Fault trace

Last updated
Along the Motagua Fault trace (1976 Guatemala earthquake) where it crosses the Gualan soccer field. This zigzag type of fault trace is known as "mole track", which is best developed in hard-packed, brittle surface materials. Fault trace geq00014.jpg
Along the Motagua Fault trace (1976 Guatemala earthquake) where it crosses the Gualán soccer field. This zigzag type of fault trace is known as "mole track", which is best developed in hard-packed, brittle surface materials.
The San Andreas fault trace runs along the base of the Temblor Range of mountains near Bakersfield, California. (The fault trace is a linear feature to the right of the mountain ridge.) PIA02786 San Andreas Fault.jpg
The San Andreas fault trace runs along the base of the Temblor Range of mountains near Bakersfield, California. (The fault trace is a linear feature to the right of the mountain ridge.)

A fault trace describes the intersection of a geological fault with the Earth's surface, which leaves a visible disturbance on the surface, usually looking like a crack in the surface with jagged rock structures protruding outward. The term also applies to a line plotted on a geological map to represent a fault. These fractures tend to occur when a slip surface expands from a fault core, especially during an earthquake. This tends to occur with fault displacement, in which surfaces on both sides of a fault, known as fault blocks, separate horizontally or vertically. [1]

Contents

Traces caused by different faults

Faults, at the broadest level, can be differentiated by the relative motion between their fault blocks.

Horizontal motion is indicative of what is known as a strike-slip fault and does not usually show much vertical separation. This is when the motion along the fault is parallel to the fault trace, usually caused by underlying plate tectonics . These fault traces are often identified by some kind of linear feature on the surface such as a fence line or small stream that has been offset. There are many photos of straight fences that suddenly jump over a meter or two leaving a gap in between. In nature, linear features are uncommon and can help identify geologic features like faults because of their linear fault traces. [2]

Dip separation can also occur when motion of the fault is perpendicular to the fault trace. That is, the fault blocks are pulled away from each other or pushed towards each other. This is known as a dip-slip fault. This causes vertical separation between the blocks as one is dropped down in the space created by extensional forces, or one block is shoved up on top of the other by compressional forces. Again, the underlying regional plate tectonics are often responsible for the type of fault and associated trace. This vertical separation reveals a new face which had previously been buried and extends along the length of the fault trace. This new face is a specific type of fault trace known as a fault scarp. [3]

Indicators

Scarps

Red Canyon Fault Scarp Red Canyon fault scarp sjr00100.jpg
Red Canyon Fault Scarp

As mentioned above, a scarp is a formation caused by vertical offset between two fault blocks. Fault scarps can be seen as meter high faces abruptly jutting out of the surface, or a small face only a few centimeters high which will be smoothed out quickly by mass wasting and erosional forces.

Vegetation changes

As a fault moves, the material both at and beneath the surface gets disturbed. These disturbances often cause different rocks and sediment, which are composed of different minerals, as well as fluids to be brought to the surface. Different minerals can contain different nutrients and elements that either enrich soils around them, or alter them in such a way that makes it more difficult for plants to grow. These changes in the soil can cause noticeable changes in the vegetation and form a fault trace.

Lineations

Not only are large scale linear features indicative of fault traces but small lineations found on rock samples or rock faces also are. Slickenlines are one type of lineation which are linear gouges scraped into a rock from different rocks grinding along against each other. Slickenlines indicate a fault as well as its motion, which can be very useful in many studies.

Topographic changes

Similar to fault scarps, and often displayed as them, elevation changes can often be good indicators of a fault. A portion of the land can be dropped down or thrust up during faulting and these can be obvious fault trace indicators, especially if seen in linear formations.

Riedel shears

Riedel shear structures are common structures that can be identified within shear zones. These structures form during the early stages of fault development and eventually link up with each other in linear orientation to form a complete fault. [4]

Fault traces on Mars

Mars has always been an interesting topic across scientific disciplines. The possibility of life existing on another planet has intrigued many throughout history and identifying features like faults could mean that there are more forces at work than previously thought. Using images captured by the Viking, Mars Express, Mars Reconnaissance Orbiter and Mars Odyssey missions, a 2008 study was able to identify a series of faults on the surface of Mars based on how their traces are expressed. These traces appear as erosion resistant ridges thought to have been formed by water deposited minerals within ancient fault zones. Finding these fault traces means that there may have been plate tectonics, geothermal interactions, and movement of ground water at some point in the planets history. These factors all have major potential to influence the chances of living organisms existing there. [5]

Fault traces and remote sensing

Because of the rarity of linear features found in nature, technologies which allow for large scale map view analysis of the earth's surface have been increasingly helpful in revealing fault traces that have otherwise remained unrecognized. Remote Sensing techniques use imagery acquired by sensors mounted on satellites, aircraft, or even handheld to view different parts of the earth at different scales. Large scale images often unveil features that were difficult or impossible to see from previous available perspectives. Sudden 90 degree bends or jogs in a stream, or even an extended straight stretch could be possible indicators of a fault trace but when put into larger perspective can be aligned with other pieces of evidence to add confirmation. There could be a gentle elevation change that don't seem suspicious when walking over it, but when viewed remotely can show that it extends laterally in a straight line and could be evidence of an old fault scarp. Not only can Remote Sensing be useful in locating new fault traces, but it can also provide useful information when monitoring motion and identifying characteristics of known faults. [6]

Fault traces on geologic maps

On a geologic map, fault traces are drawn in as lines. Direction of dip, degree of dip, type of fault, and motion along the fault can all be indicated using different symbols.

See also

Sources

Related Research Articles

Structural geology The science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

Transform fault Plate boundary where the motion is predominantly horizontal

A transform fault or transform boundary is a fault along a plate boundary where the motion is predominantly horizontal. It ends abruptly where it connects to another plate boundary, either another transform, a spreading ridge, or a subduction zone.

Fault (geology) Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

Fold (geology)

In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets. Synsedimentary folds are those formed during sedimentary deposition.

Fault scarp A small step or offset on the ground surface where one side of a fault has moved vertically with respect to the other

A fault scarp is a small step or offset on the ground surface where one side of a fault has moved vertically with respect to the other. It is the topographic expression of faulting attributed to the displacement of the land surface by movement along faults. They are exhibited either by differential movement and subsequent erosion along an old inactive geologic fault, or by a movement on a recent active fault.

Shear zone

A shear zone is a very important structural discontinuity surface in the Earth's crust and upper mantle. It forms as a response to inhomogeneous deformation partitioning strain into planar or curviplanar high-strain zones. Intervening (crustal) blocks stay relatively unaffected by the deformation. Due to the shearing motion of the surrounding more rigid medium, a rotational, non co-axial component can be induced in the shear zone. Because the discontinuity surface usually passes through a wide depth-range, a great variety of different rock types with their characteristic structures are produced.

Petermann Orogeny

The Petermann Orogeny was an Australian intracontinental event that affected basement rocks of the northern Musgrave Province and Ediacaran (Proterozoic) sediments of the (now) southern Amadeus Basin between ~550-535 Ma. The remains are seen today in the Petermann Ranges.

Fault block

Fault blocks are very large blocks of rock, sometimes hundreds of kilometres in extent, created by tectonic and localized stresses in Earth's crust. Large areas of bedrock are broken up into blocks by faults. Blocks are characterized by relatively uniform lithology. The largest of these fault blocks are called crustal blocks. Large crustal blocks broken off from tectonic plates are called terranes. Those terranes which are the full thickness of the lithosphere are called microplates. Continent-sized blocks are called variously microcontinents, continental ribbons, H-blocks, extensional allochthons and outer highs.

Transpression

In geology, transpression is a type of strike-slip deformation that deviates from simple shear because of a simultaneous component of shortening perpendicular to the fault plane. This movement ends up resulting in oblique shear. It is generally very unlikely that a deforming body will experience "pure" shortening or "pure" strike-slip. The relative amounts of shortening and strike-slip can be expressed in the convergence angle alpha which ranges from zero to 90 degrees. During shortening, unless material is lost, transpression produces vertical thickening in the crust. Transpression that occurs on a regional scale along plate boundaries is characterized by oblique convergence. More locally, transpression occurs within restraining bends in strike-slip fault zones.

Fracture (geology) Geologic structure

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

Strike-slip tectonics is concerned with the structures formed by, and the tectonic processes associated with, zones of lateral displacement within the Earth's crust or lithosphere.

See also Line (geometry)

Olympic-Wallowa Lineament

The Olympic-Wallowa lineament (OWL) – first reported by cartographer Erwin Raisz in 1945 on a relief map of the continental United States – is a physiographic feature of unknown origin in the state of Washington running approximately from the town of Port Angeles, on the Olympic Peninsula to the Wallowa Mountains of eastern Oregon.

The Philippine Fault System is a major inter-related system of geological faults throughout the whole of the Philippine Archipelago, primarily caused by tectonic forces compressing the Philippines into what geophysicists call the Philippine Mobile Belt. Some notable Philippine faults include the Guinayangan, Masbate and Leyte faults.

El Tigre Fault

The El Tigre Fault is a 120 km long, roughly north-south trending, major strike-slip fault located in the Western Precordillera in Argentina. The Precordillera lies just to the east of the Andes mountain range in South America. The northern boundary of the fault is the Jáchal River and its southern boundary is the San Juan River. The fault is divided into three sections based on fault trace geometry, Northern extending between 41–46 km in length, Central extending between 48–53 km in length, and Southern extending 26 km in length. The fault displays a right-lateral (horizontal) motion and has formed in response to stresses from the Nazca Plate subducting under the South American Plate. It is a major fault with crustal significance. The Andes Mountain belt trends with respect to the Nazca Plate/South American Plate convergence zone, and deformation is divided between the Precordilleran thrust faults and the El Tigre strike-slip motion. The El Tigre Fault is currently seismically active.

Tectonics of Mars

Like the Earth, the crustal properties and structure of the surface of Mars are thought to have evolved through time; in other words, as on Earth, tectonic processes have shaped the planet. However, both the ways this change has happened and the properties of the planet's lithosphere are very different when compared to the Earth. Today, Mars is believed to be largely tectonically inactive. However, observational evidence and its interpretation suggests that this was not the case further back in Mars' geological history.

Geology of Myanmar

The geology of Myanmar is shaped by dramatic, ongoing tectonic processes controlled by shifting tectonic components as the Indian plate slides northwards and towards Southeast Asia. Myanmar spans across parts of three tectonic plates separated by north-trending faults. To the west, a highly oblique subduction zone separates the offshore Indian plate from the Burma microplate, which underlies most of the country. In the center-east of Myanmar, a right lateral strike slip fault extends from south to north across more than 1,000 km (620 mi). These tectonic zones are responsible for large earthquakes in the region. The India-Eurasia plate collision which initiated in the Eocene provides the last geological pieces of Myanmar, and thus Myanmar preserves a more extensive Cenozoic geological record as compared to records of the Mesozoic and Paleozoic eras. Myanmar is physiographically divided into three regions: the Indo-Burman Range, Myanmar Central Belt and the Shan Plateau; these all display an arcuate shape bulging westwards. The varying regional tectonic settings of Myanmar not only give rise to disparate regional features, but they also foster the formation of petroleum basins and a diverse mix of mineral resources.

Geological structure measurement by LiDAR

Geological structure measurement by LiDAR technology is a remote sensing method applied in structural geology. It enables monitoring and characterisation of rock bodies. This method's typical use is to acquire high resolution structural and deformational data for identifying geological hazards risk, such as assessing rockfall risks or studying pre-earthquake deformation signs.

1988 Lancang earthquake

On November 6, 1988, the Lancang earthquake struck Lancang County, Yunnan, near the border with Shan State, Burma (Myanmar) with a moment magnitude of Mw 7.7. It is the largest earthquake to affect both Yunnan Province and Shan State since 1970 and 1912, respectively. In January 1970, a Mw 7.1 struck Tonghai County, resulting in over 15,000 deaths, and in May 1912, Shan State was hit with a Mw 7.7 that caused serious damage in the region.

1739 Yinchuan–Pingluo earthquake Magnitude 8.0 earthquake in China

The 1739 Yinchuan–Pingluo earthquake rocked the northern Ningxia Hui Autonomous Region on January 3 with an epicenter in the prefecture-level city Shizuishan. The estimated magnitude 8.0 earthquake had a maximum intensity of XI on the Mercalli intensity scale, and killed about 50,000 residents and officials. It was widely felt, as far in Shanxi, Shaanxi and Hebei provinces.

References

  1. Torabi, Anita; Berg, Silje Støren (2011-08-01). "Scaling of fault attributes: A review". Marine and Petroleum Geology. 28 (8): 1444–1460. doi:10.1016/j.marpetgeo.2011.04.003. ISSN   0264-8172.
  2. Balance, P. F. (2009-04-08). Sedimentation in Oblique-slip Mobile Zones. John Wiley & Sons. ISBN   978-1-4443-0374-2.
  3. Bouchon, Michel (1980). "The motion of the ground during an earthquake: 2. The case of a dip slip fault". Journal of Geophysical Research: Solid Earth. 85 (B1): 367–375. doi:10.1029/JB085iB01p00367. ISSN   2156-2202.
  4. Katz, Yoram; Weinberger, Ram; Aydin, Atilla (2004-03-01). "Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah". Journal of Structural Geology. 26 (3): 491–501. doi:10.1016/j.jsg.2003.08.003. ISSN   0191-8141.
  5. Treiman, Allan H. (March 2008). "Ancient groundwater flow in the Valles Marineris on Mars inferred from fault trace ridges". Nature Geoscience. 1 (3): 181–183. doi:10.1038/ngeo131. ISSN   1752-0908.
  6. Philip, G. (2007-11-01). "Remote sensing data analysis for mapping active faults in the northwestern part of Kangra Valley, NW Himalaya, India". International Journal of Remote Sensing. 28 (21): 4745–4761. doi:10.1080/01431160701264243. ISSN   0143-1161. S2CID   129833739.