Water table

Last updated
Cross section showing the water table varying with surface topography as well as a perched water table Water table.svg
Cross section showing the water table varying with surface topography as well as a perched water table
Cross-section of a hillslope depicting the vadose zone, capillary fringe, water table, and the phreatic or saturated zone. (Source: United States Geological Survey.) Vadose zone.gif
Cross-section of a hillslope depicting the vadose zone, capillary fringe, water table, and the phreatic or saturated zone. (Source: United States Geological Survey.)

The water table is the upper surface of the zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with groundwater, [1] which may be fresh, saline, or brackish, depending on the locality. It can also be simply explained as the depth below which the ground is saturated.

Contents

The water table is the surface where the water pressure head is equal to the atmospheric pressure (where gauge pressure = 0). It may be visualized as the "surface" of the subsurface materials that are saturated with groundwater in a given vicinity. [2]

The groundwater may be from precipitation or from groundwater flowing into the aquifer. In areas with sufficient precipitation, water infiltrates through pore spaces in the soil, passing through the unsaturated zone. At increasing depths, water fills in more of the pore spaces in the soils, until a zone of saturation is reached. Below the water table, in the phreatic zone (zone of saturation), layers of permeable rock that yield groundwater are called aquifers. In less permeable soils, such as tight bedrock formations and historic lakebed deposits, the water table may be more difficult to define.

“Water table” and “water level” are not synonymous. If a deeper aquifer has a lower permeable unit that confines the upward flow, then the water level in this aquifer may rise to a level that is greater or less than the elevation of the actual water table. The elevation of the water in this deeper well is dependent upon the pressure in the deeper aquifer and is referred to as the potentiometric surface, not the water table. [2]

Formation

The water table may vary due to seasonal changes such as precipitation and evapotranspiration. In undeveloped regions with permeable soils that receive sufficient amounts of precipitation, the water table typically slopes toward rivers that act to drain the groundwater away and release the pressure in the aquifer. Springs, rivers, lakes and oases occur when the water table reaches the surface. Groundwater entering rivers and lakes accounts for the base-flow water levels in water bodies. [3]

Surface topography

Within an aquifer, the water table is rarely horizontal, but reflects the surface relief due to the capillary effect (capillary fringe) in soils, sediments and other porous media. In the aquifer, groundwater flows from points of higher pressure to points of lower pressure, and the direction of groundwater flow typically has both a horizontal and a vertical component. The slope of the water table is known as the “hydraulic gradient”, which depends on the rate at which water is added to and removed from the aquifer and the permeability of the material. The water table does not always mimic the topography due to variations in the underlying geological structure (e.g., folded, faulted, fractured bedrock).

Perched water tables

A perched water table (or perched aquifer) is an aquifer that occurs above the regional water table. This occurs when there is an impermeable layer of rock or sediment (aquiclude) or relatively impermeable layer (aquitard) above the main water table/aquifer but below the land surface. If a perched aquifer's flow intersects the surface, at a valley wall, for example, the water is discharged as a spring.

Fluctuations

Seasonal fluctuations in the water table may cause river beds to dry up during the dry season Water table-season fluctuation.svg
Seasonal fluctuations in the water table may cause river beds to dry up during the dry season

Tidal

On low-lying oceanic islands with porous soil, freshwater tends to collect in lenticular pools on top of the denser seawater intruding from the sides of the islands. Such an island's freshwater lens, and thus the water table, rises and falls with the tides.

Seasonal

In some regions, for example, Great Britain or California, winter precipitation is often higher than summer precipitation and so the groundwater storage is not fully recharged in summer. Consequently, the water table is lower during the summer. This disparity between the level of the winter and summer water table is known as the "zone of intermittent saturation", wherein the water table will fluctuate in response to climatic conditions.

Long-term

Fossil water is groundwater that has remained in an aquifer for several millennia and occurs mainly in deserts. It is non-renewable by present-day rainfall due to its depth below the surface, and any extraction causes a permanent change in the water table in such regions.

Effects on crop yield

A plot of sugarcane yield versus depth of water table in Australia. The critical depth is 0.6 m. Rudd PartReg.png
A plot of sugarcane yield versus depth of water table in Australia. The critical depth is 0.6 m.

Most crops need a water table at a minimum depth. [6] For some important food and fiber crops a classification was made [7] because at shallower depths the crop suffers a yield decline. [8]

Crop and locationDWT toleranceClassificationExplanation
Wheat, Nile Delta, Egypt45Very tolerantResists shallow water tables
Sugar cane, Australia60TolerantThe water table should be deeper than 60 cm
Banana, Surinam70Slightly sensitiveYield declines at water tables < 70 cm deep
Cotton, Nile Delta90SensitiveCotton needs dry feet, water table should be deep
(where DWT = depth to water table in centimetres)

Effects on construction

Blue pipes to remove groundwater in Berlin Elvis in Berlin.jpg
Blue pipes to remove groundwater in Berlin

A water table close to the surface affects excavation, drainage, foundations, wells and leach fields (in areas without municipal water and sanitation), and more.

When excavation occurs near enough to the water table to reach its capillary action, groundwater must be removed during construction. This is conspicuous in Berlin, which is built on sandy, marshy ground, and the water table is generally 2 meters below the surface. Pink and blue pipes can often be seen carrying groundwater from construction sites into the Spree river (or canals).[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Aquifer</span> Underground layer of water-bearing permeable rock

An aquifer is an underground layer of water-bearing material, consisting of permeable or fractured rock, or of unconsolidated materials. Aquifers vary greatly in their characteristics. The study of water flow in aquifers and the characterization of aquifers is called hydrogeology. Related terms include aquitard, which is a bed of low permeability along an aquifer, and aquiclude, which is a solid, impermeable area underlying or overlying an aquifer, the pressure of which could lead to the formation of a confined aquifer. The classification of aquifers is as follows: Saturated versus unsaturated; aquifers versus aquitards; confined versus unconfined; isotropic versus anisotropic; porous, karst, or fractured; transboundary aquifer.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Vadose zone</span> Unsaturated aquifer above the water table

The vadose zone, also termed the unsaturated zone, is the part of Earth between the land surface and the top of the phreatic zone, the position at which the groundwater is at atmospheric pressure. Hence, the vadose zone extends from the top of the ground surface to the water table.

In science and engineering, hydraulic conductivity, is a property of porous materials, soils and rocks, that describes the ease with which a fluid can move through the pore space, or fracture network. It depends on the intrinsic permeability of the material, the degree of saturation, and on the density and viscosity of the fluid. Saturated hydraulic conductivity, Ksat, describes water movement through saturated media. By definition, hydraulic conductivity is the ratio of volume flux to hydraulic gradient yielding a quantitative measure of a saturated soil's ability to transmit water when subjected to a hydraulic gradient.

In hydrology, there are two similar but distinct definitions in use for the word drawdown:

<span class="mw-page-title-main">Capillary fringe</span> Subsurface layer in which groundwater seeps up from a water table by capillary action

The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of the capillary fringe is less than the total capillary rise because of the presence of a mix in pore size. If the pore size is small and relatively uniform, it is possible that soils can be completely saturated with water for several feet above the water table. Alternately, when the pore size is large, the saturated portion will extend only a few inches above the water table. Capillary action supports a vadose zone above the saturated base, within which water content decreases with distance above the water table. In soils with a wide range in pore size, the unsaturated zone can be several times thicker than the saturated zone.

<span class="mw-page-title-main">Infiltration (hydrology)</span> Process by which water on the ground surface enters the soil

Infiltration is the process by which water on the ground surface enters the soil. It is commonly used in both hydrology and soil sciences. The infiltration capacity is defined as the maximum rate of infiltration. It is most often measured in meters per day but can also be measured in other units of distance over time if necessary. The infiltration capacity decreases as the soil moisture content of soils surface layers increases. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier.

Pore water pressure refers to the pressure of groundwater held within a soil or rock, in gaps between particles (pores). Pore water pressures below the phreatic level of the groundwater are measured with piezometers. The vertical pore water pressure distribution in aquifers can generally be assumed to be close to hydrostatic.

<span class="mw-page-title-main">Groundwater recharge</span> Groundwater that recharges an aquifer

Groundwater recharge or deep drainage or deep percolation is a hydrologic process, where water moves downward from surface water to groundwater. Recharge is the primary method through which water enters an aquifer. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Groundwater recharge also encompasses water moving away from the water table farther into the saturated zone. Recharge occurs both naturally and through anthropogenic processes, where rainwater and/or reclaimed water is routed to the subsurface.

Subsurface flow, in hydrology, is the flow of water beneath Earth's surface as part of the water cycle.

Dryland salinity is a natural process for soil, just like other processes such as wind erosion. Salinity degrades land by an increase in soil salt concentration in the environment, watercourse or soil in unirrigated landscapes, being in excess of normal soil salt concentrations in dryland regions.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

<span class="mw-page-title-main">Soil salinity control</span> Controlling the problem of soil salinity

Soil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also known as soil improvement, rehabilitation, remediation, recuperation, or amelioration.

<span class="mw-page-title-main">SahysMod</span>

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

<span class="mw-page-title-main">Phreatic zone</span> Zone in an aquifer below the water table

The phreatic zone, saturated zone, or zone of saturation, is the part of an aquifer, below the water table, in which relatively all pores and fractures are saturated with water. The part above the water table is the vadose zone.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

<span class="mw-page-title-main">Agricultural hydrology</span>

Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage.

DPHM-RS is a semi-distributed hydrologic model developed at University of Alberta, Canada.

<span class="mw-page-title-main">Water storage</span> Storage of water by various means

Water storage is a broad term referring to storage of both potable water for consumption, and non potable water for use in agriculture. In both developing countries and some developed countries found in tropical climates, there is a need to store potable drinking water during the dry season. In agriculture water storage, water is stored for later use in natural water sources, such as groundwater aquifers, soil water, natural wetlands, and small artificial ponds, tanks and reservoirs behind major dams. Storing water invites a host of potential issues regardless of that water's intended purpose, including contamination through organic and inorganic means.

Groundwater banking is a water management mechanism designed to increase water supply reliability. Groundwater can be created by using dewatered aquifer space to store water during the years when there is abundant rainfall. It can then be pumped and used during years that do not have a surplus of water. People can manage the use of groundwater to benefit society through the purchasing and selling of these groundwater rights. The surface water should be used first, and then the groundwater will be used when there is not enough surface water to meet demand. The groundwater will reduce the risk of relying on surface water and will maximize expected income. There are regulatory storage-type aquifer recovery and storage systems which when water is injected into it gives the right to withdraw the water later on. Groundwater banking has been implemented into semi-arid and arid southwestern United States because this is where there is the most need for extra water. The overall goal is to transfer water from low-value to high-value uses by bringing buyers and sellers together.

References

  1. "What is the Water Table?". imnh.isu.edu. Retrieved 2016-11-25.
  2. 1 2 Freeze, R. Allan; Cherry, John A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall. ISBN   9780133653120. OCLC   252025686.[ page needed ]
  3. Winter, Thomas C; Harvey, Judson W (1998). "Ground Water and Surface Water A Single Resource - U.S. Geological Survey Circular 1139" (PDF). Retrieved 25 August 2018.
  4. Rudd, A.V. and C.W Chardon 1977. The effects of drainage on cane yields as measured by water table height in the Machnade Mill area. In: Proceedings of the 44th Conference of the Queensland Society of Sugar Cane Technology, Australia.
  5. Software for partial regression with horizontal segment
  6. Crop Yield versus Depth of the Ground Water Table, Statistical Analysis of Data Measured in Farm Lands Aiming at the Formulation of Drainage Needs. International Journal of Agriculural Science, 6, 174–187. Online: or
  7. Nijland, H.J. and S. El Guindy 1984.Crop yields, soil salinity and water table depth in the Nile Delta. In: ILRI Annual Report 1983, Wageningen, The Netherlands, pp. 19–29. Online:
  8. K.J.Lenselink et al. Crop tolerance to shallow water tables. Online: