Bearing capacity

Last updated

In geotechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement.

Contents

There are three modes of failure that limit bearing capacity: general shear failure, local shear failure, and punching shear failure. It depends upon the shear strength of soil as well as shape, size, depth and type of foundation.

Introduction

A foundation is the part of a structure which transmits the weight of the structure to the ground. All structures constructed on land are supported on foundations. A foundation is a connecting link between the structure proper and the ground which supports it. The bearing strength characteristics of foundation soil are major design criterion for civil engineering structures. In nontechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground. The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety. Sometimes, on soft soil sites, large settlements may occur under loaded foundations without actual shear failure occurring; in such cases, the allowable bearing capacity is based on the maximum allowable settlement. [1]

General bearing failure

A general bearing failure occurs when the load on the footing causes large movement of the soil on a shear failure surface which extends away from the footing and up to the soil surface. Calculation of the capacity of the footing in general bearing is based on the size of the footing and the soil properties. The basic method was developed by Terzaghi, with modifications and additional factors by Meyerhof and Vesić. . The general shear failure case is the one normally analyzed. Prevention against other failure modes is accounted for implicitly in settlement calculations. [2] Stress distribution in elastic soils under foundations was found in a closed form by Ludwig Föppl (1941) and Gerhard Schubert (1942). [3] There are many different methods for computing when this failure will occur.

Terzaghi's Bearing Capacity Theory

Karl von Terzaghi was the first to present a comprehensive theory for the evaluation of the ultimate bearing capacity of rough shallow foundations. This theory states that a foundation is shallow if its depth is less than or equal to its width. [4] Later investigations, however, have suggested that foundations with a depth, measured from the ground surface, equal to 3 to 4 times their width may be defined as shallow foundations. [4]

Terzaghi developed a method for determining bearing capacity for the general shear failure case in 1943. The equations, which take into account soil cohesion, soil friction, embedment, surcharge, and self-weight, are given below. [4]

For square foundations:

For continuous foundations:

For circular foundations:

where

for φ' = 0 [Note: 5.14 is Meyerhof's value -- see below. Terzaghi's value is 5.7.]
for φ' > 0 [Note: As phi' goes to zero, N_c goes to 5.71...]
c is the effective cohesion.
σzD is the vertical effective stress at the depth the foundation is laid.
γ is the effective unit weight when saturated or the total unit weight when not fully saturated.
B is the width or the diameter of the foundation.
φ is the effective internal angle of friction.
K is obtained graphically. Simplifications have been made to eliminate the need for K. One such was done by Coduto, given below, and it is accurate to within 10%. [2]

For foundations that exhibit the local shear failure mode in soils, Terzaghi suggested the following modifications to the previous equations. [5] The equations are given below.

For square foundations:

For continuous foundations:

For circular foundations:

, the modified bearing capacity factors, can be calculated by using the bearing capacity factors equations(for , respectively) by replacing the effective internal angle of friction by a value equal to [4]

Meyerhof's Bearing Capacity theory

In 1951, Meyerhof published a bearing capacity theory which could be applied to rough shallow and deep foundations. [6] Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi's but included a shape factor s-q with the depth term Nq. He also included depth factors and inclination factors. [Note: Meyerhof re-evaluated N_q based on a different assumption from Terzaghi and found N_q = ( 1 + sin phi) exp (pi tan phi ) / (1 - sin phi). Then N_c is the same equation as Terzaghi: N_c = (N_q - 1) / tan phi. For phi = 0, Meyerhof's N_c converges to 2 + pi = 5.14.... Meyerhof also re-evaluated N_gamma and obtained N_gamma = (N_q - 1) tan(1.4 phi).]

Factor of safety

Calculating the gross allowable-load bearing capacity of shallow foundations requires the application of a factor of safety (FS) to the gross ultimate bearing capacity, or;

[4]

See also

Related Research Articles

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.

<span class="mw-page-title-main">Soil mechanics</span> Branch of soil physics and applied mechanics that describes the behavior of soils

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids and particles but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the lower or upper end of the range, and the division of the range could notionally be made at any point.

<span class="mw-page-title-main">Yield surface</span>

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

<span class="mw-page-title-main">Lateral earth pressure</span>

Lateral earth pressure is the pressure that soil exerts in the horizontal direction. The lateral earth pressure is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and braced excavations.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

<span class="mw-page-title-main">Contact mechanics</span> Study of the deformation of solids that touch each other

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused by applied normal forces and by the adhesion present on surfaces in close contact, even if they are clean and dry. Frictional contact mechanics emphasizes the effect of friction forces.

The Birnbaum–Saunders distribution, also known as the fatigue life distribution, is a probability distribution used extensively in reliability applications to model failure times. There are several alternative formulations of this distribution in the literature. It is named after Z. W. Birnbaum and S. C. Saunders.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

<span class="mw-page-title-main">Wrapped normal distribution</span>

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.

<span class="mw-page-title-main">Mindlin–Reissner plate theory</span>

The Uflyand-Mindlin theory of vibrating plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations through-the-thickness of a plate. The theory was proposed in 1948 by Yakov Solomonovich Uflyand (1916-1991) and in 1951 by Raymond Mindlin with Mindlin making reference to Uflyand's work. Hence, this theory has to be referred to as Uflyand-Mindlin plate theory, as is done in the handbook by Elishakoff, and in papers by Andronov, Elishakoff, Hache and Challamel, Loktev, Rossikhin and Shitikova and Wojnar. In 1994, Elishakoff suggested to neglect the fourth-order time derivative in Uflyand-Mindlin equations. A similar, but not identical, theory in static setting, had been proposed earlier by Eric Reissner in 1945. Both theories are intended for thick plates in which the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. The Uflyand-Mindlin theory is used to calculate the deformations and stresses in a plate whose thickness is of the order of one tenth the planar dimensions while the Kirchhoff–Love theory is applicable to thinner plates.

In the theory of quantum communication, an amplitude damping channel is a quantum channel that models physical processes such as spontaneous emission. A natural process by which this channel can occur is a spin chain through which a number of spin states, coupled by a time independent Hamiltonian, can be used to send a quantum state from one location to another. The resulting quantum channel ends up being identical to an amplitude damping channel, for which the quantum capacity, the classical capacity and the entanglement assisted classical capacity of the quantum channel can be evaluated.

References

  1. "BHM Geotechnical". www.bhmgeo.com.au.
  2. 1 2 Coduto, Donald P. (2001). Foundation design : principles and practices (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. ISBN   0135897068. OCLC   43864336.
  3. Popova, Elena; Popov, Valentin L. (2020). "Ludwig Föppl and Gerhard Schubert: Unknown classics of contact mechanics". ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 100 (9): e202000203. Bibcode:2020ZaMM..100E0203P. doi: 10.1002/zamm.202000203 .
  4. 1 2 3 4 5 Das, Braja M (2007). Principles of foundation engineering (6th ed.). Toronto, Ontario, Canada: Thomson. ISBN   978-0495082460. OCLC   71226518.
  5. "Civils.ai | Bearing Capacity". www.civils.ai. Retrieved 2022-02-04.
  6. Das, Braja M (1999). Shallow foundations : bearing capacity and settlement. Boca Raton, FL: CRC Press. ISBN   0849311357. OCLC   41137730.