Pharmaceutical engineering

Last updated

Pharmaceutical engineering is a branch of engineering focused on discovering, formulating, and manufacturing medication, analytical and quality control processes, and on designing, building, and improving manufacturing sites that produce drugs. It utilizes the fields of chemical engineering, biomedical engineering, pharmaceutical sciences, and industrial engineering. [1]

Contents

History

Humans have a long history of using derivatives of natural resources, such as plants, as medication. However, it was not until the late 19th century when the technological advancements of chemical companies were combined with medical research that scientists began to manipulate and engineer new medications, drug delivery techniques, and methods of mass production. [2]

Synthesizing new medications

One of the first prominent examples of an engineered, synthetic medication was made by Paul Erlich. Erlich had found that Atoxyl, an arsenic-containing compound which is harmful to humans, was very effective at killing Treponema pallidum , the bacteria which causes syphilis. He hypothesized that if the structure of Atoxyl was altered, a "magic bullet" could potentially be identified which would kill the parasitic bacteria without having any adverse effects on human health. [3] He developed many compounds stemming from the chemical structure of Atoxyl and eventually identified one compound which was the most effective against syphilis while being the least harmful to humans, which became known as Salvarsan. Salvarsan was widely used to treat syphilis within years of its discovery. [4]

Beginning of mass production

Equipment for deep-fermentation of penicillin Equipment used for making early forms of penicillin. Wellcome L0015393.jpg
Equipment for deep-fermentation of penicillin

In 1928, Alexander Fleming discovered a mold named Penicillium chrysogenum which prevented many types of bacteria from growing. Scientists identified the potential of this mold to provide treatment in humans against bacteria which cause infections. During World War II, the United Kingdom and the United States worked together to find a method of mass-producing penicillin, [5] a derivative of the Penicillium mold, which had the potential to save many lives during the war since it could treat infections common in injured soldiers. Although penicillin could be isolated from the mold in a laboratory setting, there was no known way to obtain the amount of medication needed to treat the quantity of people who needed it. Scientists with major chemical companies such as Pfizer were able to develop a deep-fermentation process which could produce a high yield of penicillin. In 1944, Pfizer opened the first penicillin factory, and its products were exported to aid the war efforts overseas. [6]

Controlled drug release

Tablets for oral consumption of medication have been utilized since approximately 1500 B.C.; [7] however, for a long time the only method of drug release was immediate release, meaning all of the medication is released in the body at once. [8] In the 1950s, sustained release technology was developed. Through mechanisms such as osmosis and diffusion, pills were designed that could release the medication over a 12-hour to 24-hour period. Smith, Kline & French developed one of the first major successful sustained release technologies. Their formulation consisted of a collection of small tablets taken at the same time, with varying amounts of wax coating that allowed some tablets to dissolve in the body faster than others. [9] The result was a continuous release of the drug as it travelled through the intestinal tract. Although modern day research focuses on extending the controlled release timescale to the order of months, once-a-day and twice-a-day pills are still the most widely utilized controlled drug release method. [8]

Formation of the ISPE

In 1980, the International Society for Pharmaceutical Engineering was formed to support and guide professionals in the pharmaceutical industry through all parts of the process of bringing new medications to the market. The ISPE writes standards and guidelines for individuals and companies to use and to model their practices after. The ISPE also hosts training sessions and conferences for professionals to attend, learn, and collaborate with others in the field. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Antibiotic</span> Antimicrobial substance active against bacteria

An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the ones which cause the common cold or influenza; drugs which inhibit growth of viruses are termed antiviral drugs or antivirals rather than antibiotics. They are also not effective against fungi; drugs which inhibit growth of fungi are called antifungal drugs.

<span class="mw-page-title-main">Penicillin</span> Group of antibiotics derived from Penicillium fungi

Penicillins are a group of β-lactam antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are synthesised by P. chrysogenum using deep tank fermentation and then purified. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

<span class="mw-page-title-main">Tablet (pharmacy)</span> Drug delivery form in which the ingredients are solidified for later consumption

A tablet is a pharmaceutical oral dosage form or solid unit dosage form. Tablets may be defined as the solid unit dosage form of medication with suitable excipients. It comprises a mixture of active substances and excipients, usually in powder form, that are pressed or compacted into a solid dose. The main advantages of tablets are that they ensure a consistent dose of medicine that is easy to consume.

<span class="mw-page-title-main">Arsphenamine</span> Antibiotic drug introduced in the 1910s

Arsphenamine, also known as Salvarsan or compound 606, is an antibiotic drug that was introduced at the beginning of the 1910s as the first effective treatment for syphilis, relapsing fever, and African trypanosomiasis. This organoarsenic compound was the first modern antimicrobial agent.

<span class="mw-page-title-main">Medication</span> Substance used to diagnose, cure, treat, or prevent disease

A medication is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and relies on the science of pharmacology for continual advancement and on pharmacy for appropriate management.

<span class="mw-page-title-main">Clarithromycin</span> Antibiotic medication

Clarithromycin, sold under the brand name Biaxin among others, is an antibiotic used to treat various bacterial infections. This includes strep throat, pneumonia, skin infections, H. pylori infection, and Lyme disease, among others. Clarithromycin can be taken by mouth as a pill or liquid.

<span class="mw-page-title-main">Pharmaceutical industry</span> Industry involved with discovery, development, production and marketing of drugs

The pharmaceutical industry is an industry in medicine that discovers, develops, produces, and markets pharmaceutical drugs for use as medications to be administered to patients, with the aim to cure and prevent diseases, or alleviate symptoms. Pharmaceutical companies may deal in generic or brand medications and medical devices. They are subject to a variety of laws and regulations that govern the patenting, testing, safety, efficacy using drug testing and marketing of drugs. The global pharmaceuticals market produced treatments worth $1,228.45 billion in 2020 and showed a compound annual growth rate (CAGR) of 1.8%.

<span class="mw-page-title-main">Biochemical engineering</span> Manufacturing by chemical reactions of biological organisms

Biochemical engineering, also known as bioprocess engineering, is a field of study with roots stemming from chemical engineering and biological engineering. It mainly deals with the design, construction, and advancement of unit processes that involve biological organisms or organic molecules and has various applications in areas of interest such as biofuels, food, pharmaceuticals, biotechnology, and water treatment processes. The role of a biochemical engineer is to take findings developed by biologists and chemists in a laboratory and translate that to a large-scale manufacturing process.

<span class="mw-page-title-main">Parke-Davis</span> Pfizer subsidiary

Parke-Davis is a subsidiary of the pharmaceutical company Pfizer. Although Parke, Davis & Co. is no longer an independent corporation, it was once America's oldest and largest drug maker, and played an important role in medical history. In 1970 Parke-Davis was acquired by Warner–Lambert, which in turn was acquired by Pfizer in 2000.

<span class="mw-page-title-main">Arsanilic acid</span> Chemical compound

Arsanilic acid, also known as aminophenyl arsenic acid or aminophenyl arsonic acid, is an organoarsenic compound, an amino derivative of phenylarsonic acid whose amine group is in the 4-position. A crystalline powder introduced medically in the late 19th century as Atoxyl, its sodium salt was used by injection in the early 20th century as the first organic arsenical drug, but it was soon found prohibitively toxic for human use.

<span class="mw-page-title-main">Capsule (pharmacy)</span> Relatively stable shell containing medicine

In the manufacture of pharmaceuticals, encapsulation refers to a range of dosage forms—techniques used to enclose medicines—in a relatively stable shell known as a capsule, allowing them to, for example, be taken orally or be used as suppositories. The two main types of capsules are:

<span class="mw-page-title-main">History of penicillin</span> Aspect of medical history

The history of penicillin follows observations and discoveries of evidence of antibiotic activity of the mould Penicillium that led to the development of penicillins that became the first widely used antibiotics. Following the production of a relatively pure compound in 1942, penicillin was the first naturally-derived antibiotic.

<span class="mw-page-title-main">Pill splitting</span>

Pill-splitting refers to the practice of splitting a tablet or pill to provide a lower dose of the active ingredient, or to obtain multiple smaller doses, either to reduce cost or because the pills available provide a larger dose than required. Many pills that are suitable for splitting come pre-scored so that they may easily be halved.

Modified-release dosage is a mechanism that delivers a drug with a delay after its administration or for a prolonged period of time or to a specific target in the body.

<span class="mw-page-title-main">Phenoxymethylpenicillin</span> Antibiotic medication

Phenoxymethylpenicillin, also known as penicillin V (PcV) and penicillin VK, is an antibiotic useful for the treatment of a number of bacterial infections. Specifically it is used for the treatment of strep throat, otitis media, and cellulitis. It is also used to prevent rheumatic fever and to prevent infections following removal of the spleen. It is given by mouth.

<span class="mw-page-title-main">Benzylpenicillin</span> Antibiotic medication

Benzylpenicillin, also known as penicillin G (PenG) or BENPEN, is an antibiotic used to treat a number of bacterial infections. This includes pneumonia, strep throat, syphilis, necrotizing enterocolitis, diphtheria, gas gangrene, leptospirosis, cellulitis, and tetanus. It is not a first-line agent for pneumococcal meningitis. Due to benzylpenicillin's limited bioavailability for oral medications, it is generally taken as an injection in the form of a sodium, potassium, benzathine, or procaine salt. Benzylpenicillin is given by injection into a vein or muscle. Two long-acting forms benzathine benzylpenicillin and procaine benzylpenicillin are available for use by injection into a muscle only.

<span class="mw-page-title-main">Drug packaging</span> Packaging for pharmaceutical preparations

Pharmaceutical packaging is the packages and the packaging processes for pharmaceutical preparations. It involves all of the operations from production through drug distribution channels to the end consumer.

<span class="mw-page-title-main">Wyeth</span> American pharmaceutical company

Wyeth was a pharmaceutical company until it was purchased by Pfizer in 2009. The company was founded in Philadelphia, Pennsylvania, in 1860 as John Wyeth and Brother. Its headquarters moved to Collegeville, Pennsylvania, and Madison, New Jersey, before its headquarters were consolidated with Pfizer's in New York City after the 2009 merger.

<span class="mw-page-title-main">Microneedle drug delivery</span>

Microneedles or Microneedle patches or Microarray patches are micron-scaled medical devices used to administer vaccines, drugs, and other therapeutic agents. While microneedles were initially explored for transdermal drug delivery applications, their use has been extended for the intraocular, vaginal, transungual, cardiac, vascular, gastrointestinal, and intracochlear delivery of drugs. Microneedles are constructed through various methods, usually involving photolithographic processes or micromolding. These methods involve etching microscopic structure into resin or silicon in order to cast microneedles. Microneedles are made from a variety of material ranging from silicon, titanium, stainless steel, and polymers. Some microneedles are made of a drug to be delivered to the body but are shaped into a needle so they will penetrate the skin. The microneedles range in size, shape, and function but are all used as an alternative to other delivery methods like the conventional hypodermic needle or other injection apparatus.

References

  1. Reklaitis, G.V.; Khinast, J.; Muzzio, F. (November 2010). "Pharmaceutical engineering science—New approaches to pharmaceutical development and manufacturing". Chemical Engineering Science. 65 (21): iv–vii. doi:10.1016/j.ces.2010.08.041.
  2. "Top Pharmaceuticals: Introduction: EMERGENCE OF PHARMACEUTICAL SCIENCE AND INDUSTRY: 1870-1930". pubs.acs.org. Retrieved 2019-02-14.
  3. Williams, KJ (2009-08-01). "The introduction of 'chemotherapy' using arsphenamine – the first magic bullet". Journal of the Royal Society of Medicine. 102 (8): 343–348. doi:10.1258/jrsm.2009.09k036. ISSN   0141-0768. PMC   2726818 . PMID   19679737.
  4. "Chemical & Engineering News: Top Pharmaceuticals: Salvarsan". pubs.acs.org. Retrieved 2019-02-14.
  5. Quinn, Roswell (March 2013). "Rethinking Antibiotic Research and Development: World War II and the Penicillin Collaborative". American Journal of Public Health. 103 (3): 426–434. doi:10.2105/AJPH.2012.300693. ISSN   0090-0036. PMC   3673487 . PMID   22698031.
  6. "Penicillin Production through Deep-tank Fermentation - National Historic Chemical Landmark". American Chemical Society. Retrieved 2019-02-14.
  7. MESTEL, ROSIE (2002-03-25). "The Colorful History of Pills Can Fill Many a Tablet". Los Angeles Times. ISSN   0458-3035 . Retrieved 2019-03-19.
  8. 1 2 Yun, Yeon Hee; Lee, Byung Kook; Park, Kinam (2015-12-10). "Controlled Drug Delivery: Historical perspective for the next generation". Journal of Controlled Release. 219: 2–7. doi:10.1016/j.jconrel.2015.10.005. ISSN   0168-3659. PMC   4656096 . PMID   26456749.
  9. Oral controlled release formulation design and drug delivery : theory to practice. Hoboken, N.J.: Wiley. 2013. ISBN   9781118060322. OCLC   898985497.
  10. "About ISPE". ISPE | International Society for Pharmaceutical Engineering. Retrieved 2019-02-15.