Ocean surface topography

Last updated
TOPEX/Poseidon was the first space mission that allowed scientists to map ocean topography with sufficient accuracy to study the large-scale current systems of the world's ocean. Although this image was constructed from only 10 days of TOPEX/Poseidon data (October 3 to October 12, 1992), it reveals most of the current systems that have been identified by shipboard observations collected over the last 100 years. Ocean dynamic topography.jpg
TOPEX/Poseidon was the first space mission that allowed scientists to map ocean topography with sufficient accuracy to study the large-scale current systems of the world's ocean. Although this image was constructed from only 10 days of TOPEX/Poseidon data (October 3 to October 12, 1992), it reveals most of the current systems that have been identified by shipboard observations collected over the last 100 years.

Ocean surface topography or sea surface topography, also called ocean dynamic topography, are highs and lows on the ocean surface, similar to the hills and valleys of Earth's land surface depicted on a topographic map. These variations are expressed in terms of average sea surface height (SSH) relative to Earth's geoid. [1] The main purpose of measuring ocean surface topography is to understand the large-scale ocean circulation.

Contents

Time variations

Unaveraged or instantaneous sea surface height (SSH) is most obviously affected by the tidal forces of the Moon and by the seasonal cycle of the Sun acting on Earth. Over timescales longer than a year, the patterns in SSH can be influenced by ocean circulation. Typically, SSH anomalies resulting from these forces differ from the mean by less than ±1 m (3 ft) at the global scale. [2] [3] Other influences include changing interannual patterns of temperature, salinity, waves, tides and winds. Ocean surface topography can be measured with high accuracy and precision at regional to global scale by satellite altimetry (e.g. TOPEX/Poseidon).

Slower and larger variations are due to changes in Earth's gravitational field (geoid) due to melting ice, rearrangement of continents, formation of sea mounts and other redistribution of rock. The combination of satellite gravimetry (e.g. GRACE and GRACE-FO) with altimetry can be used to determine sea level rise and properties such as ocean heat content. [4] [5]

Applications

Ocean surface topography is used to map ocean currents, which move around the ocean's "hills" and "valleys" in predictable ways. A clockwise sense of rotation is found around "hills" in the northern hemisphere and "valleys" in the southern hemisphere. This is because of the Coriolis effect. Conversely, a counterclockwise sense of rotation is found around "valleys" in the northern hemisphere and "hills" in the southern hemisphere. [6]

Ocean surface topography is also used to understand how the ocean moves heat around the globe, a critical component of Earth's climate, and for monitoring changes in global sea level. The collection of the data is useful for the long-term information about the ocean and its currents. According to NASA science this data can also be used to provide understanding of weather, climate, navigation, fisheries management, and offshore operations. Observations made about the data are used to study the oceans tides, circulation, and the amount of heat the ocean contains. These observations can help predict short and long term effects of the weather and the earth's climate over time.

Measurement

The sea surface height (SSH) is calculated through altimetry satellites using as a reference surface the ellipsoid, [7] which determine the distance from the satellite to a target surface by measuring the satellite-to-surface round-trip time of a radar pulse. [8] [9] The satellites then measure the distance between their orbit altitude and the surface of the water. Due to the differing depths of the ocean, an approximation is made. This enables data to be taken precisely due to the uniform surface level. The satellite's altitude then has to be calculated with respect to the reference ellipsoid. It is calculated using the orbital parameters of the satellite and various positioning instruments. However, the ellipsoid is not an equipotential surface of the Earth's gravity field, so the measurements must be referenced to a surface that represents the water flow, in this case the geoid. The transformations between geometric heights (ellipsoid) and orthometric heights (geoid) are performed from a geoidal model. The sea surface height is then the difference between the satellite's altitude relative to the reference ellipsoid and the altimeter range. The satellite sends microwave pulses to the ocean surface. The travel time of the pulses ascending to the oceans surface and back provides data of the sea surface height. In the image below you can see the measurement system using by the satellite Jason-1. [10]

Satellite missions

Jason-1 maps global ocean surface topography every 10 days. Jason-1 measurement system.gif
Jason-1 maps global ocean surface topography every 10 days.

Currently there are nine different satellites calculating the earth ocean topography, Cryosat-2, SARAL, Jason-3, Sentinel-3A and Sentinel-3B, CFOSat, HY-2B and HY-2C, and Sentinel-6 Michael Freilich (also called Jason-CS A). Jason-3 and Sentinel-6 Michael Freilich are currently both in space orbiting Earth in a tandem rotation. They are approximately 330 kilometers apart.

Ocean surface topography can be derived from ship-going measurements of temperature and salinity at depth. However, since 1992, a series of satellite altimetry missions, beginning with TOPEX/Poseidon and continued with Jason-1, Ocean Surface Topography Mission on the Jason-2 satellite, Jason-3 and now Sentinel-6 Michael Freilich have measured sea surface height directly. By combining these measurements with gravity measurements from NASA's Grace and ESA's GOCE missions, scientists can determine sea surface topography to within a few centimeters.

Jason-1 was launched by a Boeing Delta II rocket in California in 2001 and continued measurements initially collected by TOPEX/Poseidon satellite, which orbited from 1992 up until 2006. [11] NASA and CNES, the French space agency, are joint partners in this mission.

The main objectives of the Jason satellites is to collect data on the average ocean circulation around the globe in order to better understand its interaction with the time varying components and the involved mechanisms for initializing ocean models. To monitor the low frequency ocean variability and observe the season cycles and inter-annual variations like El Niño and La Niña, the North Atlantic oscillation, the pacific decadal oscillation, and planetary waves crossing the oceans over a period of months, then they will be modeled over a long period of time due to the precise altimetric observations. [11] It aims to contribute to observations of the mesoscale ocean variability, affecting the whole oceans. This activity is especially intense near western boundary currents. Also monitor the average sea level because it is a large indicator of global warming through the sea level data. Improvement of tide modeling by observing more long period components such as coastal interactions, internal waves, and tidal energy dissipation. Finally the satellite data will supply knowledge to support other types of marine meteorology which is the scientific study of the atmosphere.

Jason-2 was launched on June 20, 2008, by a Delta-2 rocket out of the California site in Vandenberg and terminated its mission on October 10, 2019. Jason-3 was launched on January 16, 2016 by a Falcon-9 SpaceX rocket from Vandenberg, as well as Sentinel-6 Michael Freilich, launched on November 21, 2020.

The long-term objectives of the Jason satellite series are to provide global descriptions of the seasonal and yearly changes of the circulation and heat storage in the ocean. [12] This includes the study of short-term climatic changes such as El Nino, La Nina. The satellites detect global sea level mean and record the fluctuations. Also detecting the slow change of upper ocean circulation on decadal time scales, every ten years. Studying the transportation of heat and carbon in the ocean and examining the main components that fuel deep water tides. The satellites data collection also helps improve wind speed and height measurements in current time and for long-term studies. Lastly improving our knowledge about the marine geoid. [12] The first seven months Jason-2 was put into use it was flown in extreme close proximity to Jason-1. Only being one minute apart from each other the satellites observed the same area of the ocean. The reason for the close proximity in observation was for cross-calibration. This was meant to calculate any bias in the two altimeters. This multiple month observation proved that there was no bias in the data and both collections of data were consistent. [12]

A new satellite mission called the Surface Water Ocean Topography Mission has been proposed to make the first global survey of the topography of all of Earth's surface water—the ocean, lakes and rivers. This study is aimed to provide a comprehensive view of Earth's freshwater bodies from space and more much detailed measurements of the ocean surface than ever before. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Sea level</span> Geographical reference point from which various heights are measured

Mean sea level is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datum – a standardised geodetic datum – that is used, for example, as a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels. A common and relatively straightforward mean sea-level standard is instead the midpoint between a mean low and mean high tide at a particular location.

<span class="mw-page-title-main">Geoid</span> Ocean shape without winds and tides

The geoid is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended through the continents. According to Gauss, who first described it, it is the "mathematical figure of the Earth", a smooth but irregular surface whose shape results from the uneven distribution of mass within and on the surface of Earth. It can be known only through extensive gravitational measurements and calculations. Despite being an important concept for almost 200 years in the history of geodesy and geophysics, it has been defined to high precision only since advances in satellite geodesy in the late 20th century.

<span class="mw-page-title-main">EUMETSAT</span> European intergovernmental organisation

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an intergovernmental organisation created through an international convention agreed by a current total of 30 European Member States.

<span class="mw-page-title-main">Jason-1</span> Satellite oceanography mission

Jason-1 was a satellite altimeter oceanography mission. It sought to monitor global ocean circulation, study the ties between the ocean and the atmosphere, improve global climate forecasts and predictions, and monitor events such as El Niño and ocean eddies. Jason-1 was launched in 2001 and it was followed by OSTM/Jason-2 in 2008, and Jason-3 in 2016 – the Jason satellite series. Jason-1 was launched alongside the TIMED spacecraft.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">Space-based radar</span> Use of radar systems mounted on satellites

Space-based radar or spaceborne radar is a radar operating in outer space; orbiting radar is a radar in orbit and Earth orbiting radar is a radar in geocentric orbit. A number of Earth-observing satellites, such as RADARSAT, have employed synthetic aperture radar (SAR) to obtain terrain and land-cover information about the Earth.

<span class="mw-page-title-main">TOPEX/Poseidon</span> Satellite mission to map ocean surface topography

TOPEX/Poseidon was a joint satellite altimeter mission between NASA, the U.S. space agency; and CNES, the French space agency, to map ocean surface topography. Launched on August 10, 1992, it was the first major oceanographic research satellite. TOPEX/Poseidon helped revolutionize oceanography by providing data previously impossible to obtain. Oceanographer Walter Munk described TOPEX/Poseidon as "the most successful ocean experiment of all time." A malfunction ended normal satellite operations in January 2006.

<span class="mw-page-title-main">Seasat</span>

Seasat was the first Earth-orbiting satellite designed for remote sensing of the Earth's oceans and had on board one of the first spaceborne synthetic-aperture radar (SAR). The mission was designed to demonstrate the feasibility of global satellite monitoring of oceanographic phenomena and to help determine the requirements for an operational ocean remote sensing satellite system. Specific objectives were to collect data on sea-surface winds, sea-surface temperatures, wave heights, internal waves, atmospheric water, sea ice features and ocean topography. Seasat was managed by NASA's Jet Propulsion Laboratory and was launched on 27 June 1978 into a nearly circular 800 km (500 mi) orbit with an inclination of 108°. Seasat operated until 10 October 1978 (UTC), when a massive short circuit in the Agena-D bus electrical system ended the mission.

<span class="mw-page-title-main">OSTM/Jason-2</span> International Earth observation satellite mission

OSTM/Jason-2, or Ocean Surface Topography Mission/Jason-2 satellite, was an international Earth observation satellite altimeter joint mission for sea surface height measurements between NASA and CNES. It was the third satellite in a series started in 1992 by the NASA/CNES TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission launched in 2001.

<span class="mw-page-title-main">DORIS (satellite system)</span> Doppler-radio-based system for determination of satellite orbits and ground station locations

DORIS is a French satellite system used for the determination of satellite orbits and for positioning. The name is an acronym of "Doppler Orbitography and Radiopositioning Integrated by Satellite" or, in French, Détermination d'Orbite et Radiopositionnement Intégré par Satellite.

<span class="mw-page-title-main">Sentinel-3</span> Earth observation satellite series

Sentinel-3 is an Earth observation heavy satellite series developed by the European Space Agency as part of the Copernicus Programme. It currently consists of 2 satellites: Sentinel-3A and Sentinel-3B. After initial commissioning, each satellite was handed over to EUMETSAT for the routine operations phase of the mission. Two recurrent satellites— Sentinel-3C and Sentinel-3D— will follow in approximately 2025 and 2028 respectively to ensure continuity of the Sentinel-3 mission.

<span class="mw-page-title-main">Surface Water and Ocean Topography</span> NASA satellite of the Explorer program

The Surface Water and Ocean Topography (SWOT) mission is a satellite altimeter jointly developed and operated by NASA and CNES, the French space agency, in partnership with the Canadian Space Agency (CSA) and UK Space Agency (UKSA). The objectives of the mission are to make the first global survey of the Earth's surface water, to observe the fine details of the ocean surface topography, and to measure how terrestrial surface water bodies change over time.

<span class="mw-page-title-main">Jason-3</span> International Earth observation satellite mission

Jason-3 is a satellite altimeter created by a partnership of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and National Aeronautic and Space Administration (NASA), and is an international cooperative mission in which National Oceanic and Atmospheric Administration (NOAA) is partnering with the Centre National d'Études Spatiales. The satellite's mission is to supply data for scientific, commercial, and practical applications to sea level rise, sea surface temperature, ocean temperature circulation, and climate change.

<span class="mw-page-title-main">SARAL</span> Indian Earth observation satellite

SARAL is a cooperative altimetry technology mission of Indian Space Research Organisation (ISRO) and Centre National d'Études Spatiales (CNES). SARAL performs altimetric measurements designed to study ocean circulation and sea surface elevation.

The annual cycle of sea level height describes the variation of sea level that occurs with a period of one year. Historically, analysis of the annual cycle has been limited by locations with tide gauge records, i.e., coastlines and some islands in the deep ocean, and by sparse records in the Southern Hemisphere. Since 1992, satellite-based altimeters have provided near global coverage of sea level variability, allowing for a more thorough understanding of the annual cycle both in the deep ocean and in coastal margins.

Anny Cazenave is a French space geodesist and one of the pioneers in satellite altimetry. She works for the French space agency CNES and has been deputy director of the Laboratoire d'Etudes en Geophysique et Oceanographie Spatiales (LEGOS) at Observatoire Midi-Pyrénées in Toulouse since 1996. Since 2013, she is director of Earth sciences at the International Space Science Institute (ISSI), in Bern (Switzerland).

<span class="mw-page-title-main">GEOS-3</span> Satellite

GEOS-3, or Geodynamics Experimental Ocean Satellite 3, or GEOS-C, was the third and final satellite as part of NASA's Geodetic Earth Orbiting Satellite/Geodynamics Experimental Ocean Satellite program (NGSP) to better understand and test satellite tracking systems. For GEOS 1 and GEOS 2, the acronym stands for Geodetic Earth Orbiting Satellite; this was changed for GEOS-3.

<span class="mw-page-title-main">Sentinel-6 Michael Freilich</span> Earth observation satellite

The Sentinel-6 Michael Freilich (S6MF) is a radar altimeter satellite developed in partnership between several European and American organizations. It is part of the Jason satellite series and is named after Michael Freilich. S6MF includes synthetic-aperture radar altimetry techniques to improve ocean topography measurements, in addition to rivers and lakes. The spacecraft entered service in mid 2021 and is expected to operate for 5.5 years.

The Jason is a series of oceanographic altimeter satellites, including:

Remote sensing in oceanography is a widely used observational technique which enables researchers to acquire data of a location without physically measuring at that location. Remote sensing in oceanography mostly refers to measuring properties of the ocean surface with sensors on satellites or planes, which compose an image of captured electromagnetic radiation. A remote sensing instrument can either receive radiation from the earth’s surface (passive), whether reflected from the sun or emitted, or send out radiation to the surface and catch the reflection (active). All remote sensing instruments carry a sensor to capture the intensity of the radiation at specific wavelength windows, to retrieve a spectral signature for every location. The physical and chemical state of the surface determines the emissivity and reflectance for all bands in the electromagnetic spectrum, linking the measurements to physical properties of the surface. Unlike passive instruments, active remote sensing instruments also measure the two-way travel time of the signal; which is used to calculate the distance between the sensor and the imaged surface. Remote sensing satellites often carry other instruments which keep track of their location and measure atmospheric conditions.

References

  1. [In most absolute form, it may be expressed in terms of a geocentric radius.]
  2. Stewart, R.H. (September 2008). Introduction To Physical Oceanography (PDF).
  3. "Sea Surface Height Anomaly".
  4. Marti, Florence; Blazquez, Alejandro; Meyssignac, Benoit; Ablain, Michaël; Barnoud, Anne; et al. (2021). "Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry". Earth System Science Data. doi: 10.5194/essd-2021-220 .
  5. Hakuba, M.Z.; Frederikse, T.; Landerer, F.W. (28 August 2021). "Earth's Energy Imbalance From the Ocean Perspective (2005–2019)". Geophysical Research Letters. 48 (16). doi: 10.1029/2021GL093624 .
  6. "TOPEX/Poseidon on-line tutorial. Part II". Ocean Surface Topography from Space. Jet Propulsion Laboratory. Archived from the original on 2008-09-16.
  7. Jahanmard, Vahidreza; Delpeche-Ellmann, Nicole; Ellmann, Artu (2021-06-01). "Realistic dynamic topography through coupling geoid and hydrodynamic models of the Baltic Sea". Continental Shelf Research. 222: 104421. Bibcode:2021CSR...22204421J. doi:10.1016/j.csr.2021.104421. ISSN   0278-4343. S2CID   233532488.
  8. Chelton, Dudley B.; Ries, John C.; Haines, Bruce J.; Ru, Lee-Lueng; Callahan, Philip S. (2001). "Satellite Altimetry". In Fu, Lee-Lueng; Cazenave, Andy (eds.). Satellite altimetry and earth sciences : a handbook of techniques and applications . Academic Press. p.  1. ISBN   9780080516585.
  9. Glazman, R. E.; Fabrikant, A.; Greysukh, A. (16 May 2007). "Statistics of spatial-temporal variations of sea surface height based on Topex altimeter measurements". International Journal of Remote Sensing. 17 (13): 2647–2666. doi:10.1080/01431169608949097 . Retrieved 28 November 2018.
  10. "Correcting to Improve Accuracy - CNES." Correcting to Improve Accuracy - CNES. Retrieved from http://www.cnes.fr/web/CNES-en/3773-about-cnes.php
  11. 1 2 Ménard, Yves; Fu, Lee-Lueng; Escudier, P.; Parisot, F.; Perbos, J.; Vincent, P.; Desai, S.; Haines, B.; Kunstmann, G. (21 June 2010). "The Jason-1 Mission Special Issue: Jason-1 Calibration/Validation". Marine Geodesy. 26 (3–4): 131–146. doi:10.1080/714044514. S2CID   129436213.
  12. 1 2 3 Lambin, Juliette; Morrow, Rosemary; Fu, Lee-Lueng; Willis, Josh K.; Bonekamp, Hans; Lillibridge, John; Perbos, Jacqueline; Zaouche, Gérard; Vaze, Parag; Bannoura, Walid; Parisot, François; Thouvenot, Eric; Coutin-Faye, Sophie; Lindstrom, Eric; Mignogno, Mike (16 August 2010). "The OSTM/Jason-2 Mission". Marine Geodesy. 33 (sup1): 4–25. doi:10.1080/01490419.2010.491030. S2CID   128627477.
  13. "Following the Water with the Ocean Surface Topography Mission". Surface Topography From Space. Jet Propulsion Laboratory. September 2008. Archived from the original on 2009-06-20.