Treponema pallidum

Last updated

Contents

Treponema pallidum
Treponema pallidum.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Spirochaetota
Class: Spirochaetia
Order: Spirochaetales
Family: Treponemataceae
Genus: Treponema
Species:
T. pallidum
Binomial name
Treponema pallidum

Treponema pallidum, formerly known as Spirochaeta pallida, is a microaerophilic spirochaete bacterium with subspecies that cause the diseases syphilis, bejel (also known as endemic syphilis), and yaws. It is transmitted only among humans. [1] It is a helically coiled microorganism usually 6–15 μm long and 0.1–0.2 μm wide. [1] T. pallidum's lack of either a tricarboxylic acid cycle or oxidative phosphorylation results in minimal metabolic activity. [2] The treponemes have a cytoplasmic and an outer membrane. Using light microscopy, treponemes are visible only by using dark-field illumination. T. pallidum consists of three subspecies, T. p. pallidum, T. p. endemicum, and T. p. pertenue, each of which has a distinct associated disease. [3]

Subspecies

Three subspecies of T. pallidum are known: [4]

The three subspecies causing yaws, bejel, and syphilis are morphologically and serologically indistinguishable. [1] These bacteria were originally classified as members of separate species, but DNA hybridization analysis indicates they are members of the same species. Treponema carateum, the cause of pinta, remains a separate species because no isolate is available for DNA analysis. [5] Disease transmittance in subspecies T. p. endemicum and T. p. pertenue is considered non-venereal. [6] T. p. pallidum is the most invasive pathogenic subspecies, while T. carateum is the least invasive of the species. T. p. endemicum and T. p. pertenue are intermediately invasive. [1]

Microbiology

Physiology

Electron micrograph image of T. pallidum, highlighted in gold. Treponema pallidum Bacteria (Syphilis).jpg
Electron micrograph image of T. pallidum, highlighted in gold.

Treponema pallidum is a helically shaped bacterium with high motility consisting of an outer membrane, peptidoglycan layer, inner membrane, protoplasmic cylinder, and periplasmic space. [1] It is often described as Gram negative, but its outer membrane lacks lipopolysaccharide, which is found in the outer membrane of other Gram-negative bacteria. [7] It has an endoflagellum (periplasmic flagellum) consisting of four main polypeptides, a core structure, and a sheath. [8] The flagellum is located within the periplasmic space and wraps around the protoplasmic cylinder. T. pallidum's outer membrane has the most contact with host cells and contains few transmembrane proteins, limiting antigenicity, while its cytoplasmic membrane is covered in lipoproteins. [2] [9] The outer membrane's treponemal ligands' main function is attachment to host cells, with functional and antigenic relatedness between ligands. [10] The genus Treponema has ribbons of cytoskeletal cytoplasmic filaments that run the length of the cell just underneath the cytoplasmic membrane. They are composed of the intermediate filament-like protein cytoplasmic filament protein A (CfpA). Although the filaments may be involved in chromosome structure and segregation or cell division, their precise function is unknown. [9] [11]

Outer membrane

The outer membrane (OM) of T. pallidum has several features that have made it historically difficult to research. These include details such as its low protein content, its fragility, and that it contains fewer gene sequences related to other gram negative outer membranes. [12] Progress has been made using genomic sequencing and advanced computational models. The treponemal outer membrane proteins are key factors for the bacterium's pathogenesis, persistence, and immune evasion strategies. The relatively low protein content prevents antigen recognition by the immune system and the proteins that do exist protrude out of the OM, enabling its interaction with the host. [12] Treponema's reputation as a "stealth pathogen" is primarily due to this unique OM structure, which serves to evade immune detection. [12]

TP0326

TP0326 is an ortholog of the β-barrel assembly machine Bam A. BamA apparatus inserts newly synthetized and exported outer membrane proteins into the outer membrane [13]

TP0965

TP0965 is a protein that is critical for membrane fusion in T. pallidum, and is located in the periplasm. [14] TP0965 causes endothelial barrier dysfunction, a hallmark of late-stage pathogenesis of syphilis. [15] It does this by reducing the expression of tight junction proteins, which in turn increases the expression of adhesion molecules and endothelial cell permeability, which eventually leads to disruption of the endothelial layer. [16]

TP0453

TP0453 is a 287 amino acid protein associated with the inner membrane of the microbe's outer membrane. [17] This protein lacks the extensive beta sheet structure that is characteristic of other membrane proteins, and does not traverse the outer membrane. [18] This protein's function has been hypothesized to be involved with control of nutrient uptake. [19]

TP0624

Outer Membrane Protein A (OmpA) domain-containing proteins are necessary for maintaining structural integrity in Gram-negative bacteria. These domains contain peptidoglycan binding sites which creates a "structural bridge between the peptidoglycan layer and the outer memebrane." [20] The protein TP0624 found in T.pallidum has been proposed to facilitate this structural link, as well as interactions between outer membrane proteins and corresponding domains on the thin peptidoglycan layer. [20]

Treponema repeat family of proteins

The Treponema repeat family of proteins (Tpr) are proteins expressed during the infection process. Tprs are formed by a conserved N-terminal domain, an amino-terminal stretch of about 50 amino acids, a central variable region, and a conserved C-terminal domain. [13] The many different types of Tpr include TprA, TprB, TprC, TprD, and TprE, but variability of TprK is the most relevant due to the immune escape characteristics it allows. [21]

Antigen variation in TprK is regulated by gene conversion. In this way,  fragments of the seven variable regions (V1–V7) present in TprK and the 53 donor sites of TprD can be combined to produce new structured sequences. [22] TprK antigen variation can help T. pallidum to evade a strong host immune reaction and can also allow the reinfection of individuals. This is possible because the newly structured proteins can avoid antibody-specific recognition. [21]

To introduce more phenotypic diversity, T. pallidum may undergo phase variation. This process mainly happens in TprF, TprI, TprG, TprJ, and TprL, and it consists of a reversible expansion or contraction of polymeric repeats. These size variations can help the bacterium to quickly adapt to its microenvironment, dodge immune response, or even increase affinity to its host. [22]

Culture

In the past century since its initial discovery, culturing the bacteria in vitro has been difficult. [23] Without the ability to grow and maintain the bacteria in a laboratory setting, discoveries regarding its metabolism and antimicrobial sensitivity were greatly impaired. [24] However, successful long-term cultivation of T.pallidum in vitro was reported in 2017. [23] This was achieved using Sf1Ep epithelial cells from rabbits, which were a necessary condition for the continued multiplication and survival of the system. [25] The medium TpCM-2 was used, an alteration of more simple media which previously only yielded a few weeks of culture growth. [25] This success was the result of switching out minimal essential medium (MEM) with CMRL 1066, a complex tissue culture medium. [23] With development, new discoveries about T.pallidum's requirements for growth and gene expression may occur and in turn, yield research beneficial for the treatment and prevention of syphilis, outside of a host. [26] However, continuous efforts to grow T. pallidum in axenic culture have been unsuccessful, indicating that it does not satisfy Koch's postulates. [27] The challenge likely stems from the organism's strong adaptation to residing in mammalian tissue, resulting in a reduced genome and significant impairments in metabolic and biosynthetic functions. [25]

Genome

The chromosomes of the T. pallidum species are small, about 1.14 Mbp. Their DNA sequences are more than 99.7% identical. [28] About 92.9% of DNA was determined to be open reading frames, 55% of which had predicted biological functions. [2] The genome ofT. pallidum was first sequenced in 1998. [29] T. pallidum is not obtainable in a pure culture, meaning that this sequencing played an important role in filling gaps of understanding regarding the microbes' functions. T. pallidum was found to rely on its host for many molecules typically provided by biosynthetic pathways, and it is missing genes responsible for encoding key enzymes in oxidative phosphorylation and the tricarboxylic acid cycle. [30] The T. pallidum group and its reduced genome is likely the result of various adaptations, such that it no longer contains the ability to synthesize fatty acids, nucleic acids, and amino acids, instead relying on its mammalian hosts for these materials. [26] The recent sequencing of the genomes of several spirochetes permits a thorough analysis of the similarities and differences within this bacterial phylum and within the species. [31] [32] [33] T. pallidum has one of the smallest bacterial genomes and has limited metabolic capabilities, reflecting its adaptation through genome reduction to the rich environment of mammalian tissue. T. pallidum is characterized by its helical, corkscrew-like shape. [34] To avoid antibodies attacking it, the cell has few proteins exposed on the outer membrane sheath. [35] Its chromosome is about 1000 kilobase pairs and is circular with a 52.8% G + C average. [36] Sequencing has revealed a bundle of 12 proteins and some putative hemolysins are potential virulence factors of T. pallidum. [37] These virulence factors are thought to contribute to the bacterium's ability to evade the immune system and cause disease. [38]

Clinical significance

The clinical features of syphilis, yaws, and bejel occur in multiple stages that affect the skin. The skin lesions observed in the early stage last for weeks or months. The skin lesions are highly infectious, and the spirochetes in the lesions are transmitted by direct contact. The lesions regress as the immune response develops against T. pallidum. The latent stage that results can last a lifetime in many cases. In a few cases, the disease exits latency and enters a tertiary phase, in which destructive lesions of skin, bone, and cartilage ensue. Unlike yaws and bejels, syphilis in its tertiary stage often affects the heart, eyes, and nervous system, as well. [5]

Syphilis

Treponema pallidum pallidum is a motile spirochete that is generally acquired by close sexual contact, entering the host via breaches in squamous or columnar epithelium. The organism can also be transmitted to a fetus by transplacental passage during the later stages of pregnancy, giving rise to congenital syphilis. [39] The helical structure of T. p. pallidum allows it to move in a corkscrew motion through mucous membranes or enter minuscule breaks in the skin. In women, the initial lesion is usually on the labia, the walls of the vagina, or the cervix; in men, it is on the shaft or glans of the penis. [1] It gains access to the host's blood and lymph systems through tissue and mucous membranes. In more severe cases, it may gain access to the host by infecting the skeletal bones and central nervous system of the body. [1]

The incubation period for a T. p. pallidum infection is usually around 21 days, but can range from 10 to 90 days. [40]

Laboratory identification

Electron micrograph image of T. pallidum cultured on epithelial cells of cotton-tail rabbits. TreponemaPallidum.jpg
Electron micrograph image of T. pallidum cultured on epithelial cells of cotton-tail rabbits.

Treponema pallidum was first microscopically identified in syphilitic chancres by Fritz Schaudinn and Erich Hoffmann at the Charité in Berlin in 1905. [41] This bacterium can be detected with special stains, such as the Dieterle stain. T. pallidum is also detected by serology, including nontreponemal VDRL, rapid plasma reagin, treponemal antibody tests (FTA-ABS), T. pallidum immobilization reaction, and syphilis TPHA test. [42]

Treatment

During the early 1940s, rabbit models in combination with the drug penicillin allowed for a long-term drug treatment. These experiments established the groundwork that modern scientists use for syphilis therapy. Penicillin can inhibit T. pallidum in 6–8 hours, though the cells still remain in lymph nodes and regenerate. Penicillin is not the only drug that can be used to inhibit T. pallidum; any β-lactam antibiotics or macrolides can be used. [43] The T. pallidum strain 14 has built-in resistance to some macrolides, including erythromycin and azithromycin. Resistance to macrolides in T. pallidum strain 14 is believed to derive from a single-point mutation that increased the organism's livability. [44] Many of the syphilis treatment therapies only lead to bacteriostatic results, unless larger concentrations of penicillin are used for bactericidal effects. [43] [44] Penicillin overall is the most recommended antibiotic by the Centers for Disease Control, as it shows the best results with prolonged use. It can inhibit and may even kill T. pallidum at low to high doses, with each increase in concentration being more effective. [44]

Vaccine

No vaccine for syphilis is available as of 2024. The outer membrane of T. pallidum has too few surface proteins for an antibody to be effective. Efforts to develop a safe and effective syphilis vaccine have been hindered by uncertainty about the relative importance of humoral and cellular mechanisms to protective immunity, [45] and because T. pallidum outer membrane proteins have not been unambiguously identified. [46] [47] In contrast, some of the known antigens are intracellular, and antibodies are ineffective against them to clear the infection. [48] [49] [50] In the last century, several prototypes have been developed, and while none of them provided protection from the infection, some prevented bacteria from disseminating to distal organs and promoted accelerated healing. [51]

Related Research Articles

<span class="mw-page-title-main">Syphilis</span> Sexually transmitted infection

Syphilis is a sexually transmitted infection caused by the bacterium Treponema pallidum subspecies pallidum. The signs and symptoms of syphilis vary depending in which of the four stages it presents. The primary stage classically presents with a single chancre though there may be multiple sores. In secondary syphilis, a diffuse rash occurs, which frequently involves the palms of the hands and soles of the feet. There may also be sores in the mouth or vagina. In latent syphilis, which can last for years, there are few or no symptoms. In tertiary syphilis, there are gummas, neurological problems, or heart symptoms. Syphilis has been known as "the great imitator" as it may cause symptoms similar to many other diseases.

<i>Neisseria gonorrhoeae</i> Species of bacterium

Neisseria gonorrhoeae, also known as gonococcus (singular) or gonococci (plural), is a species of Gram-negative diplococci bacteria isolated by Albert Neisser in 1879. It causes the sexually transmitted genitourinary infection gonorrhea as well as other forms of gonococcal disease including disseminated gonococcemia, septic arthritis, and gonococcal ophthalmia neonatorum.

<span class="mw-page-title-main">Spirochaete</span> Phylum of bacteria

A spirochaete or spirochete is a member of the phylum Spirochaetota, which contains distinctive diderm (double-membrane) Gram-negative bacteria, most of which have long, helically coiled cells. Spirochaetes are chemoheterotrophic in nature, with lengths between 3 and 500 μm and diameters around 0.09 to at least 3 μm.

<span class="mw-page-title-main">Rapid plasma reagin</span> Test for syphilis

The rapid plasma reagin test is a type of rapid diagnostic test that looks for non-specific antibodies in the blood of the patient that may indicate an infection by syphilis or related non-venereal treponematoses. It is one of several nontreponemal tests for syphilis. The term reagin means that this test does not look for antibodies against the bacterium itself, Treponema pallidum, but rather for antibodies against substances released by cells when they are damaged by T. pallidum. Traditionally, syphilis serologic testing has been performed using a nontreponemal test (NTT) such as the RPR or VDRL test, with positive results then confirmed using a specific treponemal test (TT) such as TPPA or FTA-ABS. This method is endorsed by the U.S. Centers for Disease Control and Prevention (CDC) and is the standard in many parts of the world. After screening for syphilis, a titer can be used to track the progress of the disease over time and its response to therapy.

Pinta is a human skin disease caused by infection with the spirochete Treponema carateum, which is morphologically and serologically indistinguishable from the bacterium that causes syphilis. The disease was previously known to be endemic to Mexico, Central America, and South America; it may have been eradicated since, with the latest case occurring in Brazil in 2020.

<i>Treponema</i> Genus of bacteria

Treponema is a genus of spiral-shaped bacteria. The major treponeme species of human pathogens is Treponema pallidum, whose subspecies are responsible for diseases such as syphilis, bejel, and yaws. Treponema carateum is the cause of pinta. Treponema paraluiscuniculi is associated with syphilis in rabbits. Treponema succinifaciens has been found in the gut microbiome of traditional rural human populations.

<i>Borrelia burgdorferi</i> Species of bacteria

Borrelia burgdorferi is a bacterial species of the spirochete class in the genus Borrelia, and is one of the causative agents of Lyme disease in humans. Along with a few similar genospecies, some of which also cause Lyme disease, it makes up the species complex of Borrelia burgdorferi sensu lato. The complex currently comprises 20 accepted and 3 proposed genospecies. B. burgdorferi sensu stricto exists in North America and Eurasia and until 2016 was the only known cause of Lyme disease in North America. Borrelia species are Gram-negative.

<span class="mw-page-title-main">Nonvenereal endemic syphilis</span> Medical condition

Bejel, or endemic syphilis, is a chronic skin and tissue disease caused by infection by the endemicum subspecies of the spirochete Treponema pallidum. Bejel is one of the "endemic treponematoses", a group that also includes yaws and pinta. Typically, endemic trepanematoses begin with localized lesions on the skin or mucous membranes. Pinta is limited to affecting the skin, whereas bejel and yaws are considered to be invasive because they can also cause disease in bone and other internal tissues.

<i>Moraxella catarrhalis</i> Species of bacterium

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

<i>Borrelia</i> Genus of bacteria

Borrelia is a genus of bacteria of the spirochete phylum. Several species cause Lyme disease, also called Lyme borreliosis, a zoonotic, vector-borne disease transmitted by ticks. Other species of Borrelia cause relapsing fever, and are transmitted by ticks or lice, depending on the species of bacteria. A few Borrelia species as Candidatus Borrelia mahuryensis harbor intermediate genetic features between Lyme disease and relapsing fever Borrelia. The genus is named after French biologist Amédée Borrel (1867–1936), who first documented the distinction between a species of Borrelia, B. anserina, and the other known type of spirochete at the time, Treponema pallidum. This bacterium must be viewed using dark-field microscopy, which make the cells appear white against a dark background. Borrelia species are grown in Barbour-Stoenner-Kelly medium. Of 52 known species of Borrelia, 20 are members of the Lyme disease group, 29 belong to the relapsing fever group, and two are members of a genetically distinct third group typically found in reptiles. A proposal has been made to split the Lyme disease group based on genetic diversity and move them to their own genus, Borelliella, but this change is not widely accepted. This bacterium uses hard and soft ticks and lice as vectors. Testing for the presence of the bacteria in a human includes two-tiered serological testing, including immunoassays and immunoblotting.

The fluorescent treponemal antibody absorption (FTA-ABS) test is a diagnostic test for syphilis. Using antibodies specific for the Treponema pallidum species, such tests would be assumed to be more specific than non-treponemal testing such as VDRL but have been shown repeatedly to be sensitive but not specific for the diagnosis of neurosyphilis in cerebrospinal fluid (CSF). In addition, FTA-ABS turns positive earlier and remains positive longer than VDRL. Other treponemes, such as T. pertenue, may also produce a positive FTA-ABS. The ABS suffix refers particularly to a processing step used to remove nonspecific antispirochetal antibodies present in normal serum.

In, molecular genetics, an ORFeome refers to the complete set of open reading frames (ORFs) in a genome. The term may also be used to describe a set of cloned ORFs. ORFs correspond to the protein coding sequences (CDS) of genes. ORFs can be found in genome sequences by computer programs such as GENSCAN and then amplified by PCR. While this is relatively trivial in bacteria the problem is non-trivial in eukaryotic genomes because of the presence of introns and exons as well as splice variants.

<span class="mw-page-title-main">Lyme disease microbiology</span>

Lyme disease, or borreliosis, is caused by spirochetal bacteria from the genus Borrelia, which has 52 known species. Three main species are the main causative agents of the disease in humans, while a number of others have been implicated as possibly pathogenic. Borrelia species in the species complex known to cause Lyme disease are collectively called Borrelia burgdorferisensu lato (s.l.) not to be confused with the single species in that complex Borrelia burgdorferi sensu stricto which is responsible for nearly all cases of Lyme disease in North America.

Porphyromonas gingivalis belongs to the phylum Bacteroidota and is a nonmotile, Gram-negative, rod-shaped, anaerobic, pathogenic bacterium. It forms black colonies on blood agar.

Treponema denticola is a Gram-negative, obligate anaerobic, motile and highly proteolytic spirochete bacterium. It is one of four species of oral spirochetes to be reliably cultured, the others being Treponema pectinovorum, Treponema socranskii and Treponema vincentii. T. denticola dwells in a complex and diverse microbial community within the oral cavity and is highly specialized to survive in this environment. T. denticola is associated with the incidence and severity of human periodontal disease. Treponema denticola is one of three bacteria that form the Red Complex, the other two being Porphyromonas gingivalis and Tannerella forsythia. Together they form the major virulent pathogens that cause chronic periodontitis. Having elevated T. denticola levels in the mouth is considered one of the main etiological agents of periodontitis. T. denticola is related to the syphilis-causing obligate human pathogen, Treponema pallidum subsp. pallidum. It has also been isolated from women with bacterial vaginosis.

<span class="mw-page-title-main">Prokaryotic cytoskeleton</span> Structural filaments in prokaryotes

The prokaryotic cytoskeleton is the collective name for all structural filaments in prokaryotes. It was once thought that prokaryotic cells did not possess cytoskeletons, but advances in visualization technology and structure determination led to the discovery of filaments in these cells in the early 1990s. Not only have analogues for all major cytoskeletal proteins in eukaryotes been found in prokaryotes, cytoskeletal proteins with no known eukaryotic homologues have also been discovered. Cytoskeletal elements play essential roles in cell division, protection, shape determination, and polarity determination in various prokaryotes.

<span class="mw-page-title-main">History of syphilis</span>

The first recorded outbreak of syphilis in Europe occurred in 1494/1495 in Naples, Italy, during a French invasion. Because it was spread geographically by French troops returning from that campaign, the disease was known as "French disease", and it was not until 1530 that the term "syphilis" was first applied by the Italian physician and poet Girolamo Fracastoro. The causative organism, Treponema pallidum, was first identified by Fritz Schaudinn and Erich Hoffmann in 1905 at the Charité Clinic in Berlin. The first effective treatment, Salvarsan, was developed in 1910 by Sahachiro Hata in the laboratory of Paul Ehrlich. It was followed by the introduction of penicillin in 1943.

<span class="mw-page-title-main">Meningeal syphilis</span> Medical condition

Meningeal syphilis is a chronic form of syphilis infection that affects the central nervous system. Treponema pallidum, a spirochate bacterium, is the main cause of syphilis, which spreads drastically throughout the body and can infect all its systems if not treated appropriately. Treponema pallidum is the main cause of the onset of meningeal syphilis and other treponemal diseases, and it consists of a cytoplasmic and outer membrane that can cause a diverse array of diseases in the central nervous system and brain.

Spiral bacteria, bacteria of spiral (helical) shape, form the third major morphological category of prokaryotes along with the rod-shaped bacilli and round cocci. Spiral bacteria can be subclassified by the number of twists per cell, cell thickness, cell flexibility, and motility. The two types of spiral cells are spirillum and spirochete, with spirillum being rigid with external flagella, and spirochetes being flexible with internal flagella.

Sheila Lukehart is an American physician who is Emeritus Professor of Medicine at the University of Washington. Her research covered immune responses and the pathogenesis of syphilis. In 2023, she was elected a Fellow of the American Society for Microbiology.

References

  1. 1 2 3 4 5 6 7 Radolf JD (1996). Baron S (ed.). Treponema (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston. ISBN   978-0963117212. PMID   21413263 . Retrieved 13 February 2019.
  2. 1 2 3 Norris SJ, Cox DL, Weinstock GM (2001). "Biology of Treponema pallidum: Correlation of Functional Activities With Genome Sequence Data" (PDF). JMMB Review. 3 (1): 37–62. PMID   11200228.
  3. Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, Voorhis WC, Lukehart SA (1 September 2006). "Molecular Differentiation of Treponema pallidum Subspecies". Journal of Clinical Microbiology. 44 (9): 3377–3380. doi:10.1128/JCM.00784-06. ISSN   0095-1137. PMC   1594706 . PMID   16954278.
  4. Marks M, Solomon AW, Mabey DC (October 2014). "Endemic treponemal diseases". Transactions of the Royal Society of Tropical Medicine and Hygiene. 108 (10): 601–7. doi:10.1093/trstmh/tru128. PMC   4162659 . PMID   25157125.
  5. 1 2 Giacani L, Lukehart SA (January 2014). "The endemic treponematoses". Clinical Microbiology Reviews. 27 (1): 89–115. doi:10.1128/CMR.00070-13. PMC   3910905 . PMID   24396138.
  6. "Other Treponema pallidum infections | Immigrant and Refugee Health | CDC". www.cdc.gov. 26 February 2019. Retrieved 12 November 2019.
  7. Peeling RW, Mabey D, Kamb ML, Chen XS, Radolf JD, Benzaken AS (October 2017). "Syphilis". Nature Reviews. Disease Primers. 3: 17073. doi:10.1038/nrdp.2017.73. PMC   5809176 . PMID   29022569.
  8. San Martin F, Fule L, Iraola G, Buschiazzo A, Picardeau M (1 March 2023). "Diving into the complexity of the spirochetal endoflagellum". Trends in Microbiology. 31 (3): 294–307. doi: 10.1016/j.tim.2022.09.010 . ISSN   0966-842X. PMID   36244923. S2CID   252916923.
  9. 1 2 Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ (November 2010). "Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryoelectron tomography". Journal of Molecular Biology. 403 (4): 546–61. doi:10.1016/j.jmb.2010.09.020. PMC   2957517 . PMID   20850455.
  10. Alderete JF, Baseman JB (December 1980). "Surface Characterization of Virulent Treponema pallidum". Infection and Immunity. 30 (3): 814–823. doi: 10.1128/iai.30.3.814-823.1980 . ISSN   0019-9567. PMC   551388 . PMID   7014451.
  11. Izard J (2006). "Cytoskeletal cytoplasmic filament ribbon of Treponema: a member of an intermediate-like filament protein family". Journal of Molecular Microbiology and Biotechnology. 11 (3–5): 159–66. doi:10.1159/000094052. PMID   16983193. S2CID   40913042.
  12. 1 2 3 Radolf JD, Kumar S (2018). "The Treponema pallidum Outer Membrane". Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology. Vol. 415. pp. 1–38. doi:10.1007/82_2017_44. ISBN   978-3-319-89637-3. ISSN   0070-217X. PMC   5924592 . PMID   28849315.
  13. 1 2 Hawley KL, Montezuma-Rusca JM, Delgado KN, Singh N, Uversky VN, Caimano MJ, Radolf JD, Luthra A (8 July 2021). Galperin MY (ed.). "Structural Modeling of the Treponema pallidum Outer Membrane Protein Repertoire: a Road Map for Deconvolution of Syphilis Pathogenesis and Development of a Syphilis Vaccine". Journal of Bacteriology. 203 (15): e0008221. doi:10.1128/JB.00082-21. ISSN   0021-9193. PMC   8407342 . PMID   33972353.
  14. Chen J, Huang J, Liu Z, Xie Y (27 September 2022). "Treponema pallidum outer membrane proteins: current status and prospects". Pathogens and Disease. 80 (1). doi: 10.1093/femspd/ftac023 . ISSN   2049-632X. PMID   35869970.
  15. McKevitt M, Brinkman MB, McLoughlin M, Perez C, Howell JK, Weinstock GM, Norris SJ, Palzkill T (July 2005). "Genome Scale Identification of Treponema pallidum Antigens". Infection and Immunity. 73 (7): 4445–4450. doi:10.1128/iai.73.7.4445-4450.2005. ISSN   0019-9567. PMC   1168556 . PMID   15972547.
  16. Zhang RL, Zhang JP, Wang QQ (16 December 2014). "Recombinant Treponema pallidum Protein Tp0965 Activates Endothelial Cells and Increases the Permeability of Endothelial Cell Monolayer". PLOS ONE. 9 (12): e115134. Bibcode:2014PLoSO...9k5134Z. doi: 10.1371/journal.pone.0115134 . ISSN   1932-6203. PMC   4267829 . PMID   25514584.
  17. Chen J, Huang J, Liu Z, Xie Y (2022). "Treponema pallidum outer membrane proteins: current status and prospects". Pathogens and Disease. 80 (1). doi:10.1093/femspd/ftac023. ISSN   2049-632X. PMID   35869970.
  18. Hazlett KR, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD (September 2005). "TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability". Journal of Bacteriology. 187 (18): 6499–6508. doi:10.1128/JB.187.18.6499-6508.2005. ISSN   0021-9193. PMC   1236642 . PMID   16159783.
  19. Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD (2 December 2011). "The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices". The Journal of Biological Chemistry. 286 (48): 41656–41668. doi: 10.1074/jbc.M111.305284 . ISSN   1083-351X. PMC   3308875 . PMID   21965687.
  20. 1 2 Parker ML, Houston S, Wetherell C, Cameron CE, Boulanger MJ (10 November 2016). "The Structure of Treponema pallidum Tp0624 Reveals a Modular Assembly of Divergently Functionalized and Previously Uncharacterized Domains". PLOS ONE. 11 (11): e0166274. Bibcode:2016PLoSO..1166274P. doi: 10.1371/journal.pone.0166274 . ISSN   1932-6203. PMC   5104382 . PMID   27832149.
  21. 1 2 Centurion-Lara A, Castro C, Barrett L, Cameron C, Mostowfi M, Van Voorhis WC, Lukehart SA (15 February 1999). "Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response". The Journal of Experimental Medicine. 189 (4): 647–656. doi:10.1084/jem.189.4.647. ISSN   0022-1007. PMC   2192927 . PMID   9989979.
  22. 1 2 Tang Y, Zhou Y, He B, Cao T, Zhou X, Ning L, Chen E, Li Y, Xie X, Peng B, Hu Y, Liu S (19 October 2022). "Investigation of the immune escape mechanism of Treponema pallidum". Infection. 51 (2): 305–321. doi:10.1007/s15010-022-01939-z. ISSN   1439-0973. PMID   36260281. S2CID   252994863.
  23. 1 2 3 Edmondson DG, Hu B, Norris SJ (June 2018). "Long-Term in Vitro Culture of the Syphilis Spirochete Treponema pallidum subsp. pallidum". mBio. 9 (3). doi:10.1128/mBio.01153-18. PMC   6020297 . PMID   29946052.
  24. Radolf JD, Kumar S (2018). "The Treponema pallidum Outer Membrane". Spirochete Biology: The Post Genomic Era. Current Topics in Microbiology and Immunology. Vol. 415. pp. 1–38. doi:10.1007/82_2017_44. ISBN   978-3-319-89637-3. ISSN   0070-217X. PMC   5924592 . PMID   28849315.
  25. 1 2 3 Edmondson DG, DeLay BD, Kowis LE, Norris SJ (23 February 2021). "Parameters Affecting Continuous In Vitro Culture of Treponema pallidum Strains". mBio. 12 (1): 10.1128/mbio.03536–20. doi:10.1128/mbio.03536-20. PMC   8545124 . PMID   33622721.
  26. 1 2 Edmondson DG, Norris SJ (February 2021). "In Vitro Cultivation of the Syphilis Spirochete Treponema pallidum". Current Protocols. 1 (2): e44. doi:10.1002/cpz1.44. ISSN   2691-1299. PMC   7986111 . PMID   33599121.
  27. Prescott J, Feldmann H, Safronetz D (January 2017). "Amending Koch's postulates for viral disease: When "growth in pure culture" leads to a loss of virulence". Antiviral Research. 137: 1–5. doi:10.1016/j.antiviral.2016.11.002. ISSN   0166-3542. PMC   5182102 . PMID   27832942.
  28. Šmajs D, Strouhal M, Knauf S (July 2018). "Genetics of human and animal uncultivable treponemal pathogens". Infection, Genetics and Evolution. 61: 92–107. doi:10.1016/j.meegid.2018.03.015. PMID   29578082. S2CID   4826749.
  29. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. (July 1998). "Complete genome sequence of Treponema pallidum, the syphilis spirochete". Science. 281 (5375): 375–88. Bibcode:1998Sci...281..375F. doi:10.1126/science.281.5375.375. PMID   9665876. S2CID   8641048.
  30. Willey JM (2020). Prescott's Microbiology, Eleventh Edition. New York: McGraw-Hill Education. p. 436. ISBN   978-1-260-21188-7.
  31. Zobaníková M, Mikolka P, Cejková D, Pospíšilová P, Chen L, Strouhal M, Qin X, Weinstock GM, Smajs D (October 2012). "Complete genome sequence of Treponema pallidum strain DAL-1". Standards in Genomic Sciences. 7 (1): 12–21. doi:10.4056/sigs.2615838. PMC   3570794 . PMID   23449808.
  32. Tong ML, Zhao Q, Liu LL, Zhu XZ, Gao K, Zhang HL, Lin LR, Niu JJ, Ji ZL, Yang TC (2017). "Whole genome sequence of the Treponema pallidum subsp. pallidum strain Amoy: An Asian isolate highly similar to SS14". PLOS ONE. 12 (8): e0182768. Bibcode:2017PLoSO..1282768T. doi: 10.1371/journal.pone.0182768 . PMC   5546693 . PMID   28787460.
  33. Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, Dodson RJ, et al. (April 2004). "Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes". Proceedings of the National Academy of Sciences of the United States of America. 101 (15): 5646–51. Bibcode:2004PNAS..101.5646S. doi: 10.1073/pnas.0307639101 . PMC   397461 . PMID   15064399.
  34. Clark DP, Dunlap PV, Madigan JT, Martinko JM (2009). Brock Biology of Microorganisms. San Francisco: Pearson. p. 79.
  35. Willey JM (2020). Prescott's Microbiology (11th ed.). New York: McGraw-Hill Education. p. 499. ISBN   978-1-260-21188-7.
  36. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E (17 July 1998). "Complete Genome Sequence of Treponema pallidum, the Syphilis Spirochete". Science. 281 (5375): 375–388. Bibcode:1998Sci...281..375F. doi:10.1126/science.281.5375.375. ISSN   0036-8075. PMID   9665876. S2CID   8641048.
  37. Weinstock GM, Hardham JM, McLeod MP, Sodergren EJ, Norris SJ (1 October 1998). "The genome of Treponema pallidum: new light on the agent of syphilis". FEMS Microbiology Reviews. 22 (4): 323–332. doi: 10.1111/j.1574-6976.1998.tb00373.x . ISSN   0168-6445. PMID   9862125.
  38. Weinstock GM, Hardham JM, McLeod MP, Sodergren E (1998). "The genome of Treponema pallidum: new light on the agent of syphilis". FEMS Microbiology Reviews. 22 (4): 323–332. doi:10.1111/j.1574-6976.1998.tb00373.x. PMID   9862125 . Retrieved 18 November 2023.
  39. Arora N, Sadovsky Y, Dermody TS, Coyne CB. Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe. 2017 May 10;21(5):561-567. doi: 10.1016/j.chom.2017.04.007. PMID 28494237; PMCID: PMC6148370.
  40. "STD Facts – Syphilis (Detailed)". Centers for Disease Control (CDC). Retrieved 19 April 2017.
  41. Schaudinn FR, Hoffmann E (1905). "Vorläufiger Bericht über das Vorkommen von Spirochaeten in syphilitischen Krankheitsprodukten und bei Papillomen" [Preliminary report on the occurrence of Spirochaetes in syphilitic chancres and papillomas]. Arbeiten aus dem Kaiserlichen Gesundheitsamte . 22: 527–534.
  42. Fisher B, Harvey RP, Champe PC (2007). Lippincott's Illustrated Reviews: Microbiology (Lippincott's Illustrated Reviews Series). Hagerstown, MD: Lippincott Williams & Wilkins. ISBN   978-0-7817-8215-9.
  43. 1 2 Fantry LE, Tramont EC. "Treponema Pallidum (Syphilis)". Infectious Disease and Antimicrobial Agents. Retrieved 12 November 2019 via www.antimicrobe.org.
  44. 1 2 3 Stamm LV (1 February 2010). "Global Challenge of Antibiotic-Resistant Treponema pallidum". Antimicrobial Agents and Chemotherapy. 54 (2): 583–589. doi:10.1128/AAC.01095-09. ISSN   0066-4804. PMC   2812177 . PMID   19805553.
  45. Bishop NH, Miller JN (July 1976). "Humoral immunity in experimental syphilis. I. The demonstration of resistance conferred by passive immunization". Journal of Immunology. 117 (1): 191–6. doi:10.4049/jimmunol.117.1.191. PMID   778261. S2CID   255333392.
  46. Tomson FL, Conley PG, Norgard MV, Hagman KE (September 2007). "Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins". Microbes and Infection. 9 (11): 1267–75. doi:10.1016/j.micinf.2007.05.018. PMC   2112743 . PMID   17890130.
  47. Cameron CE, Lukehart SA (March 2014). "Current status of syphilis vaccine development: need, challenges, prospects". Vaccine. 32 (14): 1602–9. doi:10.1016/j.vaccine.2013.09.053. PMC   3951677 . PMID   24135571.
  48. Penn CW, Bailey MJ, Cockayne A (April 1985). "The axial filament antigen of Treponema pallidum". Immunology. 54 (4): 635–41. PMC   1453562 . PMID   3884491.
  49. Norris SJ (September 1993). "Polypeptides of Treponema pallidum: progress toward understanding their structural, functional, and immunologic roles. Treponema Pallidum Polypeptide Research Group". Microbiological Reviews. 57 (3): 750–79. doi:10.1128/MMBR.57.3.750-779.1993. PMC   372934 . PMID   8246847.
  50. Izard J, Renken C, Hsieh CE, Desrosiers DC, Dunham-Ems S, La Vake C, Gebhardt LL, Limberger RJ, Cox DL, Marko M, Radolf JD (December 2009). "Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete". Journal of Bacteriology. 191 (24): 7566–80. doi:10.1128/JB.01031-09. PMC   2786590 . PMID   19820083.
  51. Ávila-Nieto C, Pedreño-López N, Mitjà O, Clotet B, Blanco J, Carrillo J (2023). "Syphilis vaccine: challenges, controversies and opportunities". Frontiers in Immunology. 14: 1126170. doi: 10.3389/fimmu.2023.1126170 . ISSN   1664-3224. PMC   10118025 . PMID   37090699.

Further reading