-21. Retrieved 2012-05-23.
  20. 1 2 Mitsch, William J.; Gosselink, James G. (2007-08-24). Wetlands (4th ed.). New York, NY: John Wiley & Sons. ISBN   978-0-471-69967-5.
  21. "The Ramsar 40th Anniversary Message for November". Ramsar. Retrieved 2011-10-10.
  22. Environmental Laboratory. (1987). Corps of Engineers wetlands delineation manual. Tech. Rep. Y‐87–1.
  23. Sharitz, Rebecca R.; Batzer, Darold P.; Pennings, Steven C. (2019-12-31). "Ecology of Freshwater and Estuarine Wetlands: An Introduction". Ecology of Freshwater and Estuarine Wetlands. Berkeley: University of California Press. pp. 1–22. doi:10.1525/9780520959118-003. ISBN   978-0-520-95911-8. S2CID   198427881.
  24. "Wetland Types | Department of Environmental Conservation".
  25. A Directory of Important Wetlands in Australia: Third edition, Chapter 2: Wetland classification system, Criteria for inclusion and Data presentation. Australian Department of the Environment. 2001. Retrieved 30 March 2021.
  26. "NPWRC :: Classification of Wetlands and Deepwater Habitats of the United States". www.fws.gov. Archived from the original on 2014-01-21. Retrieved 2018-07-28.
  27. Watson, G. E. (2006). Big Thicket Plant Ecology: An Introduction. Temple Big Thicket Series #5 (Third ed.). Denton, Texas: University of North Texas Press. ISBN   978-1574412147.
  28. "West Gulf Coastal Plain Seepage Swamp and Baygall". Texas Parks and Wildlife. Ecological Mapping systems of Texas. Archived from the original on 2020-07-10. Retrieved 7 July 2020.
  29. "Peatlands, climate change mitigation and biodiversity conservation | The Convention on Wetlands, The Convention on Wetlands". www.ramsar.org.
  30. "Ramsar Convention Technical Reports".
  31. Richardson, J. L.; Arndt, J. L.; Montgomery, J. A. (2001). "Hydrology of wetland and related soils". In Richardson, J. L.; Vepraskas, M. J. (eds.). Wetland Soils. Boca Raton, FL: Lewis Publishers.
  32. Vitt, D. H.; Chee, W (1990). "The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada". Plant Ecology. 89 (2): 87–106. doi:10.1007/bf00032163. S2CID   25071105.
  33. Silliman, B. R.; Grosholz, E. D.; Bertness, M. D., eds. (2009). Human Impacts on Salt Marshes: A Global Perspective. Berkeley, CA: University of California Press.
  34. Smith, M. J.; Schreiber, E. S. G.; Kohout, M.; Ough, K.; Lennie, R.; Turnbull, D.; Jin, C.; Clancy, T. (2007). "Wetlands as landscape units: spatial patterns in salinity and water chemistry". Wetlands, Ecology & Management. 15 (2): 95–103. Bibcode:2007WetEM..15...95S. doi:10.1007/s11273-006-9015-5. S2CID   20196854.
  35. Ponnamperuma, F. N. (1972). The chemistry of submerged soils. Vol. 24. pp. 29–96. doi:10.1016/S0065-2113(08)60633-1. ISBN   9780120007240.{{cite book}}: |journal= ignored (help)
  36. Moore, P. A. Jr.; Reddy, K. R. (1994). "Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida". Journal of Environmental Quality. 23 (5): 955–964. Bibcode:1994JEnvQ..23..955M. doi:10.2134/jeq1994.00472425002300050016x. PMID   34872208.
  37. Minh, L. Q.; Tuong, T. P.; van Mensvoort, M. E. F.; Bouma, J. (1998). "Soil and water table management effects on aluminum dynamics in an acid sulphate soil in Vietnam". Agriculture, Ecosystems & Environment. 68 (3): 255–262. Bibcode:1998AgEE...68..255M. doi:10.1016/s0167-8809(97)00158-8.
  38. Schlesinger, W. A. (1997). Biogeochemistry: An Analysis of Global Change (2nd ed.). San Diego, CA: Academic Press. ISBN   9780126251555.
  39. Arthington, Angela H. (2012-10-15), "Wetlands, Threats, and Water Requirements", Environmental Flows, University of California Press, pp. 243–258, doi:10.1525/california/9780520273696.003.0017, ISBN   9780520273696
  40. Kelman Wieder, R.; Lang, GeraldE. (November 1984). "Influence of wetlands and coal mining on stream water chemistry". Water, Air, and Soil Pollution. 23 (4): 381. Bibcode:1984WASP...23..381K. doi:10.1007/bf00284734. ISSN   0049-6979. S2CID   96209351.
  41. Jones, C Nathan; McLaughlin, Daniel L; Henson, Kevin; Haas, Carola A; Kaplan, David A (2018-01-10). "From salamanders to greenhouse gases: does upland management affect wetland functions?". Frontiers in Ecology and the Environment. 16 (1): 14–19. Bibcode:2018FrEE...16...14J. doi:10.1002/fee.1744. ISSN   1540-9295. S2CID   90980246.
  42. Bedford, B. L. (1996). "The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation". Ecological Applications. 6 (1): 57–68. Bibcode:1996EcoAp...6...57B. doi:10.2307/2269552. JSTOR   2269552.
  43. Nelson, M. L.; Rhoades, C. C.; Dwire, K. A. (2011). "Influences of Bedrock Geology on Water Chemistry of Slope Wetlands and Headwaters Streams in the Southern Rocky Mountains". Wetlands. 31 (2): 251–261. Bibcode:2011Wetl...31..251N. doi:10.1007/s13157-011-0157-8. S2CID   14521026.
  44. "Blacktown Council wetlands". Archived from the original on 2011-04-10. Retrieved 2011-09-25.
  45. Hutchinson, G. E. (1975). A Treatise on Limnology. Vol. 3: Limnological Botany. New York, NY: John Wiley.
  46. Hughes, F. M. R., ed. (2003). The Flooded Forest: Guidance for policy makers and river managers in Europe on the restoration of floodplain forests. FLOBAR2, Department of Geography, University of Cambridge, Cambridge, UK.
  47. Wilcox, D. A; Thompson, T. A.; Booth, R. K.; Nicholas, J. R. (2007). Lake-level variability and water availability in the Great Lakes. USGS Circular 1311.
  48. Goulding, M. (1980). The Fishes and the Forest: Explorations in Amazonian Natural History. Berkeley, CA: University of California Press.
  49. Colvin, Susan A. R.; Sullivan, S. Mažeika P.; Shirey, Patrick D.; Colvin, Randall W.; Winemiller, Kirk O.; Hughes, Robert M.; Fausch, Kurt D.; Infante, Dana M.; Olden, Julian D.; Bestgen, Kevin R.; Danehy, Robert J.; Eby, Lisa (2019). "Headwater Streams and Wetlands are Critical for Sustaining Fish, Fisheries, and Ecosystem Services". Fisheries. 44 (2): 73–91. Bibcode:2019Fish...44...73C. doi:10.1002/fsh.10229. S2CID   92052162.
  50. Sievers, Michael; Brown, Christopher J.; Tulloch, Vivitskaia J. D.; Pearson, Ryan M.; Haig, Jodie A.; Turschwell, Mischa P.; Connolly, Rod M. (2019-09-01). "The Role of Vegetated Coastal Wetlands for Marine Megafauna Conservation". Trends in Ecology & Evolution. 34 (9): 807–817. doi:10.1016/j.tree.2019.04.004. hdl: 10072/391960 . ISSN   0169-5347. PMID   31126633. S2CID   164219103.
  51. 1 2 3 4 "Ramsar Convention Ecosystem Services Benefit Factsheets" . Retrieved 2011-09-25.
  52. Zamberletti, Patrizia; Zaffaroni, Marta; Accatino, Francesco; Creed, Irena F.; De Michele, Carlo (2018-09-24). "Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes". Ecological Modelling. 384: 119–127. doi:10.1016/j.ecolmodel.2018.05.008. ISSN   0304-3800. S2CID   90384249.
  53. "Frogs | Bioindicators". Savethefrogs.com. 2011. Retrieved 2014-01-21.
  54. Mazzotti, F.J.; Best, G.R.; Brandt, L.A.; Cherkiss, M.S.; Jeffery, B.M.; Rice, K.G. (2009). "Alligators and crocodiles as indicators for restoration of Everglades ecosystems". Ecological Indicators. 9 (6): S137−S149. doi:10.1016/j.ecolind.2008.06.008.
  55. Messel, H. 1981. Surveys of tidal river systems in the Northern Territory of Australia and their crocodile populations (Vol. 1). Pergamon Press.
  56. Piczak, Morgan L.; Chow-Fraser, Patricia (2019-06-01). "Assessment of critical habitat for common snapping turtles (Chelydra serpentina) in an urbanized coastal wetland". Urban Ecosystems. 22 (3): 525–537. Bibcode:2019UrbEc..22..525P. doi:10.1007/s11252-019-00841-1. ISSN   1573-1642. S2CID   78091420.
  57. Milton, W. (1999). Wetland birds: habitat resources and conservation implications. Cambridge: Cambridge University Press. ISBN   978-0511011368. OCLC   50984660.
  58. Batzer, Darold; Boix, Dani, eds. (2016). Invertebrates in Freshwater Wetlands. Cham: Springer International Publishing. doi:10.1007/978-3-319-24978-0. ISBN   978-3-319-24976-6. S2CID   29672842.
  59. Mas, Maria; Flaquer, Carles; Rebelo, Hugo; López-Baucells, Adrià (2021). "Bats and wetlands: synthesising gaps in current knowledge and future opportunities for conservation". Mammal Review. 51 (3): 369–384. doi:10.1111/mam.12243. ISSN   0305-1838. S2CID   233974999.
  60. Bomske, Caleb M.; Ahlers, Adam A. (2021). "How do muskrats Ondatra zibethicus affect ecosystems? A review of evidence". Mammal Review. 51 (1): 40–50. doi:10.1111/mam.12218. ISSN   0305-1838. S2CID   224916636.
  61. Rosell, Frank; Bozser, Orsolya; Collen, Peter; Parker, Howard (2005). "Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems". Mammal Review. 35 (3–4): 248–276. doi:10.1111/j.1365-2907.2005.00067.x. hdl: 11250/2438080 . ISSN   0305-1838.
  62. Kerk, Madelon; Onorato, David P.; Hostetler, Jeffrey A.; Bolker, Benjamin M.; Oli, Madan K. (2019). "Dynamics, Persistence, and Genetic Management of the Endangered Florida Panther Population". Wildlife Monographs. 203 (1): 3–35. Bibcode:2019WildM.203....3V. doi: 10.1002/wmon.1041 . ISSN   0084-0173. S2CID   199641325.
  63. "Mammals in Wetlands". NSW Environment, Energy and Science. Department of Planning, Industry and Environment. 2020-02-20. Retrieved 2021-10-11. Mammals live in wetlands because they are adapted to the wet conditions and there is a plentiful supply of their preferred foods. For example: The swamp rat feeds on grasses, sedges, reeds, seeds and insects. The water rat feeds on a wide range of prey including large insects, crustaceans, mussels and fishes, and even frogs, lizards, small mammals and water birds. The platypus mainly feeds during the night on a wide variety of aquatic invertebrates, free-swimming organisms such as shrimps, swimming beetles, water bugs and tadpoles, and at times worms, freshwater pea mussels and snails. The fishing bat feeds on aquatic insects, small fish and flies close to the surface of rainforest streams or large lakes and reservoirs.
  64. Batzer, Darold P.; Rader, Russell Ben.; Wissinger, Scott A. (1999). Invertebrates in freshwater wetlands of North America: ecology and management. New York: Wiley. ISBN   978-0471292586. OCLC   39747651.
  65. Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R. (2018-01-01). "Periphytic biofilms: A promising nutrient utilization regulator in wetlands". Bioresource Technology. 1st International Conference on Ecotechnologies for Controlling Non-point Source Pollution and Protecting Aquatic Ecosystem. 248 (Pt B): 44–48. Bibcode:2018BiTec.248...44W. doi:10.1016/j.biortech.2017.07.081. ISSN   0960-8524. PMID   28756125.
  66. "Taken from Blacktown Council Wetland Inventory". Blacktown Council. Archived from the original on 2012-01-22. Retrieved 2012-05-23.
  67. Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal J.; Payne, Richard J.; Roland, Thomas P.; Amesbury, Matthew J.; Lamentowicz, Mariusz; Turner, T. Edward; Gallego-Sala, Angela; Sim, Thomas; Barr, Iestyn D. (2019-10-21). "Widespread drying of European peatlands in recent centuries". Nature Geoscience. 12 (11): 922–928. Bibcode:2019NatGe..12..922S. doi:10.1038/s41561-019-0462-z. hdl: 10871/39305 . ISSN   1752-0908. S2CID   202908362. Alt URL Archived 2020-07-27 at the Wayback Machine
  68. Office of Research & Development. "Impacts on quality of inland wetlands of the United States: A survey of indicators, techniques, and applications of community-level biomonitoring data". cfpub.epa.gov. Retrieved 2018-07-27.
  69. Adamus, Paul; J. Danielson, Thomas; Gonyaw, Alex (2001-03-24). Indicators for Monitoring Biological Integrity of Inland Freshwater Wetlands: A Survey of North American Technical Literature (1990–2000). 13214. doi:10.13140/rg.2.2.22371.86566.
  70. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Clewell, AF; Aronson, J (2013). Ecological restoration (2nd ed.). Washington, DC: Island Press.
  71. 1 2 "Wetlands International works to sustain and restore wetlands for people and biodiversity". Wetlands International. Retrieved 2014-01-21.
  72. Finlay, Jacques C.; Efi Foufoula-Georgiou; Dolph, Christine L.; Hansen, Amy T. (February 2018). "Contribution of wetlands to nitrate removal at the watershed scale". Nature Geoscience. 11 (2): 127–132. Bibcode:2018NatGe..11..127H. doi:10.1038/s41561-017-0056-6. ISSN   1752-0908. S2CID   46656300.
  73. Alexander, David E. (1 May 1999). Encyclopedia of Environmental Science. Springer. ISBN   0-412-74050-8.
  74. Keddy, P.A.; Campbell, D.; McFalls, T.; Shaffer, G.P.; Moreau, R.; Dranguet, C.; Heleniak, R. (2007). "The Wetlands of Lakes Pontchartrain and Maurepas: Past, Present and Future". Environmental Reviews. 15 (NA): 43–77. doi:10.1139/a06-008. ISSN   1181-8700.
  75. Gastescu, P. (1993). The Danube Delta: geographical characteristics and ecological recovery. Earth and Environmental Science, 29, 57–67.
  76. Adamus, P.R. and L.T. Stockwell. 1983. A Method for Wetland Functional Assessment. Vol. I. Critical Review and Evaluation Concepts. FHWA-IP-82-23. Federal Highway Admin., Washington, DC.
  77. Millennium Ecosystem Assessment (2005). Ecosystems and human well-being: wetlands and water synthesis: a report of the Millennium Ecosystem Assessment. Washington, DC: World Resources Institute. ISBN   1-56973-597-2. OCLC   62172810.
  78. Li, Luqian; Lu, XiXi; Chen, Zhongyuan (2007). "River channel change during the last 50 years in the middle Yangtze River, the Jianli reach". Geomorphology. 85 (3–4): 185–196. Bibcode:2007Geomo..85..185L. doi:10.1016/j.geomorph.2006.03.035.
  79. van der Kamp, Garth; Hayashi, Masaki (2009-02-01). "Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America". Hydrogeology Journal. 17 (1): 203–214. Bibcode:2009HydJ...17..203V. doi:10.1007/s10040-008-0367-1. ISSN   1435-0157. S2CID   129332187.
  80. Costanza, Robert; Anderson, Sharolyn J.; Sutton, Paul; Mulder, Kenneth; Mulder, Obadiah; Kubiszewski, Ida; Wang, Xuantong; Liu, Xin; Pérez-Maqueo, Octavio; Luisa Martinez, M.; Jarvis, Diane; Dee, Greg (2021-09-01). "The global value of coastal wetlands for storm protection". Global Environmental Change. 70: 102328. doi: 10.1016/j.gloenvcha.2021.102328 . hdl: 1885/296695 . ISSN   0959-3780.
  81. "United Nations Environment Programme (UNEP) – Home page" . Retrieved 2011-12-11.
  82. MacKinnon, J.; Verkuil, Y. I.; Murray, N. J. (2012), IUCN situation analysis on East and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea), Occasional Paper of the IUCN Species Survival Commission No. 47, Gland, Switzerland and Cambridge, UK: IUCN, p. 70, ISBN   9782831712550, archived from the original on 2014-06-24
  83. Murray, N. J.; Clemens, R. S.; Phinn, S. R.; Possingham, H. P.; Fuller, R. A. (2014). "Tracking the rapid loss of tidal wetlands in the Yellow Sea" (PDF). Frontiers in Ecology and the Environment. 12 (5): 267–272. Bibcode:2014FrEE...12..267M. doi:10.1890/130260.
  84. "FAO". Archived from the original on 2007-09-09. Retrieved 2011-09-25.
  85. "Letting Nature Do the Job". Wild.org. 2008-08-01. Archived from the original on 2013-01-13. Retrieved 2012-05-23.
  86. Valiela, I.; Collins, G.; Kremer, J.; Lajtha, K.; Geist, M.; Seely, B.; Brawley, J.; Sham, C. H. (1997). "Nitrogen loading from coastal watersheds to receiving estuaries: New method and application". Ecological Applications. 7 (2): 358–380. CiteSeerX   10.1.1.461.3668 . doi:10.2307/2269505. JSTOR   2269505.
  87. Nixon, S. W. (1986). "Nutrients and the productivity of estuarine and coastal marine ecosystems". Journal of the Limnological Society of South Africa. 12 (1–2): 43–71. doi:10.1080/03779688.1986.9639398.
  88. Galloway, J. (2003). "The Nitrogen Cascade". BioScience. 53 (4): 341–356. doi: 10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2 . S2CID   3356400.
  89. Diaz, R. J.; Rosenberg, R. (2008). "Spreading Dead Zones and Consequences for Marine Ecosystems". Science. 321 (5891): 926–929. Bibcode:2008Sci...321..926D. doi:10.1126/science.1156401. PMID   18703733. S2CID   32818786.
  90. Vymazal, Jan; Zhao, Yaqian; Mander, Ülo (2021-11-01). "Recent research challenges in constructed wetlands for wastewater treatment: A review". Ecological Engineering. 169: 106318. doi:10.1016/j.ecoleng.2021.106318. ISSN   0925-8574.
  91. Arden, S.; Ma, X. (2018-07-15). "Constructed wetlands for greywater recycle and reuse: A review". Science of the Total Environment. 630: 587–599. Bibcode:2018ScTEn.630..587A. doi:10.1016/j.scitotenv.2018.02.218. ISSN   0048-9697. PMC   7362998 . PMID   29494968.
  92. 1 2 3 Maiga, Y., von Sperling, M., Mihelcic, J. 2017. Constructed Wetlands. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Global Water Pathogens Project. (C. Haas, J.R. Mihelcic and M.E. Verbyla) (eds) Part 4 Management Of Risk from Excreta and Wastewater) Michigan State University, E. Lansing, MI, UNESCO. CC BY-SA icon.svg Material was copied from this source, which is available under a Creative Commons Attribution-ShareAlike 3.0 Unported license.
  93. Hoffmann, H., Platzer, C., von Münch, E., Winker, M. (2011): Technology review of constructed wetlands – Subsurface flow constructed wetlands for greywater and domestic wastewater treatment. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn, Germany
  94. "What is a wetland? And eight other wetland facts". World Wildlife Fund. Retrieved 2022-11-18.
  95. "Amazon fish". wwf.panda.org. Retrieved 2022-11-18.
  96. Anderson, Jill T.; Nuttle, Tim; Saldaña Rojas, Joe S.; Pendergast, Thomas H.; Flecker, Alexander S. (2011-11-22). "Extremely long-distance seed dispersal by an overfished Amazonian frugivore". Proceedings of the Royal Society B: Biological Sciences. 278 (1723): 3329–3335. doi:10.1098/rspb.2011.0155. PMC   3177626 . PMID   21429923.
  97. Prestes, Luiza; Barthem, Ronaldo; Mello-Filho, Adauto; Anderson, Elizabeth; Correa, Sandra B.; Couto, Thiago Belisario D'Araujo; Venticinque, Eduardo; Forsberg, Bruce; Cañas, Carlos; Bentes, Bianca; Goulding, Michael (2022-03-02). Aguirre, Windsor E. (ed.). "Proactively averting the collapse of Amazon fisheries based on three migratory flagship species". PLOS ONE. 17 (3): e0264490. Bibcode:2022PLoSO..1764490P. doi: 10.1371/journal.pone.0264490 . ISSN   1932-6203. PMC   8890642 . PMID   35235610.
  98. Jing, Zhu; Kai, Jing; Xiaojing, Gan; Zhijun, Ma (2007). "Food supply in intertidal area for shorebirds during stopover at Chongming Dongtan, China". Acta Ecologica Sinica. 27 (6): 2149–2159. Bibcode:2007AcEcS..27.2149J. doi:10.1016/S1872-2032(07)60045-6.
  99. Lane, Charles R.; Anenkhonov, Oleg; Liu, Hongxing; Autrey, Bradley C.; Chepinoga, Victor (2015). "Classification and inventory of freshwater wetlands and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using high-resolution satellite imagery". Wetlands Ecology and Management. 23 (2): 195–214. Bibcode:2015WetEM..23..195L. doi:10.1007/s11273-014-9369-z. ISSN   0923-4861. S2CID   16980247.
  100. Johnson, W. C.; Millett, B. V.; Gilmanov, T.; Voldseth, R. A.; Guntenspergen, G. R. & Naugle, D. E. (2005). "Vulnerability of Northern Prairie Wetlands to Climate Change". Bio Science. 10: 863–872.
  101. Maltby, E. (1986). Waterlogged wealth: why waste the world's wet places? . Earthscan. London: International Institute for Environment and Development. ISBN   978-0905347639.
  102. Tidwell, James H; Allan, Geoff L (2001). "Fish as food: aquaculture's contribution: Ecological and economic impacts and contributions of fish farming and capture fisheries". EMBO Reports. 2 (11): 958–963. doi:10.1093/embo-reports/kve236. ISSN   1469-221X. PMC   1084135 . PMID   11713181.
  103. Béné, Christophe; Barange, Manuel; Subasinghe, Rohana; Pinstrup-Andersen, Per; Merino, Gorka; Hemre, Gro-Ingunn; Williams, Meryl (2015-04-01). "Feeding 9 billion by 2050 – Putting fish back on the menu". Food Security. 7 (2): 261–274. doi: 10.1007/s12571-015-0427-z . ISSN   1876-4525. S2CID   18671617.
  104. 1 2 3 "The Ramsar Information Sheet on Wetlands of International Importance". September 18, 2009. Retrieved November 19, 2011.
  105. Bradbear, Nicola (2009). Bees and their role in forest livelihoods: a guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Food and Agriculture Organization of the United Nations. Rome: Food and Agriculture Organization of the United Nations. ISBN   978-92-5-106276-0. OCLC   427853623.
  106. Hogarth, Peter J. (2015). The biology of mangroves and seagrasses (Third ed.). Oxford. ISBN   978-0-19-102590-7. OCLC   907773290.{{cite book}}: CS1 maint: location missing publisher (link)
  107. "Shrimp Market Size, Share & Growth Analysis Report, 2030". www.grandviewresearch.com. Retrieved 2022-11-19.
  108. Leibowitz, Scott G.; Wigington, Parker J.; Schofield, Kate A.; Alexander, Laurie C.; Vanderhoof, Melanie K.; Golden, Heather E. (2018). "Connectivity of Streams and Wetlands to Downstream Waters: An Integrated Systems Framework". JAWRA Journal of the American Water Resources Association. 54 (2): 298–322. Bibcode:2018JAWRA..54..298L. doi:10.1111/1752-1688.12631. PMC   6071435 . PMID   30078985.
  109. McInnes, Robert J. (2016), Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J. (eds.), "Managing Wetlands for Pollination", The Wetland Book, Dordrecht: Springer Netherlands, pp. 1–4, doi: 10.1007/978-94-007-6172-8_226-1 , ISBN   978-94-007-6172-8
  110. Van de Ven, G. P. (2004). Man-Made Lowlands: History of water management and land reclamation in the Netherlands. Utrecht: Uitgeverij Matrijs.
  111. Wells, Samuel A. (1830). A History of the Drainage of the Great Level of the Fens called Bedford Level 2. London: R. Pheney.
  112. Dahl, Thomas E.; Allord, Gregory J. "History of Wetlands in the Conterminous United States".
  113. Lander, Brian (2014). "State Management of River Dikes in Early China: New Sources on the Environmental History of the Central Yangzi Region". T'oung Pao. 100 (4–5): 325–362. doi:10.1163/15685322-10045p02.
  114. Davidson, Nick C. (2014). "How much wetland has the world lost? Long-term and recent trends in global wetland area". Marine and Freshwater Research. 65 (10): 934. doi:10.1071/MF14173. ISSN   1323-1650.
  115. "Good practices and lessons learned in integrating ecosystem conservation and poverty reduction objectives in wetlands". The Ramsar Convention on Wetlands. 2008-12-01. Retrieved 10 May 2022.
  116. Corbin, JD; Holl, KD (2012). "Applied nucleation as a forest restoration strategy". Forest Ecology and Management. 256: 37–46. doi:10.1016/j.foreco.2011.10.013.
  117. Functional assessment of wetlands: towards evaluation of ecosystem services. Cambridge: Woodhead Publ. [u.a.] 2009. ISBN   978-1-84569-516-3.
  118. Inglis, J. T. (1993). Traditional Ecological Knowledge: Concepts and Cases. Ottawa, Canada: International Program on Traditional Ecological and International Development Research Centre. ISBN   978-0-88936-683-1.
  119. Craft, Christopher (2022-05-12). Creating and Restoring Wetlands: From Theory to Practice. Elsevier. ISBN   978-0-12-823982-7.
  120. Hall, S. J. (2009). "Cultural Disturbances and Local Ecological Knowledge Mediate Cattail (Typha domingensis) Invasion in Lake Pátzcuaro, México". Human Ecology. 37 (2): 241–249. doi: 10.1007/s10745-009-9228-3 .
  121. Houghton, J. T., et al. (Eds.) (2001) Projections of future climate change, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 881 pp.
  122. Comyn-Platt, Edward (2018). "Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks" (PDF). Nature. 11 (8): 568–573. Bibcode:2018NatGe..11..568C. doi:10.1038/s41561-018-0174-9. S2CID   134078252.
  123. Bridgham, Scott D.; Cadillo-Quiroz, Hinsby; Keller, Jason K.; Zhuang, Qianlai (May 2013). "Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales". Global Change Biology. 19 (5): 1325–1346. Bibcode:2013GCBio..19.1325B. doi:10.1111/gcb.12131. PMID   23505021. S2CID   14228726.
  124. Saunois, Marielle; Stavert, Ann R.; Poulter, Ben; Bousquet, Philippe; Canadell, Josep G.; Jackson, Robert B.; Raymond, Peter A.; Dlugokencky, Edward J.; Houweling, Sander; Patra, Prabir K.; Ciais, Philippe; Arora, Vivek K.; Bastviken, David; Bergamaschi, Peter; Blake, Donald R. (2020-07-15). "The Global Methane Budget 2000–2017". Earth System Science Data. 12 (3): 1561–1623. doi: 10.5194/essd-12-1561-2020 . ISSN   1866-3508.
  125. Christensen, T. R., A. Ekberg, L. Strom, M. Mastepanov, N. Panikov, M. Oquist, B. H. Svenson, H. Nykanen, P. J. Martikainen, and H. Oskarsson (2003), Factors controlling large scale variations in methane emissions from wetlands, Geophys. Res. Lett., 30, 1414, doi:10.1029/2002GL016848.
  126. Masso, Luana S.; Marani, Luciano; Gatti, Luciana V.; Miller, John B.; Gloor, Manuel; Melack, John; Cassol, Henrique L. G.; Tejada, Graciela; Domingues, Lucas G.; Arai, Egidio; Sanchez, Alber H.; Corrêa, Sergio M.; Anderson, Liana; Aragão, Luiz E. O. C.; Correa, Caio S. C.; Crispim, Stephane P.; Neves, Raiane A. L. (29 November 2021). "Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions". Communications Earth & Environment . 2 (1): 246. Bibcode:2021ComEE...2..246B. doi: 10.1038/s43247-021-00314-4 . S2CID   244711959.
  127. Tiwari, Shashank; Singh, Chhatarpal; Singh, Jay Shankar (2020). "Wetlands: A Major Natural Source Responsible for Methane Emission". In Upadhyay, Atul Kumar; Singh, Ranjan; Singh, D. P. (eds.). Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment. Singapore: Springer. pp. 59–74. doi:10.1007/978-981-13-7665-8_5. ISBN   978-981-13-7665-8. S2CID   198421761.
  128. Bange, Hermann W. (2006). "Nitrous oxide and methane in European coastal waters". Estuarine, Coastal and Shelf Science. 70 (3): 361–374. Bibcode:2006ECSS...70..361B. doi:10.1016/j.ecss.2006.05.042.
  129. Thompson, A. J.; Giannopoulos, G.; Pretty, J.; Baggs, E. M.; Richardson, D. J. (2012). "Biological sources and sinks of nitrous oxide and strategies to mitigate emissions". Philosophical Transactions of the Royal Society B. 367 (1593): 1157–1168. doi:10.1098/rstb.2011.0415. PMC   3306631 . PMID   22451101.
  130. Ravishankara, A. R.; Daniel, John S.; Portmann, Robert W. (2009). "Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century". Science. 326 (5949): 123–125. Bibcode:2009Sci...326..123R. doi: 10.1126/science.1176985 . PMID   19713491. S2CID   2100618.
  131. Sonwani, Saurabh; Saxena, Pallavi (2022-01-21). Greenhouse Gases: Sources, Sinks and Mitigation. Springer Nature. pp. 47–48. ISBN   978-981-16-4482-5.
  132. 1 2 3 Williamson, Phillip; Gattuso, Jean-Pierre (2022). "Carbon Removal Using Coastal Blue Carbon Ecosystems Is Uncertain and Unreliable, With Questionable Climatic Cost-Effectiveness". Frontiers in Climate. 4: 853666. doi: 10.3389/fclim.2022.853666 . ISSN   2624-9553. CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 2017-10-16 at the Wayback Machine
  133. Synthesis of Adaptation Options for Coastal Areas. Climate Ready Estuaries Program, EPA 430-F-08-024. Washington, DC: US Environmental Protection Agency. 2009.
  134. "Coastal Wetland Protection". Project Drawdown. 2020-02-06. Retrieved 2020-09-13.
  135. 1 2 Chmura, G. L. (2003). "Global carbon sequestration in tidal, saline wetland soils". Global Biogeochemical Cycles. 17 (4): 1111. Bibcode:2003GBioC..17.1111C. doi: 10.1029/2002GB001917 . S2CID   36119878.[ page needed ]
  136. Roulet, N. T. (2000). "Peatlands, Carbon Storage, Greenhouse Gases, And The Kyoto Protocol: Prospects And Significance For Canada". Wetlands. 20 (4): 605–615. doi:10.1672/0277-5212(2000)020[0605:pcsgga]2.0.co;2. S2CID   7490212.
  137. Ouyang, Xiaoguang; Lee, Shing Yip (2020-01-16). "Improved estimates on global carbon stock and carbon pools in tidal wetlands". Nature Communications. 11 (1): 317. Bibcode:2020NatCo..11..317O. doi: 10.1038/s41467-019-14120-2 . ISSN   2041-1723. PMC   6965625 . PMID   31949151.
  138. "Blue Carbon". Earth Times.
  139. Wang, F. (2021). "Global blue carbon accumulation in tidal wetlands increases with climate change". National Science Review. 8 (9): nwaa296. doi:10.1093/nsr/nwaa296. PMC   8433083 . PMID   34691731.
  140. 1 2 Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V.  Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, et al., 2021: Technical Summary Archived 2022-07-21 at the Wayback Machine . In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2021-08-09 at the Wayback Machine [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 33–144. doi:10.1017/9781009157896.002.
  141. "Fact Sheet: Blue Carbon". American University. Archived from the original on April 28, 2021. Retrieved 2021-04-28.
  142. Emerton, Lucy (2016), Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J. (eds.), "Economic Valuation of Wetlands: Total Economic Value", The Wetland Book, Dordrecht: Springer Netherlands, pp. 1–6, doi: 10.1007/978-94-007-6172-8_301-1 , ISBN   978-94-007-6172-8
  143. "A new toolkit for National Wetlands Inventories | Convention on Wetlands". www.ramsar.org. Retrieved 2022-11-28.
  144. McInnes, R.J.; Everard, M. (2017). "Rapid Assessment of Wetland Ecosystem Services (RAWES): An example from Colombo, Sri Lanka". Ecosystem Services. 25: 89–105. doi:10.1016/j.ecoser.2017.03.024. S2CID   56403914.
  145. Adamus, P. (2016). "Manual for the Wetland Ecosystem Services Protocol (WESP)" (PDF). Oregon State University. Archived (PDF) from the original on 2018-07-28. Retrieved July 28, 2018.
  146. "Home | Ramsar Sites Information Service". rsis.ramsar.org. Retrieved 2022-11-28.
  147. Wei, Anhua; Chow-Fraser, Patricia (2007). "Use of IKONOS Imagery to Map Coastal Wetlands of Georgian Bay". Fisheries. 32 (4): 167–173. doi:10.1577/1548-8446(2007)32[167:UOIITM]2.0.CO;2. ISSN   0363-2415.
  148. Cook, Bruce D.; Bolstad, Paul V.; Næsset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J. (2009-11-16). "Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations". Remote Sensing of Environment. 113 (11): 2366–2379. Bibcode:2009RSEnv.113.2366C. doi:10.1016/j.rse.2009.06.017.
  149. 1 2 Xu, Haiqing; Toman, Elizabeth; Zhao, Kaiguang; Baird, John (2022). "Fusion of Lidar and Aerial Imagery to Map Wetlands and Channels via Deep Convolutional Neural Network". Transportation Research Record. 2676 (12): 374–381. doi:10.1177/03611981221095522. S2CID   251780248.
  150. Stephenson, P. J.; Ntiamoa-Baidu, Yaa; Simaika, John P. (2020). "The Use of Traditional and Modern Tools for Monitoring Wetlands Biodiversity in Africa: Challenges and Opportunities". Frontiers in Environmental Science. 8. doi: 10.3389/fenvs.2020.00061 . ISSN   2296-665X.
  151. Bhatnagar, Saheba; Gill, Laurence; Regan, Shane; Waldren, Stephen; Ghosh, Bidisha (2021-04-01). "A nested drone-satellite approach to monitoring the ecological conditions of wetlands". ISPRS Journal of Photogrammetry and Remote Sensing. 174: 151–165. Bibcode:2021JPRS..174..151B. doi: 10.1016/j.isprsjprs.2021.01.012 . ISSN   0924-2716. S2CID   233522024.
  152. Munizaga, Juan; García, Mariano; Ureta, Fernando; Novoa, Vanessa; Rojas, Octavio; Rojas, Carolina (2022). "Mapping Coastal Wetlands Using Satellite Imagery and Machine Learning in a Highly Urbanized Landscape". Sustainability. 14 (9): 5700. doi: 10.3390/su14095700 . ISSN   2071-1050.
  153. "The Ramsar Convention and its Mission". Archived from the original on 9 April 2016. Retrieved 11 October 2016.
  154. "The Conference of the Contracting Parties". Ramsar. Retrieved 31 March 2019.
  155. "EPA Regulations listed at 40 CFR 230.3(t)". US Environmental Protection Agency. March 2015. Retrieved 2014-02-18.
  156. US Government Publishing Office. (2011) 16 U.S. Code Chapter 58 Subchapter I, § 3801 – Definitions Archived 2017-02-06 at the Wayback Machine . Legal Information Institute, Cornell Law School, Ithaca.
  157. 1 2 Rubec, Clayton DA; Hanson, Alan R (2009). "Wetland mitigation and compensation: Canadian experience". Wetlands Ecol Manage. 17 (1): 3–14. Bibcode:2009WetEM..17....3R. doi:10.1007/s11273-008-9078-6. S2CID   32876048.