California bearing ratio

Last updated

The California Bearing Ratio (CBR) is a measure of the strength of the subgrade of a road or other paved area, and of the materials used in its construction.

Contents

The ratio is measured using a standardized penetration test first developed by the California Division of Highways for highway engineering. [1] Empirical tests measure the strength of the material and are not a true representation of the resilient modulus.[ citation needed ]

Definition

The CBR is the ratio of the bearing load that penetrates a material to a specific depth compared with the load giving the same penetration into crushed stone. The test measures neither Stiffness Modulus nor Shear Strength directly, but gives a combined measure of both. [2]

Penetration is measured by applying the bearing load on the sample using a standard plunger of diameter 50 mm at the rate of 1.25 mm/min. The CBR is expressed as a percentage of the actual load causing the penetrations of 2.5 mm or 5.0 mm to the standard loads on crushed stone. A load penetration curve is drawn. The load values on standard crushed stones are 1,370 kgf (13.44 kN) and 2,055 kgf (20.15 kN) at 2.5 mm and 5.0 mm penetrations respectively.[ citation needed ]

The CBR can be mathematically expressed as:

= measured pressure for site soils [N/mm2]
= pressure to achieve equal penetration on standard crushed stone [N/mm2]

Test procedure

The CBR test is a penetration test in which a standard piston, with a diameter of 50 mm (1.969 in), is used to penetrate the soil at a standard rate of 1.25 mm/minute.

Although the force increases with the depth of penetration, in most cases, it does not increase as quickly as it does for the standard crushed rock, so the ratio decreases. In some cases, the ratio at 5 mm may be greater than that at 2.5 mm. If this occurs, the ratio at 5 mm should be used. The CBR measures a material's resistance to penetration of a standard plunger under controlled density and moisture conditions. The test procedure should be strictly adhered to if a high degree of reproducibility is desired. The CBR test may be conducted on a remolded or undisturbed specimen in the laboratory. The test is simple and has been extensively investigated for field correlations of flexible pavement thickness requirements. [3] [4]

The laboratory CBR apparatus consists of a mould of 150 mm diameter with a base plate and a collar, a loading frame and dial gauges for measuring the penetration values and the expansion on soaking. If a soaked (wet) measurement is desired, the specimen in the mould is soaked in water for four days and the swelling and water absorption values are noted. The surcharge weight is placed on the top of the specimen in the mould and the assembly is placed under the plunger of the loading frame. [5]

Example values

CBR values for common soil subgrades can be estimated according to the USC soil types, for example: clay around 2%, sand from 7% (poorly graded) to 10% (well graded), well graded sandy gravel 15%, clayey sand 5-20%, silty gravel 20-60%, gravel from 30-60% poorly-graded to 40-80% if well-graded. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Highway engineering</span> Civil engineering of roads, bridges, and tunnels

Highway engineering is a professional engineering discipline branching from the civil engineering subdiscipline of transportation engineering that involves the planning, design, construction, operation, and maintenance of roads, highways, streets, bridges, and tunnels to ensure safe and effective transportation of people and goods. Highway engineering became prominent towards the latter half of the 20th century after World War II. Standards of highway engineering are continuously being improved. Highway engineers must take into account future traffic flows, design of highway intersections/interchanges, geometric alignment and design, highway pavement materials and design, structural design of pavement thickness, and pavement maintenance.

<span class="mw-page-title-main">Rockwell scale</span> Hardness scale

The Rockwell scale is a hardness scale based on indentation hardness of a material. The Rockwell test measures the depth of penetration of an indenter under a large load compared to the penetration made by a preload. There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, HRB, HRC, etc., where the last letter is the respective Rockwell scale. Larger numbers correspond to harder materials.

<span class="mw-page-title-main">Road surface</span> Road covered with durable surface material

A road surface or pavement is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, macadam, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads. Metalled roadways are made to sustain vehicular load and so are usually made on frequently used roads. Unmetalled roads, also known as gravel roads or dirt roads, are rough and can sustain less weight. Road surfaces are frequently marked to guide traffic.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension. In the study of strength of materials, compressive strength, tensile strength, and shear strength can be analyzed independently.

<span class="mw-page-title-main">Asphalt concrete</span> Composite material used for paving

Asphalt concrete is a composite material commonly used to surface roads, parking lots, airports, and the core of embankment dams. Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century. It consists of mineral aggregate bound together with bitumen, laid in layers, and compacted.

<span class="mw-page-title-main">Cone penetration test</span> Method used to determine the geotechnical engineering properties of soils

The cone penetration or cone penetrometer test (CPT) is a method used to determine the geotechnical engineering properties of soils and delineating soil stratigraphy. It was initially developed in the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft soils. Based on this history it has also been called the "Dutch cone test". Today, the CPT is one of the most used and accepted soil methods for soil investigation worldwide.

<span class="mw-page-title-main">Brinell scale</span> Brinell scale of hardness

The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, and hydrology.

<span class="mw-page-title-main">Falling weight deflectometer</span> Road testing device

A falling weight deflectometer (FWD) is a testing device used by civil engineers to evaluate the physical properties of pavement in highways, local roads, airport pavements, harbor areas, railway tracks and elsewhere. The data acquired from FWDs is primarily used to estimate pavement structural capacity, to facilitate overlay design or determine if a pavement is being overloaded. Depending on its design, a FWD may be contained within a towable trailer or it may be built into a self-propelled vehicle such as a truck or van. Comprehensive road survey vehicles typically consist of a FWD mounted on a heavy truck together with a ground-penetrating radar and impact attenuator.

<span class="mw-page-title-main">Vickers hardness test</span> Hardness test

The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe a material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.

Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.

<span class="mw-page-title-main">Subbase (pavement)</span> Layer of a paved road

In highway engineering, subbase is the layer of aggregate material laid on the subgrade, on which the base course layer is located. It may be omitted when there will be only foot traffic on the pavement, but it is necessary for surfaces used by vehicles.

The R-Value test measures the response of a compacted sample of soil or aggregate to a vertically applied pressure under specific conditions. This test is used by Caltrans for pavement design, replacing the California bearing ratio test. Many other agencies have adopted the California pavement design method, and specify R-Value testing for subgrade soils and road aggregates.

<span class="mw-page-title-main">Geotechnical investigation</span> Work done to obtain information on the physical properties of soil earthworks and foundations

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

<span class="mw-page-title-main">Geogrid</span> Synthetic material used to reinforce soils and similar materials

A geogrid is geosynthetic material used to reinforce soils and similar materials. Soils pull apart under tension. Compared to soil, geogrids are strong in tension. This fact allows them to transfer forces to a larger area of soil than would otherwise be the case.

The Proctor compaction test is a laboratory method of experimentally determining the optimal moisture content at which a given soil type will become most dense and achieve its maximum dry density. The test is named in honor of Ralph Roscoe Proctor, who in 1933 showed that the dry density of a soil for a given compactive effort depends on the amount of water the soil contains during soil compaction. His original test is most commonly referred to as the standard Proctor compaction test; his test was later updated to create the modified Proctor compaction test.

<span class="mw-page-title-main">Cellular confinement</span> Confinement system used in construction and geotechnical engineering

Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.

Meyer's law is an empirical relation between the size of a hardness test indentation and the load required to leave the indentation. The formula was devised by Eugene Meyer of the Materials Testing Laboratory at the Imperial School of Technology, Charlottenburg, Germany, circa 1908.

<span class="mw-page-title-main">Paver base</span>

Paver base is a form of aggregate used in the construction of patios and walkways whose topmost layer consists of mortarless pavers. The first layer in the construction of such a surface is called the subgrade—this is the layer of native material underneath the intended surface. It is usually compacted and stabilized. If the final pavement is to have vehicle traffic, a layer of subbase of crushed stone or concrete must come next—this layer will even out the subgrade and will bear the heaviest load from the pavement above. Next comes the base course composed of crushed gravel varying from 0.75 in (1.9 cm) down to dust-particle size. It too is typically compacted and evened. The next layer will be the paver base, composed of coarse sand and typically between 6 and 12 in thick, depending on anticipated traffic.

The Neoloy Geocell is a Cellular Confinement System (geocell) developed and manufactured by PRS Geo-Technologies Ltd. Geocells are extruded in ultrasonically welded strips. The folded strips are opened on-site to form a 3D honeycomb matrix, which is then filled with granular material. The 3D confinement system is used to stabilize soft subgrade soil and reinforce the subbase and base layers in flexible pavements. Cellular confinement is also used for soil protection and erosion control for slopes, including channels, retention walls, reservoirs and landfills.

References

  1. Horonjeff, Robert; Jones, John Hugh (1953). The Design of Flexible and Rigid Pavements. University of California Press. p. 1.
  2. "Interim Advice Note 73/06 Design guidance for road pavement foundations" (PDF). Standards for Highways. Feb 2006. Retrieved June 17, 2022.
  3. Boddie, Francis. "CBR Testing UK". cbrtesting.com. Archived from the original on 9 June 2019. Retrieved 23 May 2019.
  4. Jamal, Haseeb. "CBR Test". AboutCivil.Org. Archived from the original on 23 September 2019. Retrieved 23 September 2019.
  5. California Bearing Ratio Test
  6. "Soil Stiffness and Problem Soils and draw the curve" (PDF). University of Memphis. p. 14.
  7. The SuDS manual (v6 ed.). London: CIRIA. 2015. p. 409. ISBN   978-0-86017-759-3. Archived from the original on 2021-06-14. Retrieved 2021-06-14.