Geotechnical engineering

Last updated

Boston's Big Dig presented geotechnical challenges in an urban environment. Boston CAT Project-construction view from air.jpeg
Boston's Big Dig presented geotechnical challenges in an urban environment.
Precast concrete retaining wall Precastconcreteretainingwall.tif
Precast concrete retaining wall
A typical cross-section of a slope used in two-dimensional analyzes. Slope 2d plain.svg
A typical cross-section of a slope used in two-dimensional analyzes.

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

Contents

Geotechnical engineering has applications in military engineering, mining engineering, petroleum engineering, coastal engineering, and offshore construction. The fields of geotechnical engineering and engineering geology have overlapping knowledge areas. However, while geotechnical engineering is a specialty of civil engineering, engineering geology is a specialty of geology.

History

Humans have historically used soil as a material for flood control, irrigation purposes, burial sites, building foundations, and construction materials for buildings. Dykes, dams, and canals dating back to at least 2000 BCE—found in parts of ancient Egypt, ancient Mesopotamia, the Fertile Crescent, and the early settlements of Mohenjo Daro and Harappa in the Indus valley—provide evidence for early activities linked to irrigation and flood control. As cities expanded, structures were erected and supported by formalized foundations. The ancient Greeks notably constructed pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis for soil design had been developed, and the discipline was more of an art than a science, relying on experience. [1]

Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted scientists to begin taking a more scientific-based approach to examining the subsurface. The earliest advances occurred in the development of earth pressure theories for the construction of retaining walls. Henri Gautier, a French royal engineer, recognized the "natural slope" of different soils in 1717, an idea later known as the soil's angle of repose. Around the same time, a rudimentary soil classification system was also developed based on a material's unit weight, which is no longer considered a good indication of soil type. [1] [2]

The application of the principles of mechanics to soils was documented as early as 1773 when Charles Coulomb, a physicist and engineer, developed improved methods to determine the earth pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would form behind a sliding retaining wall and suggested that the maximum shear stress on the slip plane, for design purposes, was the sum of the soil cohesion, , and friction , where is the normal stress on the slip plane and is the friction angle of the soil. By combining Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-Coulomb theory. Although it is now recognized that precise determination of cohesion is impossible because is not a fundamental soil property, the Mohr-Coulomb theory is still used in practice today. [3]

In the 19th century, Henry Darcy developed what is now known as Darcy's Law, describing the flow of fluids in a porous media. Joseph Boussinesq, a mathematician and physicist, developed theories of stress distribution in elastic solids that proved useful for estimating stresses at depth in the ground. William Rankine, an engineer and physicist, developed an alternative to Coulomb's earth pressure theory. Albert Atterberg developed the clay consistency indices that are still used today for soil classification. [1] [2] In 1885, Osborne Reynolds recognized that shearing causes volumetric dilation of dense materials and contraction of loose granular materials.

Modern geotechnical engineering is said to have begun in 1925 with the publication of Erdbaumechanik by Karl von Terzaghi, a mechanical engineer and geologist. Considered by many to be the father of modern soil mechanics and geotechnical engineering, Terzaghi developed the principle of effective stress, and demonstrated that the shear strength of soil is controlled by effective stress. [4] Terzaghi also developed the framework for theories of bearing capacity of foundations, and the theory for prediction of the rate of settlement of clay layers due to consolidation. [1] [3] [5] Afterwards, Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity.

In his 1948 book, Donald Taylor recognized that the interlocking and dilation of densely packed particles contributed to the peak strength of the soil. Roscoe, Schofield, and Wroth, with the publication of On the Yielding of Soils in 1958, established the interrelationships between the volume change behavior (dilation, contraction, and consolidation) and shearing behavior with the theory of plasticity using critical state soil mechanics. Critical state soil mechanics is the basis for many contemporary advanced constitutive models describing the behavior of soil. [6]

In 1960, Alec Skempton carried out an extensive review of the available formulations and experimental data in the literature about the effective stress validity in soil, concrete, and rock in order to reject some of these expressions, as well as clarify what expressions were appropriate according to several working hypotheses, such as stress-strain or strength behavior, saturated or non-saturated media, and rock, concrete or soil behavior.

Roles

Geotechnical investigation

Geotechnical engineers investigate and determinate the properties of subsurface conditions and materials. They also design corresponding earthworks and retaining structures, tunnels, and structure foundations, and may supervise and evaluate sites, which may further involve site monitoring as well as the risk assessment and mitigation of natural hazards. [7] [8]

Geotechnical engineers and engineering geologists perform geotechnical investigations to obtain information on the physical properties of soil and rock underlying, and adjacent to, a site to design earthworks and foundations for proposed structures and for the repair of distress to earthworks and structures caused by subsurface conditions. Geotechnical investigations involve both surface and subsurface exploration of a site, often including subsurface sampling and laboratory testing of soil samples retrieved. Sometimes, geophysical methods are also used to obtain data, which include measurement of seismic waves (pressure, shear, and Rayleigh waves), surface-wave methods and downhole methods, and electromagnetic surveys (magnetometer, resistivity, and ground-penetrating radar). Electrical tomography can be used to survey soil and rock properties and existing underground infrastructure in construction projects. [9]

Surface exploration can include on-foot surveys, geologic mapping, geophysical methods, and photogrammetry. Geologic mapping and interpretation of geomorphology are typically completed in consultation with a geologist or engineering geologist. Subsurface exploration usually involves in-situ testing (for example, the standard penetration test and cone penetration test). The digging of test pits and trenching (particularly for locating faults and slide planes) may also be used to learn about soil conditions at depth. Large-diameter borings are rarely used due to safety concerns and expense but are sometimes used to allow a geologist or engineer to be lowered into the borehole for direct visual and manual examination of the soil and rock stratigraphy.

A variety of soil samplers exists to meet the needs of different engineering projects. The standard penetration test, which uses a thick-walled split spoon sampler, is the most common way to collect disturbed samples. Piston samplers, employing a thin-walled tube, are most commonly used for the collection of less disturbed samples. More advanced methods, such as the Sherbrooke block sampler, are superior, but expensive. Coring frozen ground provides high-quality undisturbed samples from any ground conditions, such as fill, sand, moraine, and rock fracture zones. [10]

Geotechnical centrifuge modeling is another method of testing physical scale models of geotechnical problems. The use of a centrifuge enhances the similarity of the scale model tests involving soil because the strength and stiffness of soil are very sensitive to the confining pressure. The centrifugal acceleration allows a researcher to obtain large (prototype-scale) stresses in small physical models.

Foundation design

The foundation of a structure's infrastructure transmits loads from the structure to the earth. Geotechnical engineers design foundations based on the load characteristics of the structure and the properties of the soils and bedrock at the site. In general, geotechnical engineers first estimate the magnitude and location of loads to be supported, before developing an investigation plan to explore the subsurface and also determining the necessary soil parameters through field and lab testing. Following which, they may begin the design of an engineering foundation. The primary considerations for a geotechnical engineer in foundation design are bearing capacity, settlement, and ground movement beneath the foundations. [11]

Earthworks

A compactor/roller operated by U.S. Navy Seabees Seabees compactor roller.jpg
A compactor/roller operated by U.S. Navy Seabees

Geotechnical engineers are also involved in the planning and execution of earthworks, which include ground improvement, [11] slope stabilization, and stope stability analysis.

Ground improvement

Various geotechnical engineering methods can be used for ground improvement, including reinforcement geosynthetics such as geocells and geogrids, which disperse loads over a larger area, increasing the load-bearing capacity of soil. Through these methods, geotechnical engineers can reduce direct and long-term costs. [12]

Slope stabilization

Simple slope slip section. Slopslump2.jpg
Simple slope slip section.

Geotechnical engineers can analyze and improve the stability of slopes using engineering methods. Slope stability is determined by the balance of shear stress and shear strength. A previously stable slope may be initially affected by various factors, making the slope unstable. Nonetheless, geotechnical engineers can design and implement engineered slopes to increase stability.

Slope stability analysis

Stability analysis is needed for the design of engineered slopes and for estimating the risk of slope failure in natural or designed slopes by determining the conditions under which the topmost mass of soil will slip relative to the base of soil and lead to slope failure. [13] If the interface between the mass and the base of a slope has a complex geometry, slope stability analysis is difficult and numerical solution methods are required. Typically, the exact geometry of the interface is not known and a simplified interface geometry is assumed. Finite slopes require three-dimensional models to be analyzed, so most slopes are analyzed assuming that they are infinitely wide and can be represented by two-dimensional models.

Sub-disciplines

Geosynthetics

A collage of geosynthetic products. Geocollage.JPG
A collage of geosynthetic products.

Geosynthetics are a type of plastic polymer products used in geotechnical engineering that improve engineering performance while reducing costs. This includes geotextiles, geogrids, geomembranes, geocells, and geocomposites. The synthetic nature of the products make them suitable for use in the ground where high levels of durability are required. Their main functions include drainage, filtration, reinforcement, separation, and containment.

Geosynthetics are available in a wide range of forms and materials, each to suit a slightly different end-use, although they are frequently used together. Some reinforcement geosynthetics, such as geogrids and more recently, cellular confinement systems, have shown to improve bearing capacity, modulus factors and soil stiffness and strength. [14] These products have a wide range of applications and are currently used in many civil and geotechnical engineering applications including roads, airfields, railroads, embankments, piled embankments, retaining structures, reservoirs, canals, dams, landfills, bank protection and coastal engineering. [15]

Offshore

Platforms offshore Mexico. Offshore platforms.jpg
Platforms offshore Mexico.

Offshore (or marine) geotechnical engineering is concerned with foundation design for human-made structures in the sea, away from the coastline (in opposition to onshore or nearshore engineering). Oil platforms, artificial islands and submarine pipelines are examples of such structures. [16]

There are a number of significant differences between onshore and offshore geotechnical engineering. [16] [17] Notably, site investigation and ground improvement on the seabed are more expensive; the offshore structures are exposed to a wider range of geohazards; and the environmental and financial consequences are higher in case of failure. Offshore structures are exposed to various environmental loads, notably wind, waves and currents. These phenomena may affect the integrity or the serviceability of the structure and its foundation during its operational lifespan and need to be taken into account in offshore design.

In subsea geotechnical engineering, seabed materials are considered a two-phase material composed of rock or mineral particles and water. [18] [19] Structures may be fixed in place in the seabed—as is the case for piers, jetties and fixed-bottom wind turbines—or may comprise a floating structure that remains roughly fixed relative to its geotechnical anchor point. Undersea mooring of human-engineered floating structures include a large number of offshore oil and gas platforms and, since 2008, a few floating wind turbines. Two common types of engineered design for anchoring floating structures include tension-leg and catenary loose mooring systems. [20]

Observational method

First proposed by Karl Terzaghi and later discussed in a paper by Ralph B. Peck, the observational method is a managed process of construction control, monitoring, and review, which enables modifications to be incorporated during and after construction. The objective of the method is to achieve a greater overall economy, without compromising safety, by creating designs based on the most probable conditions rather than the most unfavorable. [21] Using the observational method, gaps in available information are filled by measurements and investigation, which aid in assessing the behavior of the structure during construction, which in turn can be modified in accordance with the findings. The method was described by Peck as "learn-as-you-go". [22]

The observational method may be described as follows: [22]

  1. General exploration sufficient to establish the rough nature, pattern, and properties of deposits.
  2. Assessment of the most probable conditions and the most unfavorable conceivable deviations.
  3. Creating the design based on a working hypothesis of behavior anticipated under the most-probable conditions.
  4. Selection of quantities to be observed as construction proceeds, and calculation of their anticipated values based on the working hypothesis and under the most unfavorable conditions.
  5. Selection, in advance, of a course of action or design modification for every foreseeable significant deviation of the observational findings from those predicted.
  6. Measurement of quantities and evaluation of actual conditions.
  7. Design modification in accordance with actual conditions

The observational method is suitable for construction that has already begun when an unexpected development occurs, or when a failure or accident looms or has already occurred. It is unsuitable for projects whose design cannot be altered during construction. [22]

See also

Nuvola apps kcmsystem.svg   Engineeringportal

Notes

  1. 1 2 3 4 Das, Braja (2006). Principles of Geotechnical Engineering. Thomson Learning.
  2. 1 2 Budhu, Muni (2007). Soil Mechanics and Foundations. John Wiley & Sons, Inc. ISBN   978-0-471-43117-6.
  3. 1 2 Disturbed soil properties and geotechnical design, Schofield, Andrew N., Thomas Telford, 2006. ISBN   0-7277-2982-9
  4. Guerriero V., Mazzoli S. (2021). "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review". Geosciences. 11 (3): 119. Bibcode:2021Geosc..11..119G. doi: 10.3390/geosciences11030119 .
  5. Soil Mechanics, Lambe, T.William and Whitman, Robert V., Massachusetts Institute of Technology, John Wiley & Sons., 1969. ISBN   0-471-51192-7
  6. Soil Behavior and Critical State Soil Mechanics, Wood, David Muir, Cambridge University Press, 1990. ISBN   0-521-33782-8
  7. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice 3rd Ed., John Wiley & Sons, Inc. ISBN   0-471-08658-4
  8. Holtz, R. and Kovacs, W. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc. ISBN   0-13-484394-0
  9. Deep Scan Tech (2023): Deep Scan Tech uncovers hidden structures at the site of Denmark's tallest building.
  10. "Geofrost Coring". GEOFROST. Retrieved 20 November 2020.
  11. 1 2 Han, Jie (2015). Principles and Practice of Ground Improvement. Wiley. ISBN   9781118421307.
  12. RAJU, V. R. (2010). Ground Improvement Technologies and Case Histories. Singapore: Research Publishing Services. p. 809. ISBN   978-981-08-3124-0. Ground Improvement – Principles And Applications In Asia.
  13. Pariseau, William G. (2011). Design analysis in rock mechanics. CRC Press.
  14. Hegde, A.M. and Palsule P.S. (2020), Performance of Geosynthetics Reinforced Subgrade Subjected to Repeated Vehicle Loads: Experimental and Numerical Studies. Front. Built Environ. 6:15. https://www.frontiersin.org/articles/10.3389/fbuil.2020.00015/full.
  15. Koerner, Robert M. (2012). Designing with Geosynthetics (6th Edition, Vol. 1 ed.). Xlibris. ISBN   9781462882892.
  16. 1 2 Dean, E.T.R. (2010). Offshore Geotechnical Engineering – Principles and Practice. Thomas Telford, Reston, VA, 520 p.
  17. Randolph, M. and Gourvenec, S., 2011. Offshore geotechnical engineering. Spon Press, N.Y., 550 p.
  18. Das, B.M., 2010. Principles of geotechnical engineering. Cengage Learning, Stamford, 666 p.
  19. Atkinson, J., 2007. The mechanics of soils and foundations. Taylor & Francis, N.Y., 442 p.
  20. Floating Offshore Wind Turbines: Responses in a Sea state – Pareto Optimal Designs and Economic Assessment, P. Sclavounos et al., October 2007.
  21. Nicholson, D, Tse, C and Penny, C. (1999). The Observational Method in ground engineering – principles and applications. Report 185, CIRIA, London.
  22. 1 2 3 Peck, R.B (1969). Advantages and limitations of the observational method in applied soil mechanics, Geotechnique, 19, No. 1, pp. 171-187.

Related Research Articles

<span class="mw-page-title-main">Engineering geology</span> Application of geology to engineering practice

Engineering geology is the application of geology to engineering study for the purpose of assuring that the geological factors regarding the location, design, construction, operation and maintenance of engineering works are recognized and accounted for. Engineering geologists provide geological and geotechnical recommendations, analysis, and design associated with human development and various types of structures. The realm of the engineering geologist is essentially in the area of earth-structure interactions, or investigation of how the earth or earth processes impact human made structures and human activities.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

Rock mass classification systems are used for various engineering design and stability analysis. These are based on empirical relations between rock mass parameters and engineering applications, such as tunnels, slopes, foundations, and excavatability. The first rock mass classification system in geotechnical engineering was proposed in 1946 for tunnels with steel set support.

<span class="mw-page-title-main">Karl von Terzaghi</span> Austrian geotechnical engineer known as the "father of soil mechanics"

Karl von Terzaghi was an Austrian mechanical engineer, geotechnical engineer, and geologist known as the "father of soil mechanics and geotechnical engineering".

Geomechanics is the study of the mechanical state of the Earth's crust and the processes occurring in it under the influence of natural physical factors. It involves the study of the mechanics of soil and rock.

Pore water pressure refers to the pressure of groundwater held within a soil or rock, in gaps between particles (pores). Pore water pressures below the phreatic level of the groundwater are measured with piezometers. The vertical pore water pressure distribution in aquifers can generally be assumed to be close to hydrostatic.

<span class="mw-page-title-main">Effective stress</span>

The effective stress can be defined as the stress, depending on the applied tension and pore pressure , which controls the strain or strength behaviour of soil and rock for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body provides the same strain or strength behaviour which is observed at ≠ 0. In the case of granular media it can be viewed as a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel, as well as every kind of rock and several other porous materials such as concrete, metal powders, biological tissues etc. The usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments involving dry samples.

A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses.

<span class="mw-page-title-main">Geotechnical investigation</span> Work done to obtain information on the physical properties of soil earthworks and foundations

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement. The allowable bearing pressure is the maximum pressure that can be applied to the soil without causing failure. The ultimate bearing capacity, on the other hand, is the maximum pressure that can be applied to the soil before it fails.

<span class="mw-page-title-main">Shear strength (soil)</span> Magnitude of the shear stress that a soil can sustain

Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress. The stress-strain relationship levels off when the material stops expanding or contracting, and when interparticle bonds are broken. The theoretical state at which the shear stress and density remain constant while the shear strain increases may be called the critical state, steady state, or residual strength.

Ralph Brazelton Peck was a civil engineer specializing in soil mechanics. He was awarded the National Medal of Science in 1976 "for his development of the science and art of subsurface engineering, combining the contributions of the sciences of geology and soil mechanics with the practical art of foundation design"?

<span class="mw-page-title-main">Cellular confinement</span> Confinement system used in construction and geotechnical engineering

Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.

<span class="mw-page-title-main">Slope stability analysis</span> Method for analyzing stability of slopes of soil or rock

Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. It is performed to assess the safe design of a human-made or natural slopes and the equilibrium conditions. Slope stability is the resistance of inclined surface to failure by sliding or collapsing. The main objectives of slope stability analysis are finding endangered areas, investigation of potential failure mechanisms, determination of the slope sensitivity to different triggering mechanisms, designing of optimal slopes with regard to safety, reliability and economics, designing possible remedial measures, e.g. barriers and stabilization.

Preconsolidation pressure is the maximum effective vertical overburden stress that a particular soil sample has sustained in the past. This quantity is important in geotechnical engineering, particularly for finding the expected settlement of foundations and embankments. Alternative names for the preconsolidation pressure are preconsolidation stress, pre-compression stress, pre-compaction stress, and preload stress. A soil is called overconsolidated if the current effective stress acting on the soil is less than the historical maximum.

Geoprofessions is a term coined by the Geoprofessional Business Association to connote various technical disciplines that involve engineering, earth and environmental services applied to below-ground ("subsurface"), ground-surface, and ground-surface-connected conditions, structures, or formations. The principal disciplines include, as major categories:

The shear strength of a discontinuity in a soil or rock mass may have a strong impact on the mechanical behavior of a soil or rock mass. The shear strength of a discontinuity is often considerably lower than the shear strength of the blocks of intact material in between the discontinuities, and therefore influences, for example, tunnel, foundation, or slope engineering, but also the stability of natural slopes. Many slopes, natural and man-made, fail due to a low shear strength of discontinuities in the soil or rock mass in the slope. The deformation characteristics of a soil or rock mass are also influenced by the shear strength of the discontinuities. For example, the modulus of deformation is reduced, and the deformation becomes plastic rather than elastic. This may cause, for example, larger settlement of foundations, which is also permanent even if the load is only temporary. Furthermore, the shear strength of discontinuities influences the stress distribution in a soil or rock mass.

Harry George Poulos is an Australian of Greek descent civil engineer specialising in geotechnical engineering and soil mechanics, internationally known as an expert on soil behaviour and pile foundations.

<span class="mw-page-title-main">Jean-Pierre Giroud</span>

Jean-Pierre Giroud is a French geotechnical engineer and a pioneer of geosynthetics since 1970. In 1977, he coined the words "geotextile" and "geomembrane", thus initiating the "geo-terminology". He is also a past president of the International Geosynthetics Society, member of the US National Academies, and Chevalier de la Légion d'Honneur.

<span class="mw-page-title-main">Geological engineering</span>

Geological engineering is a discipline of engineering concerned with the application of geological science and engineering principles to fields, such as civil engineering, mining, environmental engineering, and forestry, among others. The work of geological engineers often directs or supports the work of other engineering disciplines such as assessing the suitability of locations for civil engineering, environmental engineering, mining operations, and oil and gas projects by conducting geological, geoenvironmental, geophysical, and geotechnical studies. They are involved with impact studies for facilities and operations that affect surface and subsurface environments. The engineering design input and other recommendations made by geological engineers on these projects will often have a large impact on construction and operations. Geological engineers plan, design, and implement geotechnical, geological, geophysical, hydrogeological, and environmental data acquisition. This ranges from manual ground-based methods to deep drilling, to geochemical sampling, to advanced geophysical techniques and satellite surveying. Geological engineers are also concerned with the analysis of past and future ground behaviour, mapping at all scales, and ground characterization programs for specific engineering requirements. These analyses lead geological engineers to make recommendations and prepare reports which could have major effects on the foundations of construction, mining, and civil engineering projects. Some examples of projects include rock excavation, building foundation consolidation, pressure grouting, hydraulic channel erosion control, slope and fill stabilization, landslide risk assessment, groundwater monitoring, and assessment and remediation of contamination. In addition, geological engineers are included on design teams that develop solutions to surface hazards, groundwater remediation, underground and surface excavation projects, and resource management. Like mining engineers, geological engineers also conduct resource exploration campaigns, mine evaluation and feasibility assessments, and contribute to the ongoing efficiency, sustainability, and safety of active mining projects

References