Chevron (geology)

Last updated
Chevron folds with flat-lying axial planes, Millook Haven, North Cornwall, UK Millook cliffs enh.jpg
Chevron folds with flat-lying axial planes, Millook Haven, North Cornwall, UK

Chevron folds are a structural feature characterized by repeated well behaved folded beds with straight limbs and sharp hinges. Well developed, these folds develop repeated set of v-shaped beds. [1] They develop in response to regional or local compressive stress. Inter-limb angles are generally 60 degrees or less. Chevron folding preferentially occurs when the bedding regularly alternates between contrasting competences. [1] Turbidites, characterized by alternating high-competence sandstones and low-competence shales, provide the typical geological setting for chevron folds to occur.

Contents

Perpetuation of the fold structure is not geometrically limited. Given a proper stratigraphy, chevrons can persist almost indefinitely. [2]

Fold process

In response to compressional stress, geological beds fold in order to minimize dissipation of energy. Given an unconstrained bed, folding does so by correspondingly minimizing bending and thus develops a sinusoidal geometry. In a stratigraphic sequence, beds are geometrically and physically constrained by their neighbours. Similarity must be maintained. To accommodate such constraints while maintaining sinusoidal geometry, less competent layers would need to be subjected to extensive flow. Kinked, yielding and highly localized hinges with straight limbs greatly reduce the geometrical need for deformation. Chevron folds are energetically preferred to conventional sinusoidal folds as they minimize ductile flow to the expense of localized bending. [3]

Four stages mark development of chevron folds: sinusoidal nucleation, concentric folding, straightening of limbs/sharpening of hinges, and tightening of the chevron fold. [2] When inter-limb angles approach 60 degrees, frictional forces limit simple shear and flow deformation in less competent layers and favors pure shear of the whole stratigraphic complex. [1] Therefore, the inter-limb angle, rapidly decreasing as a function of time given larger angles begins to stabilize as the angle nears 60 degrees. There is, however, no physical limitation on the acuteness of the fold. [1]

Saddle reef structures, hinge collapse and/or simply dilation of incompetent layer commonly accommodates the geometrical void created in the hinge during folding. While the incompetent layer deforms and flows, thus having complex cleavage patterns, competent layers tend to fracture radially at the hinge. These fractures are commonly infilled with crystalline veins. [1]

Factors affecting folding

The behavior of chevron folds are effectively controlled by the characteristics of the stratigraphy under deformation. Ideally, beds should alternate between high competence and low competence. The stability of chevron folding stringently requires regular thickness in the high-competence layers; conversely, regularity in low competence layers has been found to have very little effect on stability. The length of the bed and the thickness of competent beds further determines the structural stability. A 1:10 ratio between the thickness of competent beds and the length appears to be the threshold required for the formation of chevron folds. Smaller ratios require too much flow in the more ductile layers. Given high length to thickness and low high-competency to low-competency thickness ratios, irregularities in the thickness of the high-competence beds can be accommodated. However, local features appear as a consequence. [1]

Anomalously thick beds develop bulbous hinges, hinge collapse, hinges thrusts and/or compress via ductile flow. On the other hand, anomalously thin beds develop boudinage and/or extension via ductile flow. [1]

See also

Related Research Articles

Structural geology Science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

Thrust fault Type of reverse fault that has a dip of 45 degrees or less

A thrust fault is a break in the Earth's crust, across which older rocks are pushed above younger rocks.

Fold (geology) Stack of originally planar surfaces

In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets. Synsedimentary folds are those formed during sedimentary deposition.

Anticline In geology, an anticline is a type of fold that is an arch-like shape

In structural geology, an anticline is a type of fold that is an arch-like shape and has its oldest beds at its core, whereas a syncline is the inverse of an anticline. A typical anticline is convex up in which the hinge or crest is the location where the curvature is greatest, and the limbs are the sides of the fold that dip away from the hinge. Anticlines can be recognized and differentiated from antiforms by a sequence of rock layers that become progressively older toward the center of the fold. Therefore, if age relationships between various rock strata are unknown, the term antiform should be used.

Galling Form of wear caused by adhesion between sliding surfaces

Galling is a form of wear caused by adhesion between sliding surfaces. When a material galls, some of it is pulled with the contacting surface, especially if there is a large amount of force compressing the surfaces together. Galling is caused by a combination of friction and adhesion between the surfaces, followed by slipping and tearing of crystal structure beneath the surface. This will generally leave some material stuck or even friction welded to the adjacent surface, whereas the galled material may appear gouged with balled-up or torn lumps of material stuck to its surface.

Shear zone Structural discontinuity surface in the Earths crust and upper mantle

A shear zone is a very important structural discontinuity surface in the Earth's crust and upper mantle. It forms as a response to inhomogeneous deformation partitioning strain into planar or curviplanar high-strain zones. Intervening (crustal) blocks stay relatively unaffected by the deformation. Due to the shearing motion of the surrounding more rigid medium, a rotational, non co-axial component can be induced in the shear zone. Because the discontinuity surface usually passes through a wide depth-range, a great variety of different rock types with their characteristic structures are produced.

Nappe A large sheetlike body of rock that has been moved a considerable distance above a thrust fault

In geology, a nappe or thrust sheet is a large sheetlike body of rock that has been moved more than 2 km (1.2 mi) or 5 km (3.1 mi) above a thrust fault from its original position. Nappes form in compressional tectonic settings like continental collision zones or on the overriding plate in active subduction zones. Nappes form when a mass of rock is forced over another rock mass, typically on a low angle fault plane. The resulting structure may include large-scale recumbent folds, shearing along the fault plane, imbricate thrust stacks, fensters and klippes.

Dynamic recrystallization (DRX) is a type of recrystallization process, found within the fields of metallurgy and geology. In dynamic recrystallization, as opposed to static recrystallization, the nucleation and growth of new grains occurs during deformation rather than afterwards as part of a separate heat treatment. The reduction of grain size increases the risk of grain boundary sliding at elevated temperatures, while also decreasing dislocation mobility within the material. The new grains are less strained, causing a decrease in the hardening of a material. Dynamic recrystallization allows for new grain sizes and orientation, which can prevent crack propagation. Rather than strain causing the material to fracture, strain can initiate the growth of a new grain, consuming atoms from neighboring pre-existing grains. After dynamic recrystallization, the ductility of the material increases.

Shear (geology)

In geology, shear is the response of a rock to deformation usually by compressive stress and forms particular textures. Shear can be homogeneous or non-homogeneous, and may be pure shear or simple shear. Study of geological shear is related to the study of structural geology, rock microstructure or rock texture and fault mechanics.

Joint (geology) Geological term for a type of fracture in rock

A joint is a break (fracture) of natural origin in a layer or body of rock that lacks visible or measurable movement parallel to the surface (plane) of the fracture. Although joints can occur singly, they most frequently appear as joint sets and systems. A joint set is a family of parallel, evenly spaced joints that can be identified through mapping and analysis of their orientations, spacing, and physical properties. A joint system consists of two or more intersecting joint sets.

Emily Ann and Maggie Hays nickel mines Mine in Australia

The Emily Ann and Maggie Hays nickel deposits are situated approximately 150 km west of the town of Norseman, Western Australia, within the Lake Johnston Greenstone Belt.

Décollement

Décollement is a gliding plane between two rock masses, also known as a basal detachment fault. Décollements are a deformational structure, resulting in independent styles of deformation in the rocks above and below the fault. They are associated with both compressional settings and extensional settings.

Cleavage (geology)

Cleavage, in structural geology and petrology, describes a type of planar rock feature that develops as a result of deformation and metamorphism. The degree of deformation and metamorphism along with rock type determines the kind of cleavage feature that develops. Generally these structures are formed in fine grained rocks composed of minerals affected by pressure solution.

Oblique foliation, steady state foliation or oblique fabric is a special type of a tectonically produced foliation or fabric, most commonly in quartz-rich layers. The microtectonic structure can be used to determine the shear sense in shear zones and their associated rocks, usually mylonites.

Competence (geology) Degree of resistance of rocks to deformation in terms of mechanical strength

In geology competence refers to the degree of resistance of rocks to deformation or flow. In mining 'competent rocks' are those in which an unsupported opening can be made.

Detachment fold

A detachment fold, in geology, occurs as layer parallel thrusting along a decollement develops without upward propagation of a fault; the accommodation of the strain produced by continued displacement along the underlying thrust results in the folding of the overlying rock units. As a visual aid, picture a rug on the floor. By placing your left foot on one end and pushing towards the other end of the rug, the rug slides across the floor (decollement) and folds upward. Figure 1, is a generalized representation of the geometry assumed by a detachment fault.

Thick-skinned deformation is a geological term which refers to crustal shortening that involves basement rocks and deep-seated faults as opposed to only the upper units of cover rocks above the basement which is known as thin-skinned deformation. While thin-skinned deformation is common in many different localities, thick-skinned deformation requires much more strain to occur and is a rarer type of deformation.

3D fold evolution

In geology, 3D fold evolution is the study of the full three dimensional structure of a fold as it changes in time. A fold is a common three-dimensional geological structure that is associated with strain deformation under stress. Fold evolution in three dimensions can be broadly divided into two stages, namely fold growth and fold linkage. The evolution depends on fold kinematics, causes of folding, as well as alignment and interaction of the each structure with respect to each other. There are several ways to reconstruct the evolution progress of folds, notably by using depositional evidence, geomorphological evidence and balanced restoration. Understanding the evolution of folds is important because it helps petroleum geologists to gain a better understanding on the distribution of structural traps of hydrocarbon.

Paleostress inversion refers to the determination of paleostress history from evidence found in rocks, based on the principle that past tectonic stress should have left traces in the rocks. Such relationships have been discovered from field studies for years: qualitative and quantitative analyses of deformation structures are useful for understanding the distribution and transformation of paleostress fields controlled by sequential tectonic events. Deformation ranges from microscopic to regional scale, and from brittle to ductile behaviour, depending on the rheology of the rock, orientation and magnitude of the stress etc. Therefore, detailed observations in outcrops, as well as in thin sections, are important in reconstructing the paleostress trajectories.

Catoctin Formation

The Catoctin Formation is a geologic formation that expands through Virginia, Maryland, and Pennsylvania. It dates back to the Precambrian and is closely associated with the Harpers Formation, Weverton Formation, and the Loudoun Formation. The Catoctin Formation lies over the a granite basement rock and below the Chilhowee Group making it only exposed on the outer parts of the Blue Ridge. The Catoctin Formation contains metabasalt, metarhyolite, and porphyritic rocks, columnar jointing, low-dipping primary joints, amygdules, sedimentary dikes, and flow breccias. Evidence for past volcanic activity includes columnar basalts and greenstone dikes.

References

  1. 1 2 3 4 5 6 7 Ramsay, J (1974). "Development of chevron folds". Geological Society of America Bulletin. 85. doi:10.1130/0016-7606(1974)85<1741:docf>2.0.co;2.
  2. 1 2 Reches, Z E; Johnson (1976). "A theory of concentric, kink and sinusoidal folding and of monoclinal flexuring of compressible, elastic multilayers: VI. Asymmetric folding and monoclinal kinking". Tectonophysics. 35 (4): 295–334. doi:10.1016/0040-1951(76)90074-3.
  3. Williams, J R (1980). "Similar and chevron folds in multilayers using finite-element and geometric models". Tectonophysics. 65. 3: 323–338. doi:10.1016/0040-1951(80)90081-5.