Earthquake

Last updated

Earthquake epicenters occur mostly along tectonic plate boundaries, and especially on the Pacific Ring of Fire. Quake epicenters 1963-98.png
Earthquake epicenters occur mostly along tectonic plate boundaries, and especially on the Pacific Ring of Fire.
Global plate tectonic movement Global plate motion 2008-04-17.jpg
Global plate tectonic movement

An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in size from those that are so weak that they cannot be felt to those violent enough to propel objects and people into the air, and wreak destruction across entire cities. The seismicity, or seismic activity, of an area is the frequency, type, and size of earthquakes experienced over a particular time period. The word tremor is also used for non-earthquake seismic rumbling.

Contents

At the Earth's surface, earthquakes manifest themselves by shaking and displacing or disrupting the ground. When the epicenter of a large earthquake is located offshore, the seabed may be displaced sufficiently to cause a tsunami. Earthquakes can also trigger landslides and, occasionally, volcanic activity.

In its most general sense, the word earthquake is used to describe any seismic event—whether natural or caused by humans—that generates seismic waves. Earthquakes are caused mostly by rupture of geological faults but also by other events such as volcanic activity, landslides, mine blasts, and nuclear tests. An earthquake's point of initial rupture is called its hypocenter or focus. The epicenter is the point at ground level directly above the hypocenter.

Naturally occurring earthquakes

Three types of faults:
A. Strike-slip
B. Normal
C. Reverse Fault types.svg
Three types of faults:
A. Strike-slip
B. Normal
C. Reverse

Tectonic earthquakes occur anywhere in the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. The sides of a fault move past each other smoothly and aseismically only if there are no irregularities or asperities along the fault surface that increase the frictional resistance. Most fault surfaces do have such asperities, which leads to a form of stick-slip behavior. Once the fault has locked, continued relative motion between the plates leads to increasing stress and, therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. [1] This energy is released as a combination of radiated elastic strain seismic waves, [2] frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior. [3]

Earthquake fault types

There are three main types of fault, all of which may cause an interplate earthquake: normal, reverse (thrust), and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and where movement on them involves a vertical component. Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other; transform boundaries are a particular type of strike-slip fault. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip.

Reverse faults, particularly those along convergent plate boundaries, are associated with the most powerful earthquakes, megathrust earthquakes, including almost all of those of magnitude 8 or more. Megathrust earthquakes are responsible for about 90% of the total seismic moment released worldwide. [4] Strike-slip faults, particularly continental transforms, can produce major earthquakes up to about magnitude 8. Earthquakes associated with normal faults are generally less than magnitude 7. For every unit increase in magnitude, there is a roughly thirtyfold increase in the energy released. For instance, an earthquake of magnitude 6.0 releases approximately 32 times more energy than a 5.0 magnitude earthquake and a 7.0 magnitude earthquake releases 1,000 times more energy than a 5.0 magnitude earthquake. An 8.6 magnitude earthquake releases the same amount of energy as 10,000 atomic bombs of the size used in World War II. [5]

This is so because the energy released in an earthquake, and thus its magnitude, is proportional to the area of the fault that ruptures [6] and the stress drop. Therefore, the longer the length and the wider the width of the faulted area, the larger the resulting magnitude. The topmost, brittle part of the Earth's crust, and the cool slabs of the tectonic plates that are descending into the hot mantle, are the only parts of our planet that can store elastic energy and release it in fault ruptures. Rocks hotter than about 300 °C (572 °F) flow in response to stress; they do not rupture in earthquakes. [7] [8] The maximum observed lengths of ruptures and mapped faults (which may break in a single rupture) are approximately 1,000 km (620 mi). Examples are the earthquakes in Alaska (1957), Chile (1960), and Sumatra (2004), all in subduction zones. The longest earthquake ruptures on strike-slip faults, like the San Andreas Fault (1857, 1906), the North Anatolian Fault in Turkey (1939), and the Denali Fault in Alaska (2002), are about half to one third as long as the lengths along subducting plate margins, and those along normal faults are even shorter.

Aerial photo of the San Andreas Fault in the Carrizo Plain, northwest of Los Angeles Kluft-photo-Carrizo-Plain-Nov-2007-Img 0327.jpg
Aerial photo of the San Andreas Fault in the Carrizo Plain, northwest of Los Angeles

The most important parameter controlling the maximum earthquake magnitude on a fault, however, is not the maximum available length, but the available width because the latter varies by a factor of 20. Along converging plate margins, the dip angle of the rupture plane is very shallow, typically about 10 degrees. [9] Thus, the width of the plane within the top brittle crust of the Earth can become 50–100 km (31–62 mi) (Japan, 2011; Alaska, 1964), making the most powerful earthquakes possible.

Strike-slip faults tend to be oriented near vertically, resulting in an approximate width of 10 km (6.2 mi) within the brittle crust. [10] Thus, earthquakes with magnitudes much larger than 8 are not possible. Maximum magnitudes along many normal faults are even more limited because many of them are located along spreading centers, as in Iceland, where the thickness of the brittle layer is only about six kilometres (3.7 mi). [11] [12]

In addition, there exists a hierarchy of stress levels in the three fault types. Thrust faults are generated by the highest, strike-slip by intermediate, and normal faults by the lowest stress levels. [13] This can easily be understood by considering the direction of the greatest principal stress, the direction of the force that "pushes" the rock mass during the faulting. In the case of normal faults, the rock mass is pushed down in a vertical direction, thus the pushing force (greatest principal stress) equals the weight of the rock mass itself. In the case of thrusting, the rock mass "escapes" in the direction of the least principal stress, namely upward, lifting the rock mass, and thus, the overburden equals the least principal stress. Strike-slip faulting is intermediate between the other two types described above. This difference in stress regime in the three faulting environments can contribute to differences in stress drop during faulting, which contributes to differences in the radiated energy, regardless of fault dimensions.

Earthquakes away from plate boundaries

Comparison of the 1985 and 2017 earthquakes on Mexico City, Puebla and Michoacan/Guerrero Tremor(English).gif
Comparison of the 1985 and 2017 earthquakes on Mexico City, Puebla and Michoacán/Guerrero

Where plate boundaries occur within the continental lithosphere, deformation is spread out over a much larger area than the plate boundary itself. In the case of the San Andreas fault continental transform, many earthquakes occur away from the plate boundary and are related to strains developed within the broader zone of deformation caused by major irregularities in the fault trace (e.g., the "Big bend" region). The Northridge earthquake was associated with movement on a blind thrust within such a zone. Another example is the strongly oblique convergent plate boundary between the Arabian and Eurasian plates where it runs through the northwestern part of the Zagros Mountains. The deformation associated with this plate boundary is partitioned into nearly pure thrust sense movements perpendicular to the boundary over a wide zone to the southwest and nearly pure strike-slip motion along the Main Recent Fault close to the actual plate boundary itself. This is demonstrated by earthquake focal mechanisms. [14]

All tectonic plates have internal stress fields caused by their interactions with neighboring plates and sedimentary loading or unloading (e.g., deglaciation). [15] These stresses may be sufficient to cause failure along existing fault planes, giving rise to intraplate earthquakes. [16]

Shallow-focus and deep-focus earthquakes

Collapsed Gran Hotel building in the San Salvador metropolis, after the shallow 1986 San Salvador earthquake HotelSanSalvador.jpg
Collapsed Gran Hotel building in the San Salvador metropolis, after the shallow 1986 San Salvador earthquake

The majority of tectonic earthquakes originate in the ring of fire at depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km (43 mi) are classified as "shallow-focus" earthquakes, while those with a focal-depth between 70 and 300 km (43 and 186 mi) are commonly termed "mid-focus" or "intermediate-depth" earthquakes. In Subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 to 700 km (190 to 430 mi)). [17] These seismically active areas of subduction are known as Wadati–Benioff zones. Deep-focus earthquakes occur at a depth where the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure. [18]

Earthquakes and volcanic activity

Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, as during the 1980 eruption of Mount St. Helens. [19] Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltmeters (a device that measures ground slope) and used as sensors to predict imminent or upcoming eruptions. [20]

Rupture dynamics

A tectonic earthquake begins by an initial rupture at a point on the fault surface, a process known as nucleation. The scale of the nucleation zone is uncertain, with some evidence, such as the rupture dimensions of the smallest earthquakes, suggesting that it is smaller than 100 m (330 ft) while other evidence, such as a slow component revealed by low-frequency spectra of some earthquakes, suggest that it is larger. The possibility that the nucleation involves some sort of preparation process is supported by the observation that about 40% of earthquakes are preceded by foreshocks. Once the rupture has initiated, it begins to propagate along the fault surface. The mechanics of this process are poorly understood, partly because it is difficult to recreate the high sliding velocities in a laboratory. Also, the effects of strong ground motion make it very difficult to record information close to a nucleation zone. [21]

Rupture propagation is generally modeled using a fracture mechanics approach, likening the rupture to a propagating mixed mode shear crack. The rupture velocity is a function of the fracture energy in the volume around the crack tip, increasing with decreasing fracture energy. The velocity of rupture propagation is orders of magnitude faster than the displacement velocity across the fault. Earthquake ruptures typically propagate at velocities that are in the range 70–90% of the S-wave velocity, which is independent of earthquake size. A small subset of earthquake ruptures appear to have propagated at speeds greater than the S-wave velocity. These supershear earthquakes have all been observed during large strike-slip events. The unusually wide zone of coseismic damage caused by the 2001 Kunlun earthquake has been attributed to the effects of the sonic boom developed in such earthquakes. Some earthquake ruptures travel at unusually low velocities and are referred to as slow earthquakes. A particularly dangerous form of slow earthquake is the tsunami earthquake, observed where the relatively low felt intensities, caused by the slow propagation speed of some great earthquakes, fail to alert the population of the neighboring coast, as in the 1896 Sanriku earthquake. [21]

Co-seismic overpressuring and effect of pore pressure

During an earthquake, high temperatures can develop at the fault plane so increasing pore pressure consequently to vaporization of the ground water already contained within rock. [22] [23] [24] In the coseismic phase, such increase can significantly affect slip evolution and speed and, furthermore, in the post-seismic phase it can control the Aftershock sequence because, after the main event, pore pressure increase slowly propagates into the surrounding fracture network. [25] [24] From the point of view of the Mohr-Coulomb strength theory, an increase in fluid pressure reduces the normal stress acting on the fault plane that holds it in place, and fluids can exert a lubricating effect. As thermal overpressurization may provide positive feedback between slip and strength fall at the fault plane, a common opinion is that it may enhance the faulting process instability. After the mainshock, the pressure gradient between the fault plane and the neighboring rock causes a fluid flow which increases pore pressure in the surrounding fracture networks; such increase may trigger new faulting processes by reactivating adjacent faults, giving rise to aftershocks. [25] [24] Analogously, artificial pore pressure increase, by fluid injection in Earth’s crust, may induce seismicity.

Tidal forces

Tides may induce some seismicity.

Earthquake clusters

Most earthquakes form part of a sequence, related to each other in terms of location and time. [26] Most earthquake clusters consist of small tremors that cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern. [27]

Aftershocks

Magnitude of the Central Italy earthquakes of August and October 2016 and January 2017 and the aftershocks (which continued to occur after the period shown here) 2016 Central Italy earthquake wide.svg
Magnitude of the Central Italy earthquakes of August and October 2016 and January 2017 and the aftershocks (which continued to occur after the period shown here)

An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. Rapid changes of stress between rocks, and the stress from the original earthquake are the main causes of these aftershocks, [28] along with the crust around the ruptured fault plane as it adjusts to the effects of the mainshock. [26] An aftershock is in the same region of the main shock but always of a smaller magnitude, however they can still be powerful enough to cause even more damage to buildings that were already previously damaged from the original quake. [28] If an aftershock is larger than the mainshock, the aftershock is redesignated as the mainshock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the mainshock. [26]

Earthquake swarms

Earthquake swarms are sequences of earthquakes striking in a specific area within a short period. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is obviously the main shock, so none has a notable higher magnitude than another. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park. [29] In August 2012, a swarm of earthquakes shook Southern California's Imperial Valley, showing the most recorded activity in the area since the 1970s. [30]

Sometimes a series of earthquakes occur in what has been called an earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East. [31] [32]

Intensity of earth quaking and magnitude of earthquakes

Quaking or shaking of the earth is a common phenomenon undoubtedly known to humans from the earliest times. Before the development of strong-motion accelerometers that can measure peak ground speed and acceleration directly, the intensity of the earth-shaking was estimated based on the observed effects, as categorized on various seismic intensity scales. Only in the last century has the source of such shaking been identified as ruptures in the Earth's crust, with the intensity of shaking at any locality dependent not only on the local ground conditions but also on the strength or magnitude of the rupture, and on its distance. [33]

The first scale for measuring earthquake magnitudes was developed by Charles F. Richter in 1935. Subsequent scales (see seismic magnitude scales) have retained a key feature, where each unit represents a ten-fold difference in the amplitude of the ground shaking and a 32-fold difference in energy. Subsequent scales are also adjusted to have approximately the same numeric value within the limits of the scale. [34]

Although the mass media commonly reports earthquake magnitudes as "Richter magnitude" or "Richter scale", standard practice by most seismological authorities is to express an earthquake's strength on the moment magnitude scale, which is based on the actual energy released by an earthquake. [35]

Frequency of occurrence

It is estimated that around 500,000 earthquakes occur each year, detectable with current instrumentation. About 100,000 of these can be felt. [36] [37] Minor earthquakes occur nearly constantly around the world in places like California and Alaska in the U.S., as well as in El Salvador, Mexico, Guatemala, Chile, Peru, Indonesia, the Philippines, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, India, Nepal and Japan. [38] Larger earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur in a particular time period than earthquakes larger than magnitude 5. [39] In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are: an earthquake of 3.7–4.6 every year, an earthquake of 4.7–5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years. [40] This is an example of the Gutenberg–Richter law.

The Messina earthquake and tsunami took as many as 200,000 lives on December 28, 1908, in Sicily and Calabria. Comerio, Luca (1878-1940) - Vittime del terremoto di Messina (dicembre 1908).jpg
The Messina earthquake and tsunami took as many as 200,000 lives on December 28, 1908, in Sicily and Calabria.

The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past, but this is because of the vast improvement in instrumentation, rather than an increase in the number of earthquakes. The United States Geological Survey estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0–7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable. [42] In recent years, the number of major earthquakes per year has decreased, though this is probably a statistical fluctuation rather than a systematic trend. [43] More detailed statistics on the size and frequency of earthquakes is available from the United States Geological Survey (USGS). [44] A recent increase in the number of major earthquakes has been noted, which could be explained by a cyclical pattern of periods of intense tectonic activity, interspersed with longer periods of low intensity. However, accurate recordings of earthquakes only began in the early 1900s, so it is too early to categorically state that this is the case. [45]

Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-kilometre-long (25,000 mi), horseshoe-shaped zone called the circum-Pacific seismic belt, known as the Pacific Ring of Fire, which for the most part bounds the Pacific Plate. [46] [47] Massive earthquakes tend to occur along other plate boundaries too, such as along the Himalayan Mountains. [48]

With the rapid growth of mega-cities such as Mexico City, Tokyo and Tehran in areas of high seismic risk, some seismologists are warning that a single quake may claim the lives of up to three million people. [49]

Induced seismicity

While most earthquakes are caused by movement of the Earth's tectonic plates, human activity can also produce earthquakes. Activities both above ground and below may change the stresses and strains on the crust, including building reservoirs, extracting resources such as coal or oil, and injecting fluids underground for waste disposal or fracking. [50] Most of these earthquakes have small magnitudes. The 5.7 magnitude 2011 Oklahoma earthquake is thought to have been caused by disposing wastewater from oil production into injection wells, [51] and studies point to the state's oil industry as the cause of other earthquakes in the past century. [52] A Columbia University paper suggested that the 8.0 magnitude 2008 Sichuan earthquake was induced by loading from the Zipingpu Dam, [53] though the link has not been conclusively proved. [54]

Measuring and locating earthquakes

The instrumental scales used to describe the size of an earthquake began with the Richter magnitude scale in the 1930s. It is a relatively simple measurement of an event's amplitude, and its use has become minimal in the 21st century. Seismic waves travel through the Earth's interior and can be recorded by seismometers at great distances. The surface wave magnitude was developed in the 1950s as a means to measure remote earthquakes and to improve the accuracy for larger events. The moment magnitude scale not only measures the amplitude of the shock but also takes into account the seismic moment (total rupture area, average slip of the fault, and rigidity of the rock). The Japan Meteorological Agency seismic intensity scale, the Medvedev–Sponheuer–Karnik scale, and the Mercalli intensity scale are based on the observed effects and are related to the intensity of shaking.

Every tremor produces different types of seismic waves, which travel through rock with different velocities:

Propagation velocity of the seismic waves through solid rock ranges from approx. 3 km/s (1.9 mi/s) up to 13 km/s (8.1 mi/s), depending on the density and elasticity of the medium. In the Earth's interior, the shock- or P-waves travel much faster than the S-waves (approx. relation 1.7:1). The differences in travel time from the epicenter to the observatory are a measure of the distance and can be used to image both sources of quakes and structures within the Earth. Also, the depth of the hypocenter can be computed roughly.

In the upper crust, P-waves travel in the range 2–3 km (1.2–1.9 mi) per second (or lower) in soils and unconsolidated sediments, increasing to 3–6 km (1.9–3.7 mi) per second in solid rock. In the lower crust, they travel at about 6–7 km (3.7–4.3 mi) per second; the velocity increases within the deep mantle to about 13 km (8.1 mi) per second. The velocity of S-waves ranges from 2–3 km (1.2–1.9 mi) per second in light sediments and 4–5 km (2.5–3.1 mi) per second in the Earth's crust up to 7 km (4.3 mi) per second in the deep mantle. As a consequence, the first waves of a distant earthquake arrive at an observatory via the Earth's mantle.

On average, the kilometer distance to the earthquake is the number of seconds between the P- and S-wave times 8. [55] Slight deviations are caused by inhomogeneities of subsurface structure. By such analysis of seismograms, the Earth's core was located in 1913 by Beno Gutenberg.

S-waves and later arriving surface waves do most of the damage compared to P-waves. P-waves squeeze and expand the material in the same direction they are traveling, whereas S-waves shake the ground up and down and back and forth. [56]

Earthquakes are not only categorized by their magnitude but also by the place where they occur. The world is divided into 754 Flinn–Engdahl regions (F-E regions), which are based on political and geographical boundaries as well as seismic activity. More active zones are divided into smaller F-E regions whereas less active zones belong to larger F-E regions.

Standard reporting of earthquakes includes its magnitude, date and time of occurrence, geographic coordinates of its epicenter, depth of the epicenter, geographical region, distances to population centers, location uncertainty, several parameters that are included in USGS earthquake reports (number of stations reporting, number of observations, etc.), and a unique event ID. [57]

Although relatively slow seismic waves have traditionally been used to detect earthquakes, scientists realized in 2016 that gravitational measurements could provide instantaneous detection of earthquakes, and confirmed this by analyzing gravitational records associated with the 2011 Tohoku-Oki ("Fukushima") earthquake. [58] [59]

Effects of earthquakes

1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake, which killed an estimated 60,000 people. A tsunami overwhelms the ships in the harbor. 1755 Lisbon earthquake.jpg
1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake, which killed an estimated 60,000 people. A tsunami overwhelms the ships in the harbor.

The effects of earthquakes include, but are not limited to, the following:

Shaking and ground rupture

Damaged buildings in Port-au-Prince, Haiti, January 2010. Haiti earthquake damage.jpg
Damaged buildings in Port-au-Prince, Haiti, January 2010.

Shaking and ground rupture are the main effects created by earthquakes, principally resulting in more or less severe damage to buildings and other rigid structures. The severity of the local effects depends on the complex combination of the earthquake magnitude, the distance from the epicenter, and the local geological and geomorphological conditions, which may amplify or reduce wave propagation. [60] The ground-shaking is measured by ground acceleration.

Specific local geological, geomorphological, and geostructural features can induce high levels of shaking on the ground surface even from low-intensity earthquakes. This effect is called site or local amplification. It is principally due to the transfer of the seismic motion from hard deep soils to soft superficial soils and the effects of seismic energy focalization owing to the typical geometrical setting of such deposits.

Ground rupture is a visible breaking and displacement of the Earth's surface along the trace of the fault, which may be of the order of several meters in the case of major earthquakes. Ground rupture is a major risk for large engineering structures such as dams, bridges, and nuclear power stations and requires careful mapping of existing faults to identify any that are likely to break the ground surface within the life of the structure. [61]

Soil liquefaction

Soil liquefaction occurs when, because of the shaking, water-saturated granular material (such as sand) temporarily loses its strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, like buildings and bridges, to tilt or sink into the liquefied deposits. For example, in the 1964 Alaska earthquake, soil liquefaction caused many buildings to sink into the ground, eventually collapsing upon themselves. [62]

Human impacts

Ruins of the Ghajn Hadid Tower, which collapsed in an earthquake in 1856 Ghajn Hadid Tower closer view.JPG
Ruins of the Għajn Ħadid Tower, which collapsed in an earthquake in 1856

An earthquake may cause injury and loss of life, road and bridge damage, general property damage, and collapse or destabilization (potentially leading to future collapse) of buildings. The aftermath may bring disease, lack of basic necessities, mental consequences such as panic attacks, depression to survivors, [63] and higher insurance premiums.

Landslides

Earthquakes can produce slope instability leading to landslides, a major geological hazard. Landslide danger may persist while emergency personnel are attempting rescue work. [64]

Fires

Fires of the 1906 San Francisco earthquake Sfearthquake3b.jpg
Fires of the 1906 San Francisco earthquake

Earthquakes can cause fires by damaging electrical power or gas lines. In the event of water mains rupturing and a loss of pressure, it may also become difficult to stop the spread of a fire once it has started. For example, more deaths in the 1906 San Francisco earthquake were caused by fire than by the earthquake itself. [65]

Tsunami

The tsunami of the 2004 Indian Ocean earthquake 2004-tsunami.jpg
The tsunami of the 2004 Indian Ocean earthquake

Tsunamis are long-wavelength, long-period sea waves produced by the sudden or abrupt movement of large volumes of water—including when an earthquake occurs at sea. In the open ocean, the distance between wave crests can surpass 100 kilometres (62 mi), and the wave periods can vary from five minutes to one hour. Such tsunamis travel 600–800 kilometers per hour (373–497 miles per hour), depending on water depth. Large waves produced by an earthquake or a submarine landslide can overrun nearby coastal areas in a matter of minutes. Tsunamis can also travel thousands of kilometers across open ocean and wreak destruction on far shores hours after the earthquake that generated them. [66]

Ordinarily, subduction earthquakes under magnitude 7.5 do not cause tsunamis, although some instances of this have been recorded. Most destructive tsunamis are caused by earthquakes of magnitude 7.5 or more. [66]

Floods

Floods may be secondary effects of earthquakes, if dams are damaged. Earthquakes may cause landslips to dam rivers, which collapse and cause floods. [67]

The terrain below the Sarez Lake in Tajikistan is in danger of catastrophic flooding if the landslide dam formed by the earthquake, known as the Usoi Dam, were to fail during a future earthquake. Impact projections suggest the flood could affect roughly 5 million people. [68]

Major earthquakes

Earthquakes (M6.0+) since 1900 through 2017 Map of earthquakes 1900-.svg
Earthquakes (M6.0+) since 1900 through 2017
Earthquakes of magnitude 8.0 and greater from 1900 to 2018. The apparent 3D volumes of the bubbles are linearly proportional to their respective fatalities. USGS magnitude 8 earthquakes since 1900.svg
Earthquakes of magnitude 8.0 and greater from 1900 to 2018. The apparent 3D volumes of the bubbles are linearly proportional to their respective fatalities.

One of the most devastating earthquakes in recorded history was the 1556 Shaanxi earthquake, which occurred on 23 January 1556 in Shaanxi, China. More than 830,000 people died. [70] Most houses in the area were yaodongs—dwellings carved out of loess hillsides—and many victims were killed when these structures collapsed. The 1976 Tangshan earthquake, which killed between 240,000 and 655,000 people, was the deadliest of the 20th century. [71]

The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on 22 May 1960. [36] [37] Its epicenter was near Cañete, Chile. The energy released was approximately twice that of the next most powerful earthquake, the Good Friday earthquake (27 March 1964), which was centered in Prince William Sound, Alaska. [72] [73] The ten largest recorded earthquakes have all been megathrust earthquakes; however, of these ten, only the 2004 Indian Ocean earthquake is simultaneously one of the deadliest earthquakes in history.

Earthquakes that caused the greatest loss of life, while powerful, were deadly because of their proximity to either heavily populated areas or the ocean, where earthquakes often create tsunamis that can devastate communities thousands of kilometers away. Regions most at risk for great loss of life include those where earthquakes are relatively rare but powerful, and poor regions with lax, unenforced, or nonexistent seismic building codes.

Prediction

Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits. [74] Many methods have been developed for predicting the time and place in which earthquakes will occur. Despite considerable research efforts by seismologists, scientifically reproducible predictions cannot yet be made to a specific day or month. [75]

Forecasting

While forecasting is usually considered to be a type of prediction, earthquake forecasting is often differentiated from earthquake prediction. Earthquake forecasting is concerned with the probabilistic assessment of general earthquake hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades. [76] For well-understood faults the probability that a segment may rupture during the next few decades can be estimated. [77] [78]

Earthquake warning systems have been developed that can provide regional notification of an earthquake in progress, but before the ground surface has begun to move, potentially allowing people within the system's range to seek shelter before the earthquake's impact is felt.

Preparedness

The objective of earthquake engineering is to foresee the impact of earthquakes on buildings and other structures and to design such structures to minimize the risk of damage. Existing structures can be modified by seismic retrofitting to improve their resistance to earthquakes. Earthquake insurance can provide building owners with financial protection against losses resulting from earthquakes. Emergency management strategies can be employed by a government or organization to mitigate risks and prepare for consequences.

Artificial intelligence may help to assess buildings and plan precautionary operations: the Igor expert system is part of a mobile laboratory that supports the procedures leading to the seismic assessment of masonry buildings and the planning of retrofitting operations on them. It has been successfully applied to assess buildings in Lisbon, Rhodes, Naples. [79]

Individuals can also take preparedness steps like securing water heaters and heavy items that could injure someone, locating shutoffs for utilities, and being educated about what to do when the shaking starts. For areas near large bodies of water, earthquake preparedness encompasses the possibility of a tsunami caused by a large quake.

Historical views

An image from a 1557 book depicting an earthquake in Italy in the 4th century BCE Lycosthene.jpg
An image from a 1557 book depicting an earthquake in Italy in the 4th century BCE

From the lifetime of the Greek philosopher Anaxagoras in the 5th century BCE to the 14th century CE, earthquakes were usually attributed to "air (vapors) in the cavities of the Earth." [80] Thales of Miletus (625–547 BCE) was the only documented person who believed that earthquakes were caused by tension between the earth and water. [80] Other theories existed, including the Greek philosopher Anaxamines' (585–526 BCE) beliefs that short incline episodes of dryness and wetness caused seismic activity. The Greek philosopher Democritus (460–371 BCE) blamed water in general for earthquakes. [80] Pliny the Elder called earthquakes "underground thunderstorms". [80]

Recent studies

In recent studies, geologists claim that global warming is one of the reasons for increased seismic activity. According to these studies, melting glaciers and rising sea levels disturb the balance of pressure on Earth's tectonic plates, thus causing an increase in the frequency and intensity of earthquakes. [81] [ better source needed ]

In culture

Mythology and religion

In Norse mythology, earthquakes were explained as the violent struggling of the god Loki. When Loki, god of mischief and strife, murdered Baldr, god of beauty and light, he was punished by being bound in a cave with a poisonous serpent placed above his head dripping venom. Loki's wife Sigyn stood by him with a bowl to catch the poison, but whenever she had to empty the bowl the poison dripped on Loki's face, forcing him to jerk his head away and thrash against his bonds, which caused the earth to tremble. [82]

In Greek mythology, Poseidon was the cause and god of earthquakes. When he was in a bad mood, he struck the ground with a trident, causing earthquakes and other calamities. He also used earthquakes to punish and inflict fear upon people as revenge. [83]

In Japanese mythology, Namazu (鯰) is a giant catfish who causes earthquakes. Namazu lives in the mud beneath the earth and is guarded by the god Kashima who restrains the fish with a stone. When Kashima lets his guard fall, Namazu thrashes about, causing violent earthquakes. [84]

In modern popular culture, the portrayal of earthquakes is shaped by the memory of great cities laid waste, such as Kobe in 1995 or San Francisco in 1906. [85] Fictional earthquakes tend to strike suddenly and without warning. [85] For this reason, stories about earthquakes generally begin with the disaster and focus on its immediate aftermath, as in Short Walk to Daylight (1972), The Ragged Edge (1968) or Aftershock: Earthquake in New York (1999). [85] A notable example is Heinrich von Kleist's classic novella, The Earthquake in Chile , which describes the destruction of Santiago in 1647. Haruki Murakami's short fiction collection After the Quake depicts the consequences of the Kobe earthquake of 1995.

The most popular single earthquake in fiction is the hypothetical "Big One" expected of California's San Andreas Fault someday, as depicted in the novels Richter 10 (1996), Goodbye California (1977), 2012 (2009) and San Andreas (2015) among other works. [85] Jacob M. Appel's widely anthologized short story, A Comparative Seismology, features a con artist who convinces an elderly woman that an apocalyptic earthquake is imminent. [86]

Contemporary depictions of earthquakes in film are variable in the manner in which they reflect human psychological reactions to the actual trauma that can be caused to directly afflicted families and their loved ones. [87] Disaster mental health response research emphasizes the need to be aware of the different roles of loss of family and key community members, loss of home and familiar surroundings, loss of essential supplies and services to maintain survival. [88] [89] Particularly for children, the clear availability of caregiving adults who are able to protect, nourish, and clothe them in the aftermath of the earthquake, and to help them make sense of what has befallen them has been shown even more important to their emotional and physical health than the simple giving of provisions. [90] As was observed after other disasters involving destruction and loss of life and their media depictions, recently observed in the 2010 Haiti earthquake, it is also important not to pathologize the reactions to loss and displacement or disruption of governmental administration and services, but rather to validate these reactions, to support constructive problem-solving and reflection as to how one might improve the conditions of those affected. [91]

See also

Related Research Articles

New Madrid Seismic Zone Major seismic zone in the southern and midwestern United States

The New Madrid Seismic Zone, sometimes called the New Madrid Fault Line, is a major seismic zone and a prolific source of intraplate earthquakes in the Southern and Midwestern United States, stretching to the southwest from New Madrid, Missouri.

An interplate earthquake is an earthquake that occurs at the boundary between two tectonic plates. Earthquakes of this type account for more than 90 percent of the total seismic energy released around the world. If one plate is trying to move past the other, they will be locked until sufficient stress builds up to cause the plates to slip relative to each other. The slipping process creates an earthquake with relative displacement on either side of the fault, resulting in seismic waves which travel through the Earth and along the Earth's surface. Relative plate motion can be lateral as along a transform fault boundary, vertical if along a convergent boundary or a divergent boundary, and oblique, with horizontal and lateral components at the boundary. Interplate earthquakes associated at a subduction boundary are called megathrust earthquakes, which are the most powerful earthquakes.

Megathrust earthquakes occur at convergent plate boundaries, where one tectonic plate is forced underneath another. The earthquakes are caused by slip along the thrust fault that forms the contact between the two plates. These interplate earthquakes are the planet's most powerful, with moment magnitudes (Mw) that can exceed 9.0. Since 1900, all earthquakes of magnitude 9.0 or greater have been megathrust earthquakes.

Seismic magnitude scales are used to describe the overall strength or "size" of an earthquake. These are distinguished from seismic intensity scales that categorize the intensity or severity of ground shaking (quaking) caused by an earthquake at a given location. Magnitudes are usually determined from measurements of an earthquake's seismic waves as recorded on a seismogram. Magnitude scales vary on what aspect of the seismic waves are measured and how they are measured. Different magnitude scales are necessary because of differences in earthquakes, the information available, and the purposes for which the magnitudes are used.

Queen Charlotte Fault

The Queen Charlotte Fault is an active transform fault that marks the boundary of the North American plate and the Pacific plate. It is Canada's right-lateral strike-slip equivalent to the San Andreas Fault to the south in California. The Queen Charlotte Fault forms a triple junction south with the Cascadia subduction zone and the Explorer Ridge. The Queen Charlotte Fault (QCF) forms a transpressional plate boundary, and is as active as other major transform fault systems in terms of slip rates and seismogenic potential. It sustains the highest known deformation rates among continental or continent-ocean transform systems globally, accommodating greater than 50mm/yr dextral offset. The entire approximately 900 km offshore length has ruptured in seven greater than magnitude 7 events during the last century, making the cumulative historical seismic moment release higher than any other modern transform plate boundary system.

In seismology, doublet earthquakes – and more generally, multiplet earthquakes – were originally identified as multiple earthquakes with nearly identical waveforms originating from the same location. They are now characterized as single earthquakes having two main shocks of similar magnitude, sometimes occurring within tens of seconds, but sometimes separated by years. The similarity of magnitude – often within four-tenths of a unit of magnitude – distinguishes multiplet events from aftershocks, which start at about 1.2 magnitude less than the parent shock, and decrease in magnitude and frequency according to known laws.

Sagaing Fault

The Sagaing Fault is a major fault in Burma, a mainly continental right-lateral transform fault between the Indian Plate and Sunda Plate. It links the divergent boundary in the Andaman Sea with the zone of active continental collision along the Himalayan front. It passes through populated cities of Mandalay, Yamethin, Pyinmana, the capital Naypyidaw, Toungoo and Pegu before dropping off into the Gulf of Martaban, running for a total length of over 1200 kilometers.

2012 Indian Ocean earthquakes 2012 earthquake near Aceh Province, Indonesia

The 2012 Indian Ocean earthquakes were magnitude 8.6 and 8.2 Mw  undersea earthquakes that struck near the Indonesian province of Aceh on 11 April at 15:38 local time. Initially, authorities feared that the initial earthquake would cause a tsunami and warnings were issued across the Indian Ocean; however, these warnings were subsequently cancelled. These were unusually strong intraplate earthquakes and the largest strike-slip earthquake ever recorded.

2018 Hawaii earthquake 6.9-magnitude earthquake in Hawaii

On May 4, 2018, an earthquake with a magnitude of Mw 6.9 struck Hawaii island in the Hawaii archipelago at around 12:33 p.m. local time. The earthquake's epicenter was near the south flank of Kīlauea, which has been the site of seismic and volcanic activity since late April of that year. According to the United States Geological Survey the quake was related to the new lava outbreaks at the volcano, and it resulted in the Hilina Slump moving about two feet. It was the largest earthquake to affect Hawaii since the 1975 earthquake, which affected the same region, killing two people and injuring another 28.

1930 Bago earthquake May 1930 earthquake in Myanmar

The 1930 Bago earthquake, also known as the Swa earthquake and Pegu earthquake struck Burma on May 5 with a surface wave magnitude between 7.2 and 7.5 Ms . This earthquake was one of the most destructive to hit the country, and one of many earthquakes to affect the country between 1929 and 1931. Extensive damage was reported in the southern part of the country. More than 550 people were reportedly killed, although the death toll may be as high as 5,000 to 7,000. A moderate tsunami was generated along the Burmese coast, causing minor damage.

1973 Luhuo earthquake 1973 earthquake in China

The 1973 Luhuo earthquake struck near the town of Zhaggo in the Garzê Tibetan Autonomous Prefecture of Sichuan Province, China on February 6 with a magnitude of 7.6 Ms. The earthquake had a maximum intensity of X (Extreme) on the Mercalli intensity scale, resulting in 2,199 deaths and a further 2,743 injuries in Sichuan. Serious and widespread destruction to villages was reported in Luhuo County as a result of the earthquake.

2013 Craig, Alaska earthquake Supershear earthquake in Alaska and British Columbia

The 2013 Craig, Alaska earthquake struck on January 5th, at 12:58 am (UTC–7) near the city of Craig and Hydaburg, on Prince of Wales Island. The Mw 7.5 earthquake came nearly three months after an Mw  7.8 quake struck Haida Gwaii on October 28, in 2012. The quake prompted a regional tsunami warning to British Columbia and Alaska, but it was later cancelled. Due to the remote location of the quake, there were no reports of casualties or damages.

1968 Borrego Mountain earthquake Earthquake in California

The 1968 Borrego Mountain earthquake occurred on the evening of April 8, near the unincorporated community of Ocotillo Wells in San Diego County. The moment magnitude 6.6 earthquake was assigned a maximum intensity of VII on the Mercalli intensity scale, causing some damage in the Imperial Valley, but no injuries or deaths. Shaking from this earthquake was widely felt, even in Nevada, and Arizona. It was the largest earthquake in Southern California since the 1952 Kern County earthquake 16 years prior.

2021 Maduo earthquake Earthquake in China

The 2021 Maduo earthquake, also known as the 5.22 earthquake struck Madoi County in Qinghai Province, China on the morning of 22 May at 02:04 local time. The earthquake had a moment magnitude and surface-wave magnitude of 7.4, according to the Global Centroid Moment Tensor (GCMT) and the China Earthquake Administration (CEA) respectively. In the Qinghai, The earthquake caused no deaths but 19 people sustained minor injuries. Highway bridges, roads and walls collapsed as a result of the earthquake. According to an anonymous source, at least twenty people were killed, 300 were injured, and 13 were missing. The earthquake was the strongest in China since the 2008 Sichuan earthquake. It was assigned intensity X in Machali town, Maduo County on the China seismic intensity scale, and X (Extreme) on the Modified Mercalli intensity scale. This earthquake was preceded by another unrelated earthquake; the 2021 Dali earthquake which had occurred 5 hours earlier in Yunnan.

1995 Myanmar–China earthquake 1995 earthquake centered in the border region between Myanmar and China

The 1995 Menglian earthquake or 1995 Myanmar–China earthquake occurred on 12 July at 05:46:43 local time in the Myanmar–China border region. The earthquake had an epicenter on the Myanmar side of the border, located in the mountainous region of Shan State. It registered 7.3 on the Chinese surface wave magnitude scale (Ms ) and 6.8 on the moment magnitude scale (Mw ). With a maximum Mercalli intensity assigned at VIII, the quake killed eleven people and left another 136 injured. Over 100,000 homes in both countries were destroyed and 42,000 seriously damaged. Some damage to structures were also reported in Chiang Mai and Chiang Rai, Thailand. The low death toll from this earthquake was attributed to an early warning issued prior to it happening. Precursor events including foreshocks and some seismic anomalies led to an evacuation of the area before the mainshock struck. It is thought to be one of the few successfully predicted earthquakes in history.

2021 South Sandwich Islands earthquakes Earthquake affecting the South Sandwich Islands

The 2021 South Sandwich Islands earthquakes were a pair of powerful earthquakes, followed by about a thousand strong aftershocks which struck along the South Sandwich Trench in August 2021. The quakes measured 7.5 and 8.1 on the moment magnitude scale, according to the United States Geological Survey. The mainshock is tied with another event in 1929 as the largest earthquake ever recorded in this region and the Atlantic Ocean as a whole, and is tied with the 2021 Kermadec Islands earthquake as the second largest earthquake of 2021. They occurred just two days before the 2021 Haiti earthquake.

1979 Petatlán earthquake

The 1979 Petatlán earthquake, also known as the IBERO earthquake occurred on March 14 at 05:07 local time in the Mexican state of Guerrero. The earthquake had a surface wave magnitude of Ms  7.6 or moment magnitude of Mw  7.4 and maximum Modified Mercalli intensity of VIII (Severe). The epicenter, onshore, was located 12 km south southeast of Vallecitos de Zaragoza.

2021 Mansfield earthquake Magnitude 5.9 earthquake that struck Victoria, Australia on 22 September 2021

An earthquake struck approximately 53 kilometres SSE of the town of Mansfield, in the Victorian Alps of Australia on 22 September 2021, at 09:15 local time. The earthquake measured 5.9 on the moment magnitude scale. The earthquake caused minor structural damage in parts of Melbourne and left one person injured. The earthquake was also felt in New South Wales, Australian Capital Territory, South Australia and Tasmania. The earthquake was substantially stronger than the 1989 Newcastle earthquake that measured Mw 5.6 and killed 13 people.

1850 Xichang earthquake 1850 Earthquake in China

The 1850 Xichang earthquake rocked Sichuan Province of the Qing dynasty on September 12. The earthquake which caused major damage in Xichang county had an estimated moment magnitude of 7.6–7.9 Mw  and a surface wave magnitude of 7.5–7.7 Ms . An estimated 20,650 people died.

1955 Zheduotang earthquake 1955 earthquake in China

The 1955 Zheduotang earthquake, also known as the Kangding earthquake occurred on April 14 at 09:29:02 local time near the city of Kangding in the Garzê Tibetan Autonomous Prefecture, Sichuan. The earthquake had a moment magnitude of 7.0 and a surface wave magnitude of 7.1 and struck at a depth of 10 km. Severe damage occurred in Kangding with the loss of 70 lives.

References

  1. Ohnaka, M. (2013). The Physics of Rock Failure and Earthquakes. Cambridge University Press. p. 148. ISBN   978-1-107-35533-0.
  2. Vassiliou, Marius; Kanamori, Hiroo (1982). "The Energy Release in Earthquakes". Bull. Seismol. Soc. Am. 72: 371–387.
  3. Spence, William; S.A. Sipkin; G.L. Choy (1989). "Measuring the Size of an Earthquake". United States Geological Survey. Archived from the original on 2009-09-01. Retrieved 2006-11-03.
  4. Stern, Robert J. (2002), "Subduction zones", Reviews of Geophysics, 40 (4): 17, Bibcode:2002RvGeo..40.1012S, doi:10.1029/2001RG000108
  5. Geoscience Australia
  6. Wyss, M. (1979). "Estimating expectable maximum magnitude of earthquakes from fault dimensions". Geology. 7 (7): 336–340. Bibcode:1979Geo.....7..336W. doi:10.1130/0091-7613(1979)7<336:EMEMOE>2.0.CO;2.
  7. Sibson, R.H. (1982). "Fault Zone Models, Heat Flow, and the Depth Distribution of Earthquakes in the Continental Crust of the United States". Bulletin of the Seismological Society of America. 72 (1): 151–163.
  8. Sibson, R.H. (2002) "Geology of the crustal earthquake source" International handbook of earthquake and engineering seismology, Volume 1, Part 1, p. 455, eds. W H K Lee, H Kanamori, P C Jennings, and C. Kisslinger, Academic Press, ISBN   978-0-12-440652-0
  9. "Global Centroid Moment Tensor Catalog". Globalcmt.org. Retrieved 2011-07-24.
  10. "Instrumental California Earthquake Catalog". WGCEP. Archived from the original on 2011-07-25. Retrieved 2011-07-24.
  11. Hjaltadóttir S., 2010, "Use of relatively located microearthquakes to map fault patterns and estimate the thickness of the brittle crust in Southwest Iceland"
  12. "Reports and publications | Seismicity | Icelandic Meteorological office". En.vedur.is. Retrieved 2011-07-24.
  13. Schorlemmer, D.; Wiemer, S.; Wyss, M. (2005). "Variations in earthquake-size distribution across different stress regimes". Nature. 437 (7058): 539–542. Bibcode:2005Natur.437..539S. doi:10.1038/nature04094. PMID   16177788. S2CID   4327471.
  14. Talebian, M; Jackson, J (2004). "A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran". Geophysical Journal International. 156 (3): 506–526. Bibcode:2004GeoJI.156..506T. doi: 10.1111/j.1365-246X.2004.02092.x .
  15. Nettles, M.; Ekström, G. (May 2010). "Glacial Earthquakes in Greenland and Antarctica". Annual Review of Earth and Planetary Sciences. 38 (1): 467–491. Bibcode:2010AREPS..38..467N. doi:10.1146/annurev-earth-040809-152414.
  16. Noson, Qamar, and Thorsen (1988). Washington State Earthquake Hazards: Washington State Department of Natural Resources. Washington Division of Geology and Earth Resources Information Circular 85.CS1 maint: multiple names: authors list (link)
  17. "M7.5 Northern Peru Earthquake of 26 September 2005" (PDF). National Earthquake Information Center. 17 October 2005. Retrieved 2008-08-01.
  18. Greene II, H.W.; Burnley, P.C. (October 26, 1989). "A new self-organizing mechanism for deep-focus earthquakes". Nature. 341 (6244): 733–737. Bibcode:1989Natur.341..733G. doi:10.1038/341733a0. S2CID   4287597.
  19. Foxworthy and Hill (1982). Volcanic Eruptions of 1980 at Mount St. Helens, The First 100 Days: USGS Professional Paper 1249.
  20. Watson, John; Watson, Kathie (January 7, 1998). "Volcanoes and Earthquakes". United States Geological Survey. Retrieved May 9, 2009.
  21. 1 2 National Research Council (U.S.). Committee on the Science of Earthquakes (2003). "5. Earthquake Physics and Fault-System Science". Living on an Active Earth: Perspectives on Earthquake Science. Washington, D.C.: National Academies Press. p.  418. ISBN   978-0-309-06562-7 . Retrieved 8 July 2010.
  22. Sibson, R.H. (1973). "Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief". Nat. Phys. Sci. 243 (126): 66–68. Bibcode:1973NPhS..243...66S. doi:10.1038/physci243066a0.
  23. Rudnicki, J.W.; Rice, J.R. (2006). "Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials" (PDF). J. Geophys. Res. 111, B10308 (B10). Bibcode:2006JGRB..11110308R. doi:10.1029/2006JB004396.
  24. 1 2 3 Guerriero, V; Mazzoli, S. (2021). "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review". Geosciences. 11 (3): 119. Bibcode:2021Geosc..11..119G. doi: 10.3390/geosciences11030119 .
  25. 1 2 Nur, A; Booker, J.R. (1972). "Aftershocks Caused by Pore Fluid Flow?". Science. 175 (4024): 885–887. Bibcode:1972Sci...175..885N. doi:10.1126/science.175.4024.885. PMID   17781062. S2CID   19354081.
  26. 1 2 3 "What are Aftershocks, Foreshocks, and Earthquake Clusters?". Archived from the original on 2009-05-11.
  27. "Repeating Earthquakes". United States Geological Survey. January 29, 2009. Retrieved May 11, 2009.
  28. 1 2 "Aftershock | geology". Encyclopedia Britannica. Retrieved 2021-10-13.
  29. "Earthquake Swarms at Yellowstone". United States Geological Survey. Retrieved 2008-09-15.
  30. Duke, Alan. "Quake 'swarm' shakes Southern California". CNN. Retrieved 27 August 2012.
  31. Amos Nur; Cline, Eric H. (2000). "Poseidon's Horses: Plate Tectonics and Earthquake Storms in the Late Bronze Age Aegean and Eastern Mediterranean" (PDF). Journal of Archaeological Science. 27 (1): 43–63. doi:10.1006/jasc.1999.0431. ISSN   0305-4403. Archived from the original (PDF) on 2009-03-25.
  32. "Earthquake Storms". Horizon . 1 April 2003. Retrieved 2007-05-02.
  33. Bolt 1993.
  34. Chung & Bernreuter 1980 , p. 1.
  35. The USGS policy for reporting magnitudes to the press was posted at USGS policy Archived 2016-05-04 at the Wayback Machine , but has been removed. A copy can be found at http://dapgeol.tripod.com/usgsearthquakemagnitudepolicy.htm.
  36. 1 2 "Cool Earthquake Facts". United States Geological Survey. Retrieved 2021-04-21.
  37. 1 2 Pressler, Margaret Webb (14 April 2010). "More earthquakes than usual? Not really". KidsPost. Washington Post: Washington Post. pp. C10.
  38. "Earthquake Hazards Program". United States Geological Survey. Retrieved 2006-08-14.
  39. USGS Earthquake statistics table based on data since 1900 Archived 2010-05-24 at the Wayback Machine
  40. "Seismicity and earthquake hazard in the UK". Quakes.bgs.ac.uk. Retrieved 2010-08-23.
  41. "Italy's earthquake history." BBC News. October 31, 2002.
  42. "Common Myths about Earthquakes". United States Geological Survey. Archived from the original on 2006-09-25. Retrieved 2006-08-14.
  43. Are Earthquakes Really on the Increase? Archived 2014-06-30 at the Wayback Machine , USGS Science of Changing World. Retrieved 30 May 2014.
  44. "Earthquake Facts and Statistics: Are earthquakes increasing?". United States Geological Survey. Archived from the original on 2006-08-12. Retrieved 2006-08-14.
  45. The 10 biggest earthquakes in history Archived 2013-09-30 at the Wayback Machine , Australian Geographic, March 14, 2011.
  46. "Historic Earthquakes and Earthquake Statistics: Where do earthquakes occur?". United States Geological Survey. Archived from the original on 2006-09-25. Retrieved 2006-08-14.
  47. "Visual Glossary – Ring of Fire". United States Geological Survey. Archived from the original on 2006-08-28. Retrieved 2006-08-14.
  48. Jackson, James (2006). "Fatal attraction: living with earthquakes, the growth of villages into megacities, and earthquake vulnerability in the modern world". Philosophical Transactions of the Royal Society . 364 (1845): 1911–1925. Bibcode:2006RSPTA.364.1911J. doi:10.1098/rsta.2006.1805. PMID   16844641. S2CID   40712253.
  49. "Global urban seismic risk." Cooperative Institute for Research in Environmental Science.
  50. Fougler, Gillian R.; Wilson, Miles; Gluyas, Jon G.; Julian, Bruce R.; Davies, Richard J. (2018). "Global review of human-induced earthquakes". Earth-Science Reviews . 178: 438–514. Bibcode:2018ESRv..178..438F. doi: 10.1016/j.earscirev.2017.07.008 .
  51. Fountain, Henry (March 28, 2013). "Study Links 2011 Quake to Technique at Oil Wells". The New York Times . Retrieved July 23, 2020.
  52. Hough, Susan E.; Page, Morgan (2015). "A Century of Induced Earthquakes in Oklahoma?". Bulletin of the Seismological Society of America . 105 (6): 2863–2870. Bibcode:2015BuSSA.105.2863H. doi:10.1785/0120150109 . Retrieved July 23, 2020.
  53. Klose, Christian D. (July 2012). "Evidence for anthropogenic surface loading as trigger mechanism of the 2008 Wenchuan earthquake". Environmental Earth Sciences. 66 (5): 1439–1447. arXiv: 1007.2155 . doi:10.1007/s12665-011-1355-7. S2CID   118367859.
  54. LaFraniere, Sharon (February 5, 2009). "Possible Link Between Dam and China Quake". The New York Times . Retrieved July 23, 2020.
  55. "Speed of Sound through the Earth". Hypertextbook.com. Retrieved 2010-08-23.
  56. "Newsela | The science of earthquakes". newsela.com. Retrieved 2017-02-28.
  57. Geographic.org. "Magnitude 8.0 - SANTA CRUZ ISLANDS Earthquake Details". Global Earthquake Epicenters with Maps. Retrieved 2013-03-13.
  58. "Earth's gravity offers earlier earthquake warnings" . Retrieved 2016-11-22.
  59. "Gravity shifts could sound early earthquake alarm" . Retrieved 2016-11-23.
  60. "On Shaky Ground, Association of Bay Area Governments, San Francisco, reports 1995,1998 (updated 2003)". Abag.ca.gov. Archived from the original on 2009-09-21. Retrieved 2010-08-23.
  61. "Guidelines for evaluating the hazard of surface fault rupture, California Geological Survey" (PDF). California Department of Conservation. 2002. Archived from the original (PDF) on 2009-10-09.
  62. "Historic Earthquakes – 1964 Anchorage Earthquake". United States Geological Survey. Archived from the original on 2011-06-23. Retrieved 2008-09-15.
  63. "Earthquake Resources". Nctsn.org. 30 January 2018. Retrieved 2018-06-05.
  64. "Natural Hazards – Landslides". United States Geological Survey. Retrieved 2008-09-15.
  65. "The Great 1906 San Francisco earthquake of 1906". United States Geological Survey. Archived from the original on 2017-02-11. Retrieved 2008-09-15.
  66. 1 2 Noson, Qamar, and Thorsen (1988). Washington Division of Geology and Earth Resources Information Circular 85 (PDF). Washington State Earthquake Hazards.CS1 maint: multiple names: authors list (link)
  67. "Notes on Historical Earthquakes". British Geological Survey. Archived from the original on 2011-05-16. Retrieved 2008-09-15.
  68. "Fresh alert over Tajik flood threat". BBC News . 2003-08-03. Retrieved 2008-09-15.
  69. USGS: Magnitude 8 and Greater Earthquakes Since 1900 Archived 2016-04-14 at the Wayback Machine
  70. "Earthquakes with 50,000 or More Deaths Archived November 1, 2009, at the Wayback Machine ". U.S. Geological Survey
  71. Spignesi, Stephen J. (2005). Catastrophe!: The 100 Greatest Disasters of All Time. ISBN   0-8065-2558-4
  72. Kanamori Hiroo. "The Energy Release in Great Earthquakes" (PDF). Journal of Geophysical Research. Archived from the original (PDF) on 2010-07-23. Retrieved 2010-10-10.
  73. USGS. "How Much Bigger?". United States Geological Survey. Retrieved 2010-10-10.
  74. Geller et al. 1997 , p. 1616, following Allen (1976 , p. 2070), who in turn followed Wood & Gutenberg (1935)
  75. Earthquake Prediction. Ruth Ludwin, U.S. Geological Survey.
  76. Kanamori 2003, p. 1205. See also International Commission on Earthquake Forecasting for Civil Protection 2011, p. 327.
  77. Working Group on California Earthquake Probabilities in the San Francisco Bay Region, 2003 to 2032, 2003, "Archived copy". Archived from the original on 2017-02-18. Retrieved 2017-08-28.CS1 maint: archived copy as title (link)
  78. Pailoplee, Santi (2017-03-13). "Probabilities of Earthquake Occurrences along the Sumatra-Andaman Subduction Zone". Open Geosciences. 9 (1): 4. Bibcode:2017OGeo....9....4P. doi: 10.1515/geo-2017-0004 . ISSN   2391-5447. S2CID   132545870.
  79. Salvaneschi, P.; Cadei, M.; Lazzari, M. (1996). "Applying AI to Structural Safety Monitoring and Evaluation". IEEE Expert. 11 (4): 24–34. doi:10.1109/64.511774.
  80. 1 2 3 4 "Earthquakes". Encyclopedia of World Environmental History. 1: A–G. Routledge. 2003. pp. 358–364.
  81. "Fire and Ice: Melting Glaciers Trigger Earthquakes, Tsunamis and Volcanos". about News. Retrieved October 27, 2015.
  82. Sturluson, Snorri (1220). Prose Edda. ISBN   978-1-156-78621-5.
  83. George E. Dimock (1990). The Unity of the Odyssey. Univ of Massachusetts Press. pp. 179–. ISBN   978-0-87023-721-8.
  84. "Namazu". World History Encyclopedia. Retrieved 2017-07-23.
  85. 1 2 3 4 Van Riper, A. Bowdoin (2002). Science in popular culture: a reference guide . Westport: Greenwood Press. p.  60. ISBN   978-0-313-31822-1.
  86. JM Appel. A Comparative Seismology. Weber Studies (first publication), Volume 18, Number 2.
  87. Goenjian, Najarian; Pynoos, Steinberg; Manoukian, Tavosian; Fairbanks, AM; Manoukian, G; Tavosian, A; Fairbanks, LA (1994). "Posttraumatic stress disorder in elderly and younger adults after the 1988 earthquake in Armenia". Am J Psychiatry. 151 (6): 895–901. doi:10.1176/ajp.151.6.895. PMID   8185000.
  88. Wang, Gao; Shinfuku, Zhang; Zhao, Shen; Zhang, H; Zhao, C; Shen, Y (2000). "Longitudinal Study of Earthquake-Related PTSD in a Randomly Selected Community Sample in North China". Am J Psychiatry. 157 (8): 1260–1266. doi:10.1176/appi.ajp.157.8.1260. PMID   10910788.
  89. Goenjian, Steinberg; Najarian, Fairbanks; Tashjian, Pynoos (2000). "Prospective Study of Posttraumatic Stress, Anxiety, and Depressive Reactions After Earthquake and Political Violence" (PDF). Am J Psychiatry. 157 (6): 911–916. doi:10.1176/appi.ajp.157.6.911. PMID   10831470. Archived from the original (PDF) on 2017-08-10.
  90. Coates, SW; Schechter, D (2004). "Preschoolers' traumatic stress post-9/11: relational and developmental perspectives. Disaster Psychiatry Issue". Psychiatric Clinics of North America. 27 (3): 473–489. doi:10.1016/j.psc.2004.03.006. PMID   15325488.
  91. Schechter, DS; Coates, SW; First, E (2002). "Observations of acute reactions of young children and their families to the World Trade Center attacks". Journal of ZERO-TO-THREE: National Center for Infants, Toddlers, and Families. 22 (3): 9–13.

Sources