Geosynthetics are synthetic products used to stabilize terrain. They are generally polymeric products used to solve civil engineering problems. This includes eight main product categories: geotextiles, geogrids, geonets, geomembranes, geosynthetic clay liners, geofoam, geocells and geocomposites. The polymeric nature of the products makes them suitable for use in the ground where high levels of durability are required. They can also be used in exposed applications. Geosynthetics are available in a wide range of forms and materials. These products have a wide range of applications and are currently used in many civil, geotechnical, transportation, geoenvironmental, hydraulic, and private development applications including roads, airfields, railroads, embankments, retaining structures, reservoirs, canals, dams, erosion control, sediment control, landfill liners, landfill covers, mining, aquaculture and agriculture.
Inclusions of different sorts mixed with soil have been used for thousands of years. They were used in roadway construction in Roman days to stabilize roadways and their edges. These early attempts were made of natural fibres, fabrics or vegetation mixed with soil to improve road quality, particularly when roads were built on unstable soil. They were also used to build steep slopes as with several pyramids in Egypt and walls as well. A fundamental problem with using natural materials (wood, cotton, etc.) in a buried environment is the biodegradation that occurs from microorganisms in the soil. With the advent of polymers in the middle of the 20th century a much more stable material became available. When properly formulated, lifetimes of centuries can be predicted even for harsh environmental conditions.
Early papers on geosynthetics (as we know them today) in the 1960s documented their use as filters in the United States and as reinforcement in Europe. A 1977 conference in Paris brought together many of the early manufacturers and practitioners. The International Geosynthetics Society (IGS) founded in 1982 has subsequently organized a worldwide conference every four years and its numerous chapters have additional conferences. Presently, separate geosynthetic institutes, trade-groups, and standards-setting groups are active. Approximately twenty universities teach stand-alone courses on geosynthetics and almost all include the subject in geotechnical, geoenvironmental, and hydraulic engineering courses. Geosynthetics are available worldwide and the activity is robust and steadily growing.
Geotextiles form one of the two largest groups of geosynthetics. They are textiles consisting of synthetic fibers rather than natural ones such as cotton, wool, or silk. This makes them less susceptible to bio-degradation. These synthetic fibers are made into flexible, porous fabrics by standard weaving machinery or are matted together in a random non woven manner. Some are also knitted. Geotextiles are porous to liquid flow across their manufactured plane and also within their thickness, but to a widely varying degree. There are at least 100 specific application areas for geotextiles that have been developed; however, the fabric always performs at least one of four discrete functions: separation, reinforcement, filtration, and/or drainage.
Geogrids represent a rapidly growing segment within geosynthetics. Rather than being a woven, nonwoven or knitted textile fabric, geogrids are polymers formed into a very open, gridlike configuration, i.e., they have large apertures between individual ribs in the transverse and longitudinal directions. Geogrids are (a) either stretched in one, two or three directions for improved physical properties, (b) made on weaving or knitting machinery by standard textile manufacturing methods, or (c) by laser or ultrasonically bonding rods or straps together. There are many specific application areas; however, geogrids function almost exclusively as reinforcement materials.
Geonets, and the related geospacers by some, constitute another specialized segment within the geosynthetics area. They are formed by a continuous extrusion of parallel sets of polymeric ribs at acute angles to one another. When the ribs are opened, relatively large apertures are formed into a netlike configuration. Two types are most common, either biplanar or triplanar. Alternatively many very different types of drainage cores are available. They consist of nubbed, dimpled or cuspated polymer sheets, three-dimensional networks of stiff polymer fibers in different configurations and perforated mini-pipes or spacers within geotextiles. Their design function is completely within the drainage area where they are used to convey liquids or gases of all types.
Geomembranes represent the other largest group of geosynthetics, and in dollar volume their sales are greater than that of geotextiles. Their growth in the United States and Germany was stimulated by governmental regulations originally enacted in the early 1980s for the lining of solid-waste landfills. The materials themselves are relatively thin, impervious sheets of polymeric material used primarily for linings and covers of liquids- or solid-storage facilities. This includes all types of landfills, surface impoundments, canals, and other containment facilities. Thus the primary function is always containment as a liquid or vapor barrier or both. The range of applications, however, is great, and in addition to the environmental area, applications are rapidly growing in geotechnical, transportation, hydraulic, and private development engineering (such as aquaculture, agriculture, heap leach mining, etc.).
Geosynthetic clay liners, or GCLs, are an interesting juxtaposition of polymeric materials and natural soils. They are rolls of factory fabricated thin layers of bentonite clay sandwiched between two geotextiles or bonded to a geomembrane. Structural integrity of the subsequent composite is obtained by needle-punching, stitching or adhesive bonding. GCLs are used as a composite component beneath a geomembrane or by themselves in geoenvironmental and containment applications as well as in transportation, geotechnical, hydraulic, and many private development applications.
Geofoam is a polymeric product created by processing polystyrene into a foam consisting of many closed cells filled with air and/or gases. The skeletal nature of the cell walls resembles bone-structures made of the unexpanded polymeric material. The resulting product is generally in the form of large, but extremely light, blocks which are stacked side-by-side and in layers providing lightweight fill in numerous applications.
Geocells (also known as Cellular Confinement Systems) are three-dimensional honeycombed cellular structures that form a confinement system when infilled with compacted soil. Extruded from polymeric materials into strips welded together ultrasonically in series, the strips are expanded to form the stiff (and typically textured and perforated) walls of a flexible 3D cellular mattress. Infilled with soil, a new composite entity is created from the cell-soil interactions. The cellular confinement reduces the lateral movement of soil particles, thereby maintaining compaction and forms a stiffened mattress that distributes loads over a wider area. Traditionally used in slope protection and earth retention applications, geocells made from advanced polymers are being increasingly adopted for long-term road and rail load support. Much larger geocells are also made from stiff geotextiles sewn into similar, but larger, unit cells that are used for protection bunkers and walls.
Geodrains are prefabricated product consisting of one or more polymeric core elements transporting fluid (perforated mini-pipes, geonets, cuspated sheets) and one or more geosynthetics separating the flow region from the surrounding environment.
A geocomposite consists of a combination of geotextiles, geogrids, geonets and/or geomembranes in a factory fabricated unit. Also, any one of these four materials can be combined with another synthetic material (e.g., deformed plastic sheets or steel cables) or even with soil. As examples, a geonet or geospacer with geotextiles on both surfaces and a GCL consisting of a geotextile/bentonite/geotextile sandwich are both geocomposites. This specific category brings out the best creative efforts of the engineer and manufacturer. The application areas are numerous and constantly growing. The major functions encompass the entire range of functions listed for geosynthetics discussed previously: separation, reinforcement, filtration, drainage, and containment.
Region | 2007 | 2012 | 2017 |
---|---|---|---|
North America | 923 | 965 | 1300 |
Western Europe | 668 | 615 | 725 |
Asia/Pacific | 723 | 1200 | 2330 |
Central and South America | 124 | 160 | 220 |
Eastern Europe | 248 | 305 | 405 |
Africa/Mideast | 115 | 155 | 220 |
Total | 2801 | 3400 | 5200 |
Type | Amount (millions m2) | Price (USD/m2) | Sales (millions USD) |
---|---|---|---|
Geotextiles | 1400 | 0.75 | 1050 |
Geogrids | 250 | 2.50 | 625 |
Geonets | 75 | 2.00 | 150 |
Geomembranes | 300 | 6.00 | 1800 |
Geosynthetic clay liners | 100 | 6.50 | 650 |
Geofoams | 5 | 75.00 | 375 |
Geocomposites | 100 | 4.00 | 400 |
Total | 2230 | 5050 |
The juxtaposition of the various types of geosynthetics just described with the primary function that the material is called upon to serve allows for the creation of an organizational matrix for geosynthetics; see table below. In essence, this matrix is the “scorecard” for understanding the entire geosynthetic field and its design related methodology. In the table the primary function that each geosynthetic can be called upon to serve is seen. Note that these are primary functions and in many cases (if not most) cases there are secondary functions, and perhaps tertiary ones as well. For example, a geotextile placed on soft soil will usually be designed on the basis of its reinforcement capability, but separation and filtration might certainly be secondary and tertiary considerations. As another example, a geomembrane is obviously used for its containment capability, but separation will always be a secondary function. The greatest variability from a manufacturing and materials viewpoint is the category of geocomposites. The primary function will depend entirely upon what is actually created, manufactured, and installed.
Type of geosynthetics (GS) | Separation | Reinforcement | Filtration | Drainage | Containment |
---|---|---|---|---|---|
2.1 Geotextile (GT) | X | X | X | X | |
2.2 Geogrid (GG) | X | ||||
2.3 Geonet (GN) or geospacer (GR) | X | ||||
2.4 Geomembrane (GM) | X | ||||
2.5 Geosynthetic clay liner (GCL) | X | ||||
2.6 Geofoam (GF) | X | ||||
2.7 Geocells (GL) | X | X | |||
2.8 Geocomposite (GC) | X | X | X | X | X |
Geosynthetics are generally designed for a particular application by considering the primary function that can be provided. As seen in the accompanying table there are five primary functions given, but some groups suggest even more. [3]
Separation is the placement of a flexible geosynthetic material, like a porous geotextile, between dissimilar materials so that the integrity and functioning of both materials can remain intact or even be improved. Paved roads, unpaved roads, and railroad bases are common applications. Also, the use of thick nonwoven geotextiles for cushioning and protection of geomembranes is in this category. In addition, for most applications of geofoam and geocells, separation is the major function.
Reinforcement is the synergistic improvement of a total system's strength created by the introduction of a geotextile, geogrid or geocell (all of which are good in tension) into a soil (that is good in compression, but poor in tension) or other disjointed and separated material. Applications of this function are in mechanically stabilized and retained earth walls and steep soil slopes; they can be combined with masonry facings to create vertical retaining walls. Also involved is the application of basal reinforcement over soft soils and over deep foundations for embankments and heavy surface loadings. Stiff polymer geogrids and geocells do not have to be held in tension to provide soil reinforcement, unlike geotextiles. Stiff 2D geogrid and 3D geocells interlock with the aggregate particles and the reinforcement mechanism is one of confinement of the aggregate. The resulting mechanically stabilized aggregate layer exhibits improved loadbearing performance. Stiff polymer geogrids, with very open apertures, in addition to three-dimensional geocells made from various polymers are also increasingly specified in unpaved and paved roadways, load platforms and railway ballast, where the improved loadbearing characteristics significantly reduce the requirements for high quality, imported aggregate fills, thus reducing the carbon footprint of the construction.
Filtration is the equilibrium soil-to-geotextile interaction that allows for adequate liquid flow without soil loss, across the plane of the geotextile over a service lifetime compatible with the application under consideration. Filtration applications are highway underdrain systems, retaining wall drainage, landfill leachate collection systems, as silt fences and curtains, and as flexible forms for bags, tubes and containers.
Drainage is the equilibrium soil-to-geosynthetic system that allows for adequate liquid flow without soil loss, within the plane of the geosynthetic over a service lifetime compatible with the application under consideration. Geopipe highlights this function, and also geonets, geocomposites and very thick geotextiles. Drainage applications for these different geosynthetics are retaining walls, sport fields, dams, canals, reservoirs, and capillary breaks. Also to be noted is that sheet, edge and wick drains are geocomposites used for various soil and rock drainage situations.[ which? ]
Containment involves geomembranes, geosynthetic clay liners, or some geocomposites which function as liquid or gas barriers. Landfill liners and covers make critical use of these geosynthetics. All hydraulic applications (tunnels, dams, canals, surface impoundments, and floating covers) use these geosynthetics as well.
Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.
A leachate is any liquid that, in the course of passing through matter, extracts soluble or suspended solids, or any other component of the material through which it has passed.
Geotextiles are versatile permeable fabrics that, when used in conjunction with soil, can effectively perform multiple functions, including separation, filtration, reinforcement, protection, and drainage. Typically crafted from polypropylene or polyester, geotextile fabrics are available in two primary forms: woven, which resembles traditional mail bag sacking, and nonwoven, which resembles felt.
Landscape products are a group of building industry products used by garden designers and landscape architects and exhibited at trade fairs devoted to these industries. They include: walls, fences, paving, gardening tools, outdoor lighting, water features, fountains, garden furniture, garden ornaments, gazebos, garden buildings, and pond liners.
Geocomposites are combinations of two or more geosynthetic materials for civil engineering applications that perform multiple geosynthetic functions; the five basic functions are: separation, reinforcement, filtration, drainage, and containment. Such composite materials may enhance technical properties of the soil or the geotechnical structure and minimize application costs.
A geomembrane is very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid migration in a human-made project, structure, or system. Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or polymer sprays, or as multilayered bitumen geocomposites. Continuous polymer sheet geomembranes are, by far, the most common.
A geogrid is geosynthetic material used to reinforce soils and similar materials. Soils pull apart under tension. Compared to soil, geogrids are strong in tension. This fact allows them to transfer forces to a larger area of soil than would otherwise be the case.
Geosynthetic clay liners (GCLs) are factory manufactured hydraulic barriers consisting of a layer of bentonite or other very low-permeability material supported by geotextiles and/or geomembranes, mechanically held together by needling, stitching, or chemical adhesives. Due to environmental laws, any seepage from landfills must be collected and properly disposed of, otherwise contamination of the surrounding ground water could cause major environmental and/or ecological problems. The lower the hydraulic conductivity the more effective the GCL will be at retaining seepage inside of the landfill. Bentonite composed predominantly (>70%) of montmorillonite or other expansive clays, are preferred and most commonly used in GCLs. A general GCL construction would consist of two layers of geosynthetics stitched together enclosing a layer of natural or processed sodium bentonite. Typically, woven and/or non-woven textile geosynthetics are used, however polyethylene or geomembrane layers or geogrid geotextiles materials have also been incorporated into the design or in place of a textile layer to increase strength. GCLs are produced by several large companies in North America, Europe, and Asia. The United States Environmental Protection Agency currently regulates landfill construction and design in the US through several legislations.
Mechanically stabilized earth is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments, seawalls, and dikes. Although the basic principles of MSE have been used throughout history, MSE was developed in its current form in the 1960s. The reinforcing elements used can vary but include steel and geosynthetics.
A landfill liner, or composite liner, is intended to be a low permeable barrier, which is laid down under engineered landfill sites. Until it deteriorates, the liner retards migration of leachate, and its toxic constituents, into underlying aquifers or nearby rivers from causing potentially irreversible contamination of the local waterway and its sediments.
Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.
A geonet is a geosynthetic material similar in structure to a geogrid, consisting of integrally connected parallel sets of ribs overlying similar sets at various angles for in-plane drainage of liquids or gases. Geonets are often laminated with geotextiles on one or both surfaces and are then referred to as drainage geocomposites. They are competitive with other drainage geocomposites having different core configurations.
Final cover is a multilayered system of various materials which are primarily used to reduce the amount of storm water that will enter a landfill after closing. Proper final cover systems will also minimize the surface water on the liner system, resist erosion due to wind or runoff, control the migrations of landfill gases, and improve aesthetics.
Novel polymeric alloy (NPA) is a polymeric alloy composed of polyolefin and thermoplastic engineering polymer with enhanced engineering properties. NPA was developed for use in geosynthetics. One of the first commercial NPA applications was in the manufacturer of polymeric strips used to form Neoloy® cellular confinement systems (geocells).
Electrical liner integrity surveys, also known as leak location surveys are a post-installation quality control method of detecting leaks in geomembranes. Geomembranes are typically used for large-scale containment of liquid or solid waste. These electrical survey techniques are widely embraced as the state-of-the-art methods of locating leaks in installed geomembranes, which is imperative for the long-term protection of groundwater and the maintenance of water resources. Increasingly specified by environmental regulations, the methods are also applied voluntarily by many site owners as responsible environmental stewards and to minimize future liability.
Ronald Kerry Rowe is a Canadian civil engineer of Australian birth, one of the pioneers of geosynthetics.
Jean-Pierre Giroud is a French geotechnical engineer and a pioneer of geosynthetics since 1970. In 1977, he coined the words "geotextile" and "geomembrane", thus initiating the "geo-terminology". He is also a past president of the International Geosynthetics Society, member of the US National Academies, and Chevalier de la Légion d'Honneur.
Jorge G. Zornberg is Professor and Joe J. King Chair in Engineering in the geotechnical engineering program at the University of Texas at Austin. He has over 35 years' experience in geotechnical and geoenvironmental engineering. He is also one of the pioneers of geosynthetics.
The Neoloy Geocell is a Cellular Confinement System (geocell) developed and manufactured by PRS Geo-Technologies Ltd. Geocells are extruded in ultrasonically welded strips. The folded strips are opened on-site to form a 3D honeycomb matrix, which is then filled with granular material. The 3D confinement system is used to stabilize soft subgrade soil and reinforce the subbase and base layers in flexible pavements. Cellular confinement is also used for soil protection and erosion control for slopes, including channels, retention walls, reservoirs and landfills.
The International Geosynthetics Society (IGS) is an engineering professional society focused on the field of geosynthetics, which are polymeric materials used in geotechnical engineering. The IGS describes itself as "a learned society dedicated to the scientific and engineering development of geotextiles, geomembranes, related products, and associated technologies." It was founded in Paris in 1983 as the International Geotextile Society and is a member of the Federation of International Geo-Engineering Societies, along with the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), International Society for Rock Mechanics and Rock Engineering (ISRM), and International Association for Engineering Geology and the Environment (IAEG).