In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. [1] Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep. [2]
A fault plane is the plane that represents the fracture surface of a fault. A fault trace or fault line is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault. [3] [4]
A fault zone is a cluster of parallel faults. [5] [6] However, the term is also used for the zone of crushed rock along a single fault. [7] Prolonged motion along closely spaced faults can blur the distinction, as the rock between the faults is converted to fault-bound lenses of rock and then progressively crushed. [8]
Due to friction and the rigidity of the constituent rocks, the two sides of a fault cannot always glide or flow past each other easily, and so occasionally all movement stops. The regions of higher friction along a fault plane, where it becomes locked, are called asperities . Stress builds up when a fault is locked, and when it reaches a level that exceeds the strength threshold, the fault ruptures and the accumulated strain energy is released in part as seismic waves, forming an earthquake. [2]
Strain occurs accumulatively or instantaneously, depending on the liquid state of the rock; the ductile lower crust and mantle accumulate deformation gradually via shearing, whereas the brittle upper crust reacts by fracture – instantaneous stress release – resulting in motion along the fault. [9] A fault in ductile rocks can also release instantaneously when the strain rate is too great.
Slip is defined as the relative movement of geological features present on either side of a fault plane. A fault's sense of slip is defined as the relative motion of the rock on each side of the fault concerning the other side. [10] In measuring the horizontal or vertical separation, the throw of the fault is the vertical component of the separation and the heave of the fault is the horizontal component, as in "Throw up and heave out". [11] The vector of slip can be qualitatively assessed by studying any drag folding of strata, which may be visible on either side of the fault. [12] Drag folding is a zone of folding close to a fault that likely arises from frictional resistance to movement on the fault. [13] The direction and magnitude of heave and throw can be measured only by finding common intersection points on either side of the fault (called a piercing point). In practice, it is usually only possible to find the slip direction of faults, and an approximation of the heave and throw vector.
The two sides of a non-vertical fault are known as the hanging wall and footwall. The hanging wall occurs above the fault plane and the footwall occurs below it. [14] This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall above him. [15] These terms are important for distinguishing different dip-slip fault types: reverse faults and normal faults. In a reverse fault, the hanging wall displaces upward, while in a normal fault the hanging wall displaces downward. Distinguishing between these two fault types is important for determining the stress regime of the fault movement.
Faults are mainly classified in terms of the angle that the fault plane makes with the Earth's surface, known as the dip, and the direction of slip along the fault plane. [16] Based on the direction of slip, faults can be categorized as:
In a strike-slip fault (also known as a wrench fault, tear fault or transcurrent fault), [17] the fault surface (plane) is usually near vertical, and the footwall moves laterally either left or right with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. [18] Each is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault.
A special class of strike-slip fault is the transform fault when it forms a plate boundary. This class is related to an offset in a spreading center, such as a mid-ocean ridge, or, less common, within continental lithosphere, such as the Dead Sea Transform in the Middle East or the Alpine Fault in New Zealand. Transform faults are also referred to as "conservative" plate boundaries since the lithosphere is neither created nor destroyed.
Dip-slip faults can be either normal ("extensional") or reverse. The terminology of "normal" and "reverse" comes from coal mining in England, where normal faults are the most common. [19]
With the passage of time, a regional reversal between tensional and compressional stresses (or vice-versa) might occur, and faults may be reactivated with their relative block movement inverted in opposite directions to the original movement (fault inversion). In such a way, a normal fault may therefore become a reverse fault and vice versa.
In a normal fault, the hanging wall moves downward, relative to the footwall. The dip of most normal faults is at least 60 degrees but some normal faults dip at less than 45 degrees. [20]
A downthrown block between two normal faults dipping towards each other is a graben. A block stranded between two grabens, and therefore two normal faults dipping away from each other, is a horst. A sequence of grabens and horsts on the surface of the Earth produces a characteristic basin and range topography .
A listric fault is a type of normal fault that has a concave-upward shape with the upper section near Earth's surface being steeper, becoming more horizontal with increased depth. Normal faults can evolve into listric faults with the fault plane curving into the Earth. They can also form where the hanging wall is absent (such as on a cliff), where the footwall may slump in a manner that creates multiple listric faults.
The fault panes of listric faults can further flatten and evolve into a horizontal or near-horizontal plane, where slip progresses horizontally along a decollement. Extensional decollements can grow to great dimensions and form detachment faults, which are low-angle normal faults with regional tectonic significance.
Due to the curvature of the fault plane, the horizontal extensional displacement on a listric fault implies a geometric "gap" between the hanging and footwalls of the fault forms when the slip motion occurs. To accommodate into the geometric gap, and depending on its rheology, the hanging wall might fold and slide downwards into the gap and produce rollover folding, or break into further faults and blocks which fil in the gap. If faults form, imbrication fans or domino faulting may form.
A reverse fault is the opposite of a normal fault—the hanging wall moves up relative to the footwall.
Reverse faults indicate compressive shortening of the crust.
A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. [21] [22] Thrust faults typically form ramps, flats and fault-bend (hanging wall and footwall) folds.
A section of a hanging wall or foot wall where a thrust fault formed along a relatively weak bedding plane is known as a flat and a section where the thrust fault cut upward through the stratigraphic sequence is known as a ramp. [23] Typically, thrust faults move within formations by forming flats and climbing up sections with ramps. This results in the hanging wall flat (or a portion thereof) lying atop the foot wall ramp as shown in the fault-bend fold diagram.
Thrust faults form nappes and klippen in the large thrust belts. Subduction zones are a special class of thrusts that form the largest faults on Earth and give rise to the largest earthquakes.
A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault. Nearly all faults have some component of both dip-slip and strike-slip; hence, defining a fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, and others occur where the direction of extension or shortening changes during the deformation but the earlier formed faults remain active.
The hade angle is defined as the complement of the dip angle; it is the angle between the fault plane and a vertical plane that strikes parallel to the fault.
Ring faults, also known as caldera faults, are faults that occur within collapsed volcanic calderas [24] and the sites of bolide strikes, such as the Chesapeake Bay impact crater. Ring faults are the result of a series of overlapping normal faults, forming a circular outline. Fractures created by ring faults may be filled by ring dikes. [24]
Synthetic and antithetic are terms used to describe minor faults associated with a major fault. Synthetic faults dip in the same direction as the major fault while the antithetic faults dip in the opposite direction. These faults may be accompanied by rollover anticlines (e.g. the Niger Delta Structural Style).
All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by the fault and of the presence and nature of any mineralising fluids. Fault rocks are classified by their textures and the implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect is particularly clear in the case of detachment faults and major thrust faults.
The main types of fault rock include:
In geotechnical engineering, a fault often forms a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel, foundation, or slope construction.
The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing the seismic shaking and tsunami hazard to infrastructure and people in the vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,700 years) of the Earth's geological history. [27] Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess a fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules, eroded clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity.
Many ore deposits lie on or are associated with faults. This is because the fractured rock associated with fault zones allow for magma ascent [28] or the circulation of mineral-bearing fluids. Intersections of near-vertical faults are often locations of significant ore deposits. [29]
An example of a fault hosting valuable porphyry copper deposits is northern Chile's Domeyko Fault with deposits at Chuquicamata, Collahuasi, El Abra, El Salvador, La Escondida and Potrerillos. [30] Further south in Chile Los Bronces and El Teniente porphyry copper deposit lie each at the intersection of two fault systems. [29]
Faults may not always act as conduits to surface. It has been proposed that deep-seated "misoriented" faults may instead be zones where magmas forming porphyry copper stagnate achieving the right time for—and type of—igneous differentiation. [31] At a given time differentiated magmas would burst violently out of the fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed. [31]
As faults are zones of weakness, they facilitate the interaction of water with the surrounding rock and enhance chemical weathering. The enhanced chemical weathering increases the size of the weathered zone and hence creates more space for groundwater. [32] Fault zones act as aquifers and also assist groundwater transport.
An earthquake – also called a quake, tremor, or temblor – is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.
A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.
In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved ("folded") during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets. Synsedimentary folds are those formed during sedimentary deposition.
The Moine Thrust Belt or Moine Thrust Zone is a linear tectonic feature in the Scottish Highlands which runs from Loch Eriboll on the north coast 190 kilometres (120 mi) southwest to the Sleat peninsula on the Isle of Skye. The thrust belt consists of a series of thrust faults that branch off the Moine Thrust itself. Topographically, the belt marks a change from rugged, terraced mountains with steep sides sculptured from weathered igneous, sedimentary and metamorphic rocks in the west to an extensive landscape of rolling hills over a metamorphic rock base to the east. Mountains within the belt display complexly folded and faulted layers and the width of the main part of the zone varies up to ten kilometres, although it is significantly wider on Skye.
In geology, a shear zone is a thin zone within the Earth's crust or upper mantle that has been strongly deformed, due to the walls of rock on either side of the zone slipping past each other. In the upper crust, where rock is brittle, the shear zone takes the form of a fracture called a fault. In the lower crust and mantle, the extreme conditions of pressure and temperature make the rock ductile. That is, the rock is capable of slowly deforming without fracture, like hot metal being worked by a blacksmith. Here the shear zone is a wider zone, in which the ductile rock has slowly flowed to accommodate the relative motion of the rock walls on either side.
The Lewis Overthrust is a geologic thrust fault structure of the Rocky Mountains found within the bordering national parks of Glacier in Montana, United States and Waterton Lakes in Alberta, Canada. The structure was created due to the collision of tectonic plates about 59-75 million years ago that drove a several mile thick wedge of Precambrian rock 50 mi (80 km) eastwards, causing it to overlie softer Cretaceous age rock that is 1300 to 1400 million years younger.
Strike-slip tectonics or wrench tectonics is a type of tectonics that is dominated by lateral (horizontal) movements within the Earth's crust. Where a zone of strike-slip tectonics forms the boundary between two tectonic plates, this is known as a transform or conservative plate boundary. Areas of strike-slip tectonics are characterised by particular deformation styles including: stepovers, Riedel shears, flower structures and strike-slip duplexes. Where the displacement along a zone of strike-slip deviates from parallelism with the zone itself, the style becomes either transpressional or transtensional depending on the sense of deviation. Strike-slip tectonics is characteristic of several geological environments, including oceanic and continental transform faults, zones of oblique collision and the deforming foreland of zones of continental collision.
A detachment fault is a gently dipping normal fault associated with large-scale extensional tectonics. Detachment faults often have very large displacements and juxtapose unmetamorphosed hanging walls against medium to high-grade metamorphic footwalls that are called metamorphic core complexes. They are thought to have formed as either initially low-angle structures or by the rotation of initially high-angle normal faults modified also by the isostatic effects of tectonic denudation. They may also be called denudation faults. Examples of detachment faulting include:
In structural geology, inversion or basin inversion relates to the relative uplift of a sedimentary basin or similar structure as a result of crustal shortening. This normally excludes uplift developed in the footwalls of later extensional faults, or uplift caused by mantle plumes. "Inversion" can also refer to individual faults, where an extensional fault is reactivated in the opposite direction to its original movement.
The 1911 Kebin earthquake, or Chon-Kemin earthquake, struck Russian Turkestan on 3 January. Registering at a moment magnitude of 8.0, it killed 452 people, destroyed more than 770 buildings in Almaty, Kazakhstan, and resulted in 125 miles (201 km) of surface faulting in the valleys of Chon-Kemin, Chilik and Chon-Aksu.
In structural geology section restoration or palinspastic restoration is a technique used to progressively undeform a geological section in an attempt to validate the interpretation used to build the section. It is also used to provide insights into the geometry of earlier stages of the geological development of an area. A section that can be successfully undeformed to a geologically reasonable geometry, without change in area, is known as a balanced section.
The Marlborough fault system is a set of four large dextral strike-slip faults and other related structures in the northern part of the South Island, New Zealand, which transfer displacement between the mainly transform plate boundary of the Alpine fault and the mainly destructive boundary of the Kermadec Trench, and together form the boundary between the Australian and Pacific plates.
The Teton fault is a normal fault located in northwestern Wyoming. The fault has a length of 44 miles (70 km) and runs along the eastern base of the Teton Range. Vertical movement on the fault has caused the dramatic topography of the Teton Range.
The El Tigre Fault is a 120 km long, roughly north-south trending, major strike-slip fault located in the Western Precordillera in Argentina. The Precordillera lies just to the east of the Andes mountain range in South America. The northern boundary of the fault is the Jáchal River and its southern boundary is the San Juan River. The fault is divided into three sections based on fault trace geometry, Northern extending between 41–46 km in length, Central extending between 48–53 km in length, and Southern extending 26 km in length. The fault displays a right-lateral (horizontal) motion and has formed in response to stresses from the Nazca Plate subducting under the South American Plate. It is a major fault with crustal significance. The Andes Mountain belt trends with respect to the Nazca Plate/South American Plate convergence zone, and deformation is divided between the Precordilleran thrust faults and the El Tigre strike-slip motion. The El Tigre Fault is currently seismically active.
Growth faults are syndepositional or syn-sedimentary extensional faults that initiate and evolve at the margins of continental plates. They extend parallel to passive margins that have high sediment supply. Their fault plane dips mostly toward the basin and has long-term continuous displacement. Figure one shows a growth fault with a concave upward fault plane that has high updip angle and flattened at its base into zone of detachment or décollement. This angle is continuously changing from nearly vertical in the updip area to nearly horizontal in the downdip area.
The Dauki fault is a major fault along the southern boundary of the Shillong Plateau that may be a source of destructive seismic hazards for the adjoining areas, including northeastern Bangladesh. The fault, inferred to go through the southern margin of the Shillong Plateau, is an east–west-trending reverse fault inclined towards the north.
The Bogotá Fault is a major inactive slightly dextral oblique thrust fault in the department of Cundinamarca in central Colombia. The fault has a total length of 79.3 kilometres (49.3 mi), while other authors designate a length of 107 kilometres (66 mi), and runs along an average north-northeast to south-southwest strike of 013.5 ± 7 across the Altiplano Cundiboyacense, central part of the Eastern Ranges of the Colombian Andes.
In seismology, surface rupture is the visible offset of the ground surface when an earthquake rupture along a fault affects the Earth's surface. Surface rupture is opposed by buried rupture, where there is no displacement at ground level. This is a major risk to any structure that is built across a fault zone that may be active, in addition to any risk from ground shaking. Surface rupture entails vertical or horizontal movement, on either side of a ruptured fault. Surface rupture can affect large areas of land.
The 1947 Satipo earthquake was the largest earthquake in the sub-Andean region of Peru. It occurred on November 1 at 09:58:57 local time with an epicenter in the Department of Junín. The earthquake had an estimated moment magnitude (Mw ) of 7.7 and focal depth of 20 km (12 mi). Damage was severe in the towns of Satipo and La Merced, and at least 233 people died.
Anderson's theory of faulting, devised by Ernest Masson Anderson in 1905, is a way of classifying geological faults by use of principal stress. A fault is a fracture in the surface of the Earth that occurs when rocks break under extreme stress. Movement of rock along the fracture occurs in faults. If no movement occurs, the fracture is described instead as a joint. The grinding of two rock masses against each another along a fault results in an earthquake and deformation of the Earth's crust. Faults can be classified into four types based on the kind of motion between the separated rock masses: normal, reverse, strike-slip, and oblique.