Soil salinity

Last updated
Visibly salt-affected soils on rangeland in Colorado. Salts dissolved from the soil accumulate at the soil surface and are deposited on the ground and at the base of the fence post. Salinity.jpg
Visibly salt-affected soils on rangeland in Colorado. Salts dissolved from the soil accumulate at the soil surface and are deposited on the ground and at the base of the fence post.

Soil salinity is the salt content in the soil; the process of increasing the salt content is known as salinization. [1] Salts occur naturally within soils and water. Salination can be caused by natural processes such as mineral weathering or by the gradual withdrawal of an ocean. It can also come about through artificial processes such as irrigation and road salt.

Salt (chemistry) ionic compound

In chemistry, a salt is an ionic compound that can be formed by the neutralization reaction of an acid and a base. Salts are composed of related numbers of cations and anions so that the product is electrically neutral. These component ions can be inorganic, such as chloride (Cl), or organic, such as acetate ; and can be monatomic, such as fluoride (F), or polyatomic, such as sulfate.

Soil mixture of organic matter, minerals, gases, liquids, and organisms that together support life

Soil is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Earth's body of soil, called the pedosphere, has four important functions:

Irrigation artificial application of water to the land

Irrigation is the application of controlled amounts of water to plants at needed intervals. Irrigation helps to grow agricultural crops, maintain landscapes, and revegetate disturbed soils in dry areas and during periods of less than average rainfall. Irrigation also has other uses in crop production, including frost protection, suppressing weed growth in grain fields and preventing soil consolidation. In contrast, agriculture that relies only on direct rainfall is referred to as rain-fed or dry land farming.

Contents

Natural occurrence

Salts are a natural component in soils and water. The ions responsible for salination are: Na+, K+, Ca2+, Mg2+ and Cl.
As the Na+ (sodium) predominates, soils can become sodic. Sodic soils present particular challenges because they tend to have very poor structure which limits or prevents water infiltration and drainage.

An ion is an atom or molecule that has a net electrical charge. Since the charge of the electron is equal and opposite to that of the proton, the net charge of an ion is non-zero due to its total number of electrons being unequal to its total number of protons. A cation is a positively charged ion, with fewer electrons than protons, while an anion is negatively charged, with more electrons than protons. Because of their opposite electric charges, cations and anions attract each other and readily form ionic compounds.

Sodic soils are characterized by a disproportionately high concentration of sodium (Na) in their cation exchange complex. They are usually defined as containing an exchangeable sodium percentage greater than 15%. These soils tend to occur within arid to semiarid regions and are innately unstable, exhibiting poor physical and chemical properties, which impede water infiltration, water availability and ultimately plant growth.

Over long periods of time, as soil minerals weather and release salts, these salts are flushed or leached out of the soil by drainage water in areas with sufficient precipitation. In addition to mineral weathering, salts are also deposited via dust and precipitation. In dry regions salts may accumulate, leading to naturally saline soils. This is the case, for example, in large parts of Australia. Human practices can increase the salinity of soils by the addition of salts in irrigation water. Proper irrigation management can prevent salt accumulation by providing adequate drainage water to leach added salts from the soil. Disrupting drainage patterns that provide leaching can also result in salt accumulations. An example of this occurred in Egypt in 1970 when the Aswan High Dam was built. The change in the level of ground water before the construction had enabled soil erosion, which led to high concentration of salts in the water table. After the construction, the continuous high level of the water table led to the salination of the arable land.

Weathering Breaking down of rocks, soil and minerals as well as artificial materials through contact with the Earths atmosphere, biota and waters

Weathering is the breaking down of rocks, soil, and minerals as well as wood and artificial materials through contact with the Earth's atmosphere, water, and biological organisms. Weathering occurs in situ, that is, in the same place, with little or no movement, and thus should not be confused with erosion, which involves the movement of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity and then being transported and deposited in other locations.

Salinity in Australia

Soil salinity and dryland salinity are two problems degrading the environment of Australia. Salinity is a concern in most states, but especially in the south-west of Western Australia.

Egypt Country spanning North Africa and Southwest Asia

Egypt, officially the Arab Republic of Egypt, is a country spanning the northeast corner of Africa and southwest corner of Asia by a land bridge formed by the Sinai Peninsula. Egypt is a Mediterranean country bordered by the Gaza Strip and Israel to the northeast, the Gulf of Aqaba and the Red Sea to the east, Sudan to the south, and Libya to the west. Across the Gulf of Aqaba lies Jordan, across the Red Sea lies Saudi Arabia, and across the Mediterranean lie Greece, Turkey and Cyprus, although none share a land border with Egypt.

Dry land salinity

Salinity in drylands can occur when the water table is between two and three metres from the surface of the soil. The salts from the groundwater are raised by capillary action to the surface of the soil. This occurs when groundwater is saline (which is true in many areas), and is favored by land use practices allowing more rainwater to enter the aquifer than it could accommodate. For example, the clearing of trees for agriculture is a major reason for dryland salinity in some areas, since deep rooting of trees has been replaced by shallow rooting of annual crops.

Dryland salinity is a natural process for soil, just like other processes such as wind erosion. Salinity degrades land by an increase in soil salt concentration in the environment, watercourse or soil in unirrigated landscapes, being in excess of normal soil salt concentrations in dryland regions.

Salinity due to irrigation

Rain or irrigation, in the absence of leaching, can bring salts to the surface by capillary action Salinity from irrigation.png
Rain or irrigation, in the absence of leaching, can bring salts to the surface by capillary action

Salinity from irrigation can occur over time wherever irrigation occurs, since almost all water (even natural rainfall) contains some dissolved salts. [2] When the plants use the water, the salts are left behind in the soil and eventually begin to accumulate. Since soil salinity makes it more difficult for plants to absorb soil moisture, these salts must be leached out of the plant root zone by applying additional water. This water in excess of plant needs is called the leaching fraction. Salination from irrigation water is also greatly increased by poor drainage and use of saline water for irrigating agricultural crops.

Drainage natural or artificial removal of surface and sub-surface water from an area

Drainage is the natural or artificial removal of a surface's water and sub-surface water from an area with excess of water. The internal drainage of most agricultural soils is good enough to prevent severe waterlogging, but many soils need artificial drainage to improve production or to manage water supplies.

Biosalinity is the study and practice of using saline (salty) water for irrigating agricultural crops.

Salinity in urban areas often results from the combination of irrigation and groundwater processes. Irrigation is also now common in cities (gardens and recreation areas).

Consequences of salinity

The consequences of salinity are

Soil erosion washing or blowing away of the top layer of soil

Soil erosion is the displacement of the upper layer of soil, one form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, animals, and humans. In accordance with these agents, erosion is sometimes divided into water erosion, glacial erosion, snow erosion, wind (aeolean) erosion, zoogenic erosion, and anthropogenic erosion. Soil erosion may be a slow process that continues relatively unnoticed, or it may occur at an alarming rate causing a serious loss of topsoil. The loss of soil from farmland may be reflected in reduced crop production potential, lower surface water quality and damaged drainage networks.

Salinity is an important land degradation problem. Soil salinity can be reduced by leaching soluble salts out of soil with excess irrigation water. Soil salinity control involves watertable control and flushing in combination with tile drainage or another form of subsurface drainage. [4] [5] A comprehensive treatment of soil salinity is available from the United Nations Food and Agriculture Organization. [6]

Salt tolerance of crops

High levels of soil salinity can be tolerated if salt-tolerant plants are grown. Sensitive crops lose their vigor already in slightly saline soils, most crops are negatively affected by (moderately) saline soils, and only salinity-resistant crops thrive in severely saline soils. The University of Wyoming [7] and the Government of Alberta [8] report data on the salt tolerance of plants.

Field data in irrigated lands, under farmers' conditions, are scarce, especially in developing countries. However, some on-farm surveys have been made in Egypt, [9] India, [10] and Pakistan. [11] Some examples are shown in the following gallery, with crops arranged from sensitive to very tolerant. [12] [13]

Regions affected

From the FAO/UNESCO Soil Map of the World the following salinised areas can be derived. [14]

RegionArea (106 ha)
Africa69.5
Near and Middle East53.1
Asia and Far East19.5
Latin America59.4
Australia84.7
North America16.0
Europe20.7

See also

Related Research Articles

Watertable control is the practice of controlling the height of the water table by drainage. Its main applications are in agricultural land and in cities to manage the extensive underground infrastructure that includes the foundations of large buildings, underground transit systems, and extensive utilities.

Soil salinity control

Soil salinity control relates to controlling the problem of soil salinity and reclaiming salinized agricultural land.

Well drainage means drainage of agricultural lands by wells. Agricultural land is drained by pumped wells to improve the soils by controlling water table levels and soil salinity.

Alkali soil soil type

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

SahysMod agricultural software

SahysMod is a computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge in irrigated agricultural lands, using different hydrogeologic and aquifer conditions, varying water management options, including the use of ground water for irrigation, and several crop rotation schedules, whereby the spatial variations are accounted for through a network of polygons.

Drainage research is the study of agricultural drainage systems and their effects to arrive at optimal system design.

SaltMod agricultural software

SaltMod is computer program for the prediction of the salinity of soil moisture, groundwater and drainage water, the depth of the watertable, and the drain discharge (hydrology) in irrigated agricultural lands, using different (geo)hydrologic conditions, varying water management options, including the use of ground water for irrigation, and several cropping rotation schedules. The water management options include irrigation, drainage, and the use of subsurface drainage water from pipe drains, ditches or wells for irrigation.

In agriculture, leaching is the loss of water from water-soluble plant nutrients from the soil, due to rain and irrigation. Soil structure, crop planting, type and application rates of fertilizers, and other factors are taken into account to avoid excessive nutrient loss. Leaching may also refer to the practice of applying a small amount of excess irrigation where the water has a high salt content to avoid salts from building up in the soil. Where this is practiced, drainage must also usually be employed, to carry away the excess water.

Surface irrigation

Surface irrigation is where water is applied and distributed over the soil surface by gravity. It is by far the most common form of irrigation throughout the world and has been practiced in many areas virtually unchanged for thousands of years.

An agricultural drainage system is a system by which water is drained on or in the soil to enhance agricultural production of crops. It may involve any combination of stormwater control, erosion control, and watertable control.

Environmental impact of irrigation

The environmental impacts of irrigation relate to the changes in quantity and quality of soil and water as a result of irrigation and the effects on natural and social conditions in river basins and downstream of an irrigation scheme. The impacts stem from the altered hydrological conditions caused by the installation and operation of the irrigation scheme.

A leaching model is a hydrological model by which the leaching with irrigation water of dissolved substances, notably salt, in the soil is described depending on the hydrological regime and the soil's properties.
The model may describe the process (1) in time and (2) as a function of amount of water applied.
Leaching is often done to reclaim saline soil or to conserve a favorable salt content of the soil of irrigated land as all irrigation water contains salts.

This page shows statistical data on irrigation of agricultural lands worldwide.
Irrigation is the artificial abstraction of water from a source followed by the distribution of it at scheme level aiming at application at field level to enhance crop production when rainfall is scarce.

Environmental impact of agriculture agricultures impact on the environment

The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies based on the wide variety of agricultural practices employed around the world. Ultimately, the environmental impact depends on the production practices of the system used by farmers. The connection between emissions into the environment and the farming system is indirect, as it also depends on other climate variables such as rainfall and temperature.

Irrigation in Iran covers 89,930 km2 making it the fifth ranked country in terms of irrigated area.

Central Soil Salinity Research Institute

The Central Soil Salinity Research Institute is an autonomous institute of higher learning, established under the umbrella of Indian Council of Agricultural Research (ICAR) by the Ministry of Agriculture, Government of India for advanced research in the field of soil sciences. The Institute is located on Kachawa Road in Karnal, in the state of Haryana, 125 km from the Indian capital of New Delhi.

Salt tolerance of crops

Salt tolerance of crops is the maximum salt level a crop tolerates without losing its productivity while it is affected negatively at higher levels. The salt level is often taken as the soil salinity or the salinity of the irrigation water.

Crop tolerance to seawater is the ability of an agricultural crop to withstand the high salinity induced by irrigation with seawater, or a mixture of fresh water and seawater. There are crops that can grow on seawater and demonstration farms have shown the feasibility. The government of the Netherlands reports a breakthrough in food security as specific varieties of potatoes, carrots, red onions, white cabbage and broccoli appear to thrive if they are irrigated with salt water.

References

  1. from "Soil salinity" in WaterWiki, the on-line Knowledge and Collaboration Tool of the Community of Practice (CoP) on Water- and UNDP-related activities in Central and South-Eastern Europe, Caucasus and Central Asia. Archived 2007-08-12 at the Wayback Machine
  2. ILRI (1989), Effectiveness and Social/Environmental Impacts of Irrigation Projects: a Review (PDF), In: Annual Report 1988 of the International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, pp. 18–34
  3. Drainage Manual: A Guide to Integrating Plant, Soil, and Water Relationships for Drainage of Irrigated Lands, Interior Dept., Bureau of Reclamation, 1993, ISBN   978-0-16-061623-5
  4. "Free articles and software on drainage of waterlogged land and soil salinity control" . Retrieved 2010-07-28.
  5. Salt-Affected Soils and their Management, FAO Soils Bulletin 39 (http://www.fao.org/docrep/x5871e/x5871e00.htm)
  6. Alan D. Blaylock, 1994, Soil Salinity and Salt tolerance of Horticultural and Landscape Plants. University of Wyoming Archived 2010-05-08 at the Wayback Machine
  7. Government of Alberta, Salt tolerance of Plants
  8. H.J. Nijland and S. El Guindy, Crop yields, watertable depth and soil salinity in the Nile Delta, Egypt. In: Annual report 1983. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.
  9. D. P. Sharma, K. N. Singh and K. V. G. K. Rao (1990), Crop Production and soil salinity: evaluation of field data from India. Paper published in Proceedings of the Symposium on Land Drainage for Salinity Control in Arid and Semi-Arid Regions, February, 25th to March 2nd, 1990, Cairo, Egypt, Vol. 3, Session V, p. 373–383. On line:
  10. R.J. Oosterbaan, Crop yields, soil salinity and water table depth in Pakistan. In: Annual Report 1981, pp. 50–54. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands, reprinted in Indus 24 (1983) 2, pp. 29–33. On line
  11. Collection of salt tolerance data of agricultural crops from measurements in farmers' fields. On line:
  12. Crop Tolerance to Soil Salinity, Statistical Analysis of Data Measured in Farm Lands. In: International Journal of Agricultural Science, October 2018. On line:
  13. R. Brinkman, 1980. Saline and sodic soils. In: Land reclamation and water management, pp. 62–68. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.