Transform fault

Last updated
Diagram showing a transform fault with two plates moving in opposite directions Continental-continental conservative plate boundary opposite directions.svg
Diagram showing a transform fault with two plates moving in opposite directions
Transform fault (the red lines) Transform fault-1.svg
Transform fault (the red lines)

A transform fault or transform boundary is a plate boundary where the motion is predominantly horizontal. [1] It ends abruptly and is connected to another transform, a spreading ridge, or a subduction zone. [2]

In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement as a result of rock-mass movement. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes.

Subduction A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced to sink due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.


Most of these faults are hidden in the deep ocean, where they offset divergent boundaries in short zigzags resulting from seafloor spreading, the best-known (and most destructive) being those on land at the margins of continental tectonic plates. A transform fault is the only type of strike-slip fault that is classified as a plate boundary.

Divergent boundary Linear feature that exists between two tectonic plates that are moving away from each other

In plate tectonics, a divergent boundary or divergent plate boundary is a linear feature that exists between two tectonic plates that are moving away from each other. Divergent boundaries within continents initially produce rifts which eventually become rift valleys. Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands which occur when the plates move apart to produce gaps which molten lava rises to fill.

A zigzag is a pattern made up of small corners at variable angles, though constant within the zigzag, tracing a path between two parallel lines; it can be described as both jagged and fairly regular.

Seafloor spreading A process at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge

Seafloor spreading is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.


These faults are also known as conservative plate boundaries, since they neither create nor destroy lithosphere.

Conservation of mass conservation law for mass (ultimately equivalent to conservation of energy)

The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity can neither be added nor be removed. Hence, the quantity of mass is conserved over time.

Lithosphere The rigid, outermost shell of a terrestrial-type planet or natural satellite that is defined by its rigid mechanical properties

A lithosphere is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.


Geophysicist and geologist John Tuzo Wilson recognized that the offsets of oceanic ridges by faults do not follow the classical pattern of an offset fence or geological marker in Reid's rebound theory of faulting, [3] from which the sense of slip is derived. The new class of faults, [4] called transform faults, produce slip in the opposite direction from what one would surmise from the standard interpretation of an offset geological feature. Slip along transform faults does not increase the distance between the ridges it separates; the distance remains constant in earthquakes because the ridges are spreading centers. This hypothesis was confirmed in a study of the fault plane solutions that showed the slip on transform faults points in the opposite direction than classical interpretation would suggest. [5]

John Tuzo Wilson Canadian geologist

John Tuzo Wilson, CC, OBE, FRS, FRSC, FRSE was a Canadian geophysicist and geologist who achieved worldwide acclaim for his contributions to the theory of plate tectonics.

Harry Fielding Reid American geophysicist and seismologist

Harry Fielding Reid was an American geophysicist. He was notable for his contributions to seismology, particularly his theory of elastic rebound that related faults to earthquakes.

Elastic-rebound theory

In geology, the elastic-rebound theory is an explanation for how energy is released during an earthquake.

Difference between transform and transcurrent faults

Transform fault.svg
Transform fault
Transcurrent NEW.svg
Transcurrent fault

Transform faults are closely related to transcurrent faults and are commonly confused. Both types of fault are strike-slip or side-to-side in movement; nevertheless, transform faults end at the junction of another plate boundary or fault type, while transcurrent faults die out without a junction. In addition, transform faults have equal deformation across the entire fault line, while transcurrent faults have greater displacement in the middle of the fault zone and less on the margins. Finally, transform faults can form a tectonic plate boundary, while transcurrent faults cannot.


The effect of a fault is to relieve strain, which can be caused by compression, extension, or lateral stress in the rock layers at the surface or deep in the Earth's subsurface. Transform faults specifically relieve strain by transporting the strain between ridges or subduction zones. They also act as the plane of weakness, which may result in splitting in rift zones.

In mechanics, compression is the application of balanced inward ("pushing") forces to different points on a material or structure, that is, forces with no net sum or torque directed so as to reduce its size in one or more directions. It is contrasted with tension or traction, the application of balanced outward ("pulling") forces; and with shearing forces, directed so as to displace layers of the material parallel to each other. The compressive strength of materials and structures is an important engineering consideration.

In continuum mechanics, lateral strain, also known as transverse strain, is defined as the ratio of the change in diameter of a circular bar of a material to its diameter due to deformation in the longitudinal direction. It occurs when under the action of a longitudinal stress, a body will extend in the direction of the stress and contract in the transverse or lateral direction. When put under compression, the body will contract in the direction of the stress and extend in the transverse or lateral direction. It is a dimensionless quantity, as it is a ratio between two quantities of the same dimension.

Rift zone Part of a volcano where a set of linear cracks form

A rift zone is a feature of some volcanoes, especially shield volcanoes, in which a set of linear cracks develops in a volcanic edifice, typically forming into two or three well-defined regions along the flanks of the vent. Believed to be primarily caused by internal and gravitational stresses generated by magma emplacement within and across various regions of the volcano, rift zones allow the intrusion of magmatic dykes into the slopes of the volcano itself. The addition of these magmatic materials usually contributes to the further rifting of the slope, in addition to generating fissure eruptions from those dykes that reach the surface. It is the grouping of these fissures, and the dykes that feed them, that serves to delineate where and whether a rift zone is to be defined. The accumulated lava of repeated eruptions from rift zones along with the endogenous growth created by magma intrusions causes these volcanoes to have an elongated shape. Perhaps the best example of this is Mauna Loa, which in Hawaiian means "long mountain", and which features two very well defined rift zones extending tens of kilometers outward from the central vent.


Transform faults are commonly found linking segments of mid-oceanic ridges or spreading centres. These mid-oceanic ridges are where new seafloor is constantly created through the upwelling of new basaltic magma. With new seafloor being pushed and pulled out, the older seafloor slowly slides away from the mid-oceanic ridges toward the continents. Although separated only by tens of kilometers, this separation between segments of the ridges causes portions of the seafloor to push past each other in opposing directions. This lateral movement of seafloors past each other is where transform faults are currently active.

Upwelling The replacement by deep water moving upwards of surface water driven offshore by wind

Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a.

Magma Mixture of molten or semi-molten rock, volatiles and solids that is found beneath the surface of the Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle and/or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion. While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland, and once in Hawaii.

Spreading center and strips Spreading center and strips.png
Spreading center and strips

Transform faults move differently from a strike-slip fault at the mid-oceanic ridge. Instead of the ridges moving away from each other, as they do in other strike-slip faults, transform-fault ridges remain in the same, fixed locations, and the new ocean seafloor created at the ridges is pushed away from the ridge. Evidence of this motion can be found in paleomagnetic striping on the seafloor.

A paper written by geophysicist Taras Gerya theorizes that the creation of the transform faults between the ridges of the mid-oceanic ridge is attributed to rotated and stretched sections of the mid-oceanic ridge. [6] This occurs over a long period of time with the spreading center or ridge slowly deforming from a straight line to a curved line. Finally, fracturing along these planes forms transform faults. As this takes place, the fault changes from a normal fault with extensional stress to a strike slip fault with lateral stress. [7] In the study done by Bonatti and Crane,[ who? ] peridotite and gabbro rocks were discovered in the edges of the transform ridges. These rocks are created deep inside the Earth's mantle and then rapidly exhumed to the surface. [7] This evidence helps to prove that new seafloor is being created at the mid-oceanic ridges and further supports the theory of plate tectonics.

Active transform faults are between two tectonic structures or faults. Fracture zones represent the previously active transform-fault lines, which have since passed the active transform zone and are being pushed toward the continents. These elevated ridges on the ocean floor can be traced for hundreds of miles and in some cases even from one continent across an ocean to the other continent.

The most prominent examples of the mid-oceanic ridge transform zones are in the Atlantic Ocean between South America and Africa. Known as the St. Paul, Romanche, Chain, and Ascension fracture zones, these areas have deep, easily identifiable transform faults and ridges. Other locations include: the East Pacific Ridge located in the South Eastern Pacific Ocean, which meets up with San Andreas Fault to the North.

Transform faults are not limited to oceanic crust and spreading centers; many of them are on continental margins. The best example is the San Andreas Fault on the Pacific coast of the United States. The San Andreas Fault links the East Pacific Rise off the West coast of Mexico (Gulf of California) to the Mendocino Triple Junction (Part of the Juan de Fuca plate) off the coast of the Northwestern United States, making it a ridge-to-transform-style fault. [4] The formation of the San Andreas Fault system occurred fairly recently during the Oligocene Period between 34 million and 24 million years ago. [8] During this period, the Farallon plate, followed by the Pacific plate, collided into the North American plate. [8] The collision led to the subduction of the Farallon plate underneath the North American plate. Once the spreading center separating the Pacific and the Farallon plates was subducted beneath the North American plate, the San Andreas Continental Transform-Fault system was created. [8]

The Southern Alps rise dramatically beside the Alpine Fault on New Zealand's West Coast. About 500 kilometres (300 mi) long; northwest at top. Alpine Fault SRTM.jpg
The Southern Alps rise dramatically beside the Alpine Fault on New Zealand's West Coast. About 500 kilometres (300 mi) long; northwest at top.

In New Zealand, the South Island's alpine fault is a transform fault for much of its length. This has resulted in the folded land of the Southland Syncline being split into an eastern and western section several hundred kilometres apart. The majority of the syncline is found in Southland and The Catlins in the island's southeast, but a smaller section is also present in the Tasman District in the island's northwest.

Other examples include:


In his work on transform-fault systems, geologist Tuzo Wilson said that transform faults must be connected to other faults or tectonic-plate boundaries on both ends; because of that requirement, transform faults can grow in length, keep a constant length, or decrease in length. [4] These length changes are dependent on which type of fault or tectonic structure connect with the transform fault. Wilson described six types of transform faults:

Growing length: In situations where a transform fault links a spreading center and the upper block of a subduction zone or where two upper blocks of subduction zones are linked, the transform fault itself will grow in length. [4]

Spreading to upper NEW.svg Upper to upper.svg

Constant length: In other cases, transform faults will remain at a constant length. This steadiness can be attributed to many different causes. In the case of ridge-to-ridge transforms, the constancy is caused by the continuous growth by both ridges outward, canceling any change in length. The opposite occurs when a ridge linked to a subducting plate, where all the lithosphere (new sea floor) being created by the ridge is subducted, or swallowed up, by the subduction zone. [4] Finally, when two upper subduction plates are linked there is no change in length. This is due to the plates moving parallel with each other and no new lithosphere is being created to change that length.

Spreading centers constant.svg Upper to down NEW.svg

Decreasing length faults: In rare cases, transform faults can shrink in length. These occur when two descending subduction plates are linked by a transform fault. In time as the plates are subducted, the transform fault will decrease in length until the transform fault disappears completely, leaving only two subduction zones facing in opposite directions. [4]

Down to down NEW.svg Spreading to Down NEW.svg

See also

Related Research Articles

Obduction was originally defined by Coleman to mean the overthrusting of oceanic lithosphere onto continental lithosphere at a convergent plate boundary where continental lithosphere is being subducted beneath oceanic lithosphere.

Sedimentary basin Regions of long-term subsidence creating space for infilling by sediments

Sedimentary basins are regions of Earth of long-term subsidence creating accommodation space for infilling by sediments. The subsidence can result from a variety of causes that include: the thinning of underlying crust, sedimentary, volcanic, and tectonic loading, and changes in the thickness or density of adjacent lithosphere. Sedimentary basins occur in diverse geological settings usually associated with plate tectonic activity. Basins are classified structurally in various ways, with a primary classifications distinguishing among basins formed in various plate tectonic regime, the proximity of the basin to the active plate margins, and whether oceanic, continental or transitional crust underlies the basin. Basins formed in different plate tectonic regimes vary in their preservation potential. On oceanic crust, basins are likely to be subducted, while marginal continental basins may be partially preserved, and intracratonic basins have a high probability of preservation. As the sediments are buried, they are subjected to increasing pressure and begin the process of lithification. A number of basins formed in extensional settings can undergo inversion which has accounted for a number of the economically viable oil reserves on earth which were formerly basins.

Convergent boundary Region of active deformation between colliding lithospheric plates

Convergent boundaries are areas on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other causing a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Benioff Zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

Tectonics The processes that control the structure and properties of the Earths crust and its evolution through time

Tectonics is the process that controls the structure and properties of the Earth's crust and its evolution through time. In particular, it describes the processes of mountain building, the growth and behavior of the strong, old cores of continents known as cratons, and the ways in which the relatively rigid plates that constitute the Earth's outer shell interact with each other. Tectonics also provides a framework for understanding the earthquake and volcanic belts that directly affect much of the global population. Tectonic studies are important as guides for economic geologists searching for fossil fuels and ore deposits of metallic and nonmetallic resources. An understanding of tectonic principles is essential to geomorphologists to explain erosion patterns and other Earth surface features.

North American Plate Large tectonic plate including most of North America, Greenland and a bit of Siberia

The North American Plate is a tectonic plate covering most of North America, Greenland, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. It extends eastward to the Mid-Atlantic Ridge and westward to the Chersky Range in eastern Siberia. The plate includes both continental and oceanic crust. The interior of the main continental landmass includes an extensive granitic core called a craton. Along most of the edges of this craton are fragments of crustal material called terranes, accreted to the craton by tectonic actions over a long span of time. It is thought that much of North America west of the Rocky Mountains is composed of such terranes.

Juan de Fuca Plate A small tectonic plate in the western North Pacific

The Juan de Fuca Plate is a tectonic plate generated from the Juan de Fuca Ridge and is subducting under the northerly portion of the western side of the North American Plate at the Cascadia subduction zone. It is named after the explorer of the same name. One of the smallest of Earth's tectonic plates, the Juan de Fuca Plate is a remnant part of the once-vast Farallon Plate, which is now largely subducted underneath the North American Plate.

Cocos Plate A young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America

The Cocos Plate is a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central America, named for Cocos Island, which rides upon it. The Cocos Plate was created approximately 23 million years ago when the Farallon Plate broke into two pieces, which also created the Nazca Plate. The Cocos Plate also broke into two pieces, creating the small Rivera Plate. The Cocos Plate is bounded by several different plates. To the northeast it is bounded by the North American Plate and the Caribbean Plate. To the west it is bounded by the Pacific Plate and to the south by the Nazca Plate.

Explorer Plate An oceanic tectonic plate beneath the Pacific Ocean off the west coast of Vancouver Island, Canada

The Explorer Plate is an oceanic tectonic plate beneath the Pacific Ocean off the west coast of Vancouver Island, Canada and is partially subducted under the North American Plate. Along with the Juan De Fuca Plate and Gorda Plate, the Explorer Plate is a remnant of the ancient Farallon Plate which has been subducted under the North American Plate. The Explorer Plate separated from the Juan De Fuca Plate roughly 4 million years ago. In its smoother, southern half, the average depth of the Explorer plate is roughly 2,400 metres (7,900 ft) and rises up in its northern half to a highly variable basin between 1,400 metres (4,600 ft) and 2,200 metres (7,200 ft) in depth.

Ridge push or sliding plate force is a proposed driving force for plate motion in plate tectonics that occurs at mid-ocean ridges as the result of the rigid lithosphere sliding down the hot, raised asthenosphere below mid-ocean ridges. Although it is called ridge push, the term is somewhat misleading; it is actually a body force that acts throughout an ocean plate, not just at the ridge, as a result of gravitational pull. The name comes from earlier models of plate tectonics in which ridge push was primarily ascribed to upwelling magma at mid-ocean ridges pushing or wedging the plates apart.

Fracture zone A junction between oceanic crustal regions of different ages on the same plate left by a transform fault

A fracture zone is a linear oceanic feature—often hundreds, even thousands of kilometers long—resulting from the action of offset mid-ocean ridge axis segments. They are a consequence of plate tectonics. Lithospheric plates on either side of an active transform fault move in opposite directions; here, strike-slip activity occurs. Fracture zones extend past the transform faults, away from the ridge axis; seismically inactive, they display evidence of past transform fault activity, primarily in the different ages of the crust on opposite sides of the zone.

Triple junction The point where the boundaries of three tectonic plates meet

A triple junction is the point where the boundaries of three tectonic plates meet. At the triple junction each of the three boundaries will be one of 3 types - a ridge (R), trench (T) or transform fault (F) - and triple junctions can be described according to the types of plate margin that meet at them. Of the many possible types of triple junction only a few are stable through time. The meeting of 4 or more plates is also theoretically possible but junctions will only exist instantaneously.

Mid-ocean ridge An underwater mountain system formed by plate tectonic spreading

A mid-ocean ridge (MOR) is an underwater mountain system formed by plate tectonics. It consists of various mountains linked in chains, typically having a valley known as a rift running along its spine. This type of oceanic mountain ridge is characteristic of what is known as an 'oceanic spreading center', which is responsible for seafloor spreading. The production of new seafloor results from mantle upwelling in response to plate spreading; this isentropic upwelling solid mantle material eventually exceeds the solidus and melts. The buoyant melt rises as magma at a linear weakness in the oceanic crust, and emerges as lava, creating new crust upon cooling. A mid-ocean ridge demarcates the boundary between two tectonic plates, and consequently is termed a divergent plate boundary.

A submarine, undersea, or underwater earthquake is an earthquake that occurs underwater at the bottom of a body of water, especially an ocean. They are the leading cause of tsunamis. The magnitude can be measured scientifically by the use of the moment magnitude scale and the intensity can be assigned using the Mercalli intensity scale.

Explorer Ridge A mid-ocean ridge west of British Columbia, Canada

The Explorer Ridge is a mid-ocean ridge, a divergent tectonic plate boundary located about 241 km (150 mi) west of Vancouver Island, British Columbia, Canada. It lies at the northern extremity of the Pacific spreading axis. To its east is the Explorer Plate, which together with the Juan de Fuca Plate and the Gorda Plate to its south, is what remains of the once-vast Farallon Plate which has been largely subducted under the North American Plate. The Explorer Ridge consists of one major segment, the Southern Explorer Ridge, and several smaller segments. It runs northward from the Sovanco Fracture Zone to the Queen Charlotte Triple Junction, a point where it meets the Queen Charlotte Fault and the northern Cascadia subduction zone.

Macquarie Triple Junction Place where the Indo-Australian Plate, Pacific Plate, and Antarctic Plate meet

The Macquarie Triple Junction is a geologically active tectonic boundary located at 61°30′S161°0′E at which the Indo-Australian Plate, Pacific Plate, and Antarctic Plate collide and interact. The term Triple Junction is given to particular tectonic boundaries at which three separate tectonic plates meet at a specific, singular location. The Macquarie Triple Junction is located on the seafloor of the southern region of the Pacific Ocean, just south of New Zealand. This tectonic boundary was named in respect to the nearby Macquarie Island, which is located southeast of New Zealand.

This is a list of articles related to plate tectonics and tectonic plates.

Geology of the Pacific Ocean

The Pacific Ocean evolved in the Mesozoic from the Panthalassic Ocean, which had formed when Rodinia rifted apart around 750 Ma. The first ocean floor which is part of the current Pacific Plate began 160 Ma to the west of the central Pacific and subsequently developed into the largest oceanic plate on Earth.


  1. Moores E.M.; Twiss R.J. (2014). Tectonics. Waveland Press. p. 130. ISBN   978-1-4786-2660-2.
  2. Kearey, K. A. (2007). Global Tectonics. Hoboken, NJ, USA: John Wiley & Sons. pp. 84–90.
  3. Reid, H.F., (1910). The Mechanics of the Earthquake. in The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission, Carnegie Institution of Washington, Washington D.C.
  4. 1 2 3 4 5 6 Wilson, J.T. (24 July 1965). "A new class of faults and their bearing on continental drift". Nature. 207 (4995): 343–347. Bibcode:1965Natur.207..343W. doi:10.1038/207343a0.
  5. Sykes, L.R. (1967). Mechanism of earthquakes and nature of faulting on the mid-oceanic ridges, Journal of Geophysical Research, 72, 5–27.
  6. Gerya, T. (2010). "Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges". Science. 329 (5995): 1047–1050. Bibcode:2010Sci...329.1047G. doi:10.1126/science.1191349. PMID   20798313.
  7. 1 2 Bonatti, Enrico; Crane, Kathleen (1984). "Oceanic Fracture Zones". Scientific American. 5 (5): 40–52. Bibcode:1984SciAm.250e..40B. doi:10.1038/scientificamerican0584-40.
  8. 1 2 3 Atwater, Tanya (1970). "Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America". Bulletin of the Geological Society of America. 81 (12): 3513–3536. doi:10.1130/0016-7606(1970)81[3513:ioptft];2.