The North Atlantic Oscillation (NAO) is a weather phenomenon over the North Atlantic Ocean of fluctuations in the difference of atmospheric pressure at sea level (SLP) between the Icelandic Low and the Azores High. Through fluctuations in the strength of the Icelandic Low and the Azores High, it controls the strength and direction of westerly winds and location of storm tracks across the North Atlantic. [1]
The NAO was discovered through several studies in the late 19th and early 20th centuries. [2] Unlike the El Niño–Southern Oscillation phenomenon in the Pacific Ocean, the NAO is a largely atmospheric mode. It is one of the most important manifestations of climate fluctuations in the North Atlantic and surrounding humid climates. [3]
The North Atlantic Oscillation is closely related to the Arctic oscillation (AO) (or Northern Annular Mode (NAM)), but should not be confused with the Atlantic multidecadal oscillation (AMO).
The NAO has multiple possible definitions. The easiest to understand are those based on measuring the seasonal average air pressure difference between stations, such as:
These definitions all have in common the same northern point (because this is the only station in the region with a long record) in Iceland; and various southern points. All are attempting to capture the same pattern of variation, by choosing stations in the "eye" of the two stable pressure areas, the Azores High and the Icelandic Low (shown in the graphic).
A more complex definition, only possible with more complete modern records generated by numerical weather prediction, is based on the principal empirical orthogonal function (EOF) of surface pressure. [4] This definition has a high degree of correlation with the station-based definition. This then leads onto a debate as to whether the NAO is distinct from the AO/NAM, and if not, which of the two is to be considered the most physically based expression of atmospheric structure (as opposed to the one that most clearly falls out of mathematical expression). [5] [6]
Westerly winds blowing across the Atlantic bring moist air into Europe. In years when westerlies are strong, summers are cool, winters are mild and rain is frequent. If westerlies are suppressed, the temperature is more extreme in summer and winter leading to heat waves, deep freezes and reduced rainfall. [7] [8]
A permanent low-pressure system over Iceland (the Icelandic Low) and a permanent high-pressure system over the Azores (the Azores High) control the direction and strength of westerly winds into Europe. The relative strengths and positions of these systems vary from year to year and this variation is known as the NAO. A large difference in the pressure at the two stations (a high index year, denoted NAO+) leads to increased westerlies and, consequently, cool summers and mild and wet winters in Central Europe and its Atlantic facade. In contrast, if the index is low (NAO-), westerlies are suppressed, northern European areas suffer cold dry winters and storms track southwards toward the Mediterranean Sea. This brings increased storm activity and rainfall to southern Europe and North Africa.
Especially during the months of November to April, the NAO is responsible for much of the variability of weather in the North Atlantic region, affecting wind speed and wind direction changes, changes in temperature and moisture distribution and the intensity, number and track of storms. Research now suggests that the NAO may be more predictable than previously assumed and skillful winter forecasts may be possible for the NAO. [9]
There is some debate as to how much the NAO impacts short term weather over North America. While most agree that the impact of the NAO is much less over the United States than for Western Europe, [10] the NAO is also believed to affect the weather over much of upper central and eastern areas of North America. [10] During the winter, when the index is high (NAO+), the Azores High draws a stronger south-westerly circulation over the eastern half of the North American continent which prevents Arctic air from plunging southward (into the United States south of 40 latitude). In combination with the El Niño, this effect can produce significantly warmer winters over the upper Midwest and New England, but the impact to the south of these areas is debatable. Conversely, when the NAO index is low (NAO-), the upper central and northeastern portions of the United States can incur winter cold outbreaks more than the norm with associated heavy snowstorms. In summer, a strong NAO- is thought to contribute to a weakened jet stream that normally pulls zonal systems into the Atlantic Basin contributing significantly to excessively long-lasting heat waves over Europe, however, recent studies do not show the evidence of these associations. [10]
More recent studies have shown that the components (pressure centers strength, and locations) of the NAO are more powerful to investigate the relationships to seasonal and sub-seasonal climate variability over Europe, North America and the Mediterranean region. [10] [11] [12]
Under a positive NAO index (NAO+), regional reduction in atmospheric pressure results in a regional rise in sea level due to the 'inverse barometer effect'. This effect is important to both the interpretation of historic sea level records and predictions of future sea level trends, as mean pressure fluctuations of the order of millibars can lead to sea level fluctuations of the order of centimeters.
By controlling the position of the Azores High, the NAO also influences the direction of general storm paths for major North Atlantic tropical cyclones: a position of the Azores High farther to the south tends to force storms into the Gulf of Mexico, whereas a northern position allows them to track up the North American Atlantic Coast. [13]
As paleotempestological research has shown, few major hurricanes struck the Gulf coast during 3000–1400 BC and again during the most recent millennium. These quiescent intervals were separated by a hyperactive period during 1400 BC – 1000 AD, when the Gulf coast was struck frequently by catastrophic hurricanes and their landfall probabilities increased by 3–5 times. [14] [15] [16]
Until recently, the NAO had been in an overall more positive regime since the late 1970s, bringing colder conditions to the North-West Atlantic, which has been linked with the thriving populations of Labrador Sea snow crabs, which have a low temperature optimum. [17]
The NAO+ warming of the North Sea reduces survival of cod larvae which are at the upper limits of their temperature tolerance, as does the cooling in the Labrador Sea, where the cod larvae are at their lower temperature limits. [17] Though not the critical factor, the NAO+ peak in the early 1990s may have contributed to the collapse of the Newfoundland cod fishery. [17]
In southwestern Europe, NAO- events are associated with increased aeolian activity. [18]
On the East Coast of the United States an NAO+ causes warmer temperatures and increased rainfall, and thus warmer, less saline surface water. This prevents nutrient-rich upwelling which has reduced productivity. Georges Bank and the Gulf of Maine are affected by this reduced cod catch. [17]
The strength of the NAO is also a determinant in the population fluctuations of the intensively studied Soay sheep. [19]
Strangely enough, Jonas and Joern (2007) found a strong signal between NAO and grasshopper species composition in the tall grass prairies of the midwestern United States. They found that, even though NAO does not significantly affect the weather in the midwest, there was a significant increase in abundance of common grasshopper species (i.e. Hypochlora alba, Hesperotettix spp., Phoetaliotes nebrascensis, M. scudderi, M. keeleri, and Pseudopomala brachyptera) following winters during the positive phase of NAO and a significant increase in the abundance of less common species (i.e. Campylacantha olivacea, Melanoplus sanguinipes, Mermiria picta, Melanoplus packardii, and Boopedon gracile) following winters during a negative phase of the NAO. This is thought to be the first study showing a link between NAO and terrestrial insects in North America. [20]
The NAO's ecological effects extend as far as the Tibetan Plateau, where increases in aridity resulting in significant forest mortality and intensification of dust storms have been linked to NAO- events. [21]
The winter of 2009–10 in Europe was unusually cold. It is hypothesized that this may be due to a combination of low solar activity, [22] a warm phase of the El Niño–Southern Oscillation and a strong easterly phase of the Quasi-Biennial Oscillation all occurring simultaneously. [23] The Met Office reported that the UK, for example, had experienced its coldest winter for 30 years. This coincided with an exceptionally negative phase of the NAO. [24] Analysis published in mid-2010 confirmed that the concurrent 'El Niño' event and the rare occurrence of an extremely negative NAO were involved. [25] [26]
However, during the winter of 2010–11 in Northern and Western Europe, the Icelandic Low, typically positioned west of Iceland and east of Greenland, appeared regularly to the east of Iceland and so allowed exceptionally cold air into Europe from the Arctic. A strong area of high pressure was initially situated over Greenland, reversing the normal wind pattern in the northwestern Atlantic, creating a blocking pattern driving warm air into northeastern Canada and cold air into Western Europe, as was the case during the previous winter. This occurred during a La Niña season, and is connected to the rare Arctic dipole anomaly. [27]
In the north western part of the Atlantic, both of these winters were mild, especially 2009–2010, which was the warmest recorded in Canada. The winter of 2010-2011 was particularly above normal in the northern Arctic regions of that country. [28]
The probability of cold winters with much snow in Central Europe rises when the Arctic is covered by less sea ice in summer. Scientists of the Potsdam Research Unit of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have decrypted a mechanism in which a shrinking summertime sea ice cover changes the air pressure zones in the Arctic atmosphere and effects on European winter weather.
If there is a particularly large-scale melt of Arctic sea ice in summer, as observed in recent years, two important effects are intensified. Firstly, the retreat of the light ice surface reveals the darker ocean, causing it to warm up more in summer from the solar radiation (ice–albedo feedback mechanism). Secondly, the diminished ice cover can no longer prevent the heat stored in the ocean being released into the atmosphere (lid effect). As a result of the decreased sea ice cover the air is warmed more greatly than it used to be particularly in autumn and winter because during this period the ocean is warmer than the atmosphere.
The warming of the air near to the ground leads to rising movements and the atmosphere becomes less stable. One of these patterns is the air pressure difference between the Arctic and mid-latitudes: the Arctic oscillation with the Azores highs and Iceland lows known from the weather reports. If this difference is high, a strong westerly wind will result which in winter carries warm and humid Atlantic air masses right down to Europe. In the negative phase when pressure differences are low, cold Arctic air can then easily penetrate southward through Europe without being interrupted by the usual westerlies. Model calculations show that the air pressure difference with decreased sea ice cover in the Arctic summer is weakened in the following winter, enabling Arctic cold to push down to mid-latitudes. [29]
Despite one of the strongest El Niño events recorded in the Pacific Ocean, a largely positive North Atlantic Oscillation prevailed over Europe during the winter of 2015–2016. For example, Cumbria in England registered one of the wettest months on record. [30] The Maltese Islands in the Mediterranean registered one of the driest years ever recorded up to beginning of March, with a national average of only 235 mm and some areas registering less than 200 mm. [31]
Jet streams are fast flowing, narrow, meandering air currents in the atmospheres of the Earth, Venus, Jupiter, Saturn, Uranus, and Neptune. On Earth, the main jet streams are located near the altitude of the tropopause and are westerly winds. Jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including opposite to the direction of the remainder of the jet.
North Atlantic Deep Water (NADW) is a deep water mass formed in the North Atlantic Ocean. Thermohaline circulation of the world's oceans involves the flow of warm surface waters from the southern hemisphere into the North Atlantic. Water flowing northward becomes modified through evaporation and mixing with other water masses, leading to increased salinity. When this water reaches the North Atlantic, it cools and sinks through convection, due to its decreased temperature and increased salinity resulting in increased density. NADW is the outflow of this thick deep layer, which can be detected by its high salinity, high oxygen content, nutrient minima, high 14C/12C, and chlorofluorocarbons (CFCs).
Extreme weather includes unexpected, unusual, severe, or unseasonal weather; weather at the extremes of the historical distribution—the range that has been seen in the past. Extreme events are based on a location's recorded weather history. They are defined as lying in the most unusual ten percent. The main types of extreme weather include heat waves, cold waves and heavy precipitation or storm events, such as tropical cyclones. The effects of extreme weather events are economic costs, loss of human lives, droughts, floods, landslides. Severe weather is a particular type of extreme weather which poses risks to life and property.
The westerlies, anti-trades, or prevailing westerlies, are prevailing winds from the west toward the east in the middle latitudes between 30 and 60 degrees latitude. They originate from the high-pressure areas in the horse latitudes and trend towards the poles and steer extratropical cyclones in this general manner. Tropical cyclones which cross the subtropical ridge axis into the westerlies recurve due to the increased westerly flow. The winds are predominantly from the southwest in the Northern Hemisphere and from the northwest in the Southern Hemisphere.
The Arctic oscillation (AO) or Northern Annular Mode/Northern Hemisphere Annular Mode (NAM) is a weather phenomenon at the Arctic pole north of 55 degrees latitude. It is an important mode of climate variability for the Northern Hemisphere. The southern hemisphere analogue is called the Antarctic oscillation or Southern Annular Mode (SAM). The index varies over time with no particular periodicity, and is characterized by non-seasonal sea-level pressure anomalies of one sign in the Arctic, balanced by anomalies of opposite sign centered at about 37–45° N.
The Antarctic oscillation, also known as the Southern Annular Mode (SAM), is a low-frequency mode of atmospheric variability of the southern hemisphere that is defined as a belt of strong westerly winds or low pressure surrounding Antarctica which moves north or south as its mode of variability.
The Siberian High is a massive collection of cold dry air that accumulates in the northeastern part of Eurasia from September until April. It is usually centered on Lake Baikal. It reaches its greatest size and strength in the winter when the air temperature near the center of the high-pressure area is often lower than −40 °C (−40 °F). The atmospheric pressure is often above 1,040 millibars (31 inHg). The Siberian High is the strongest semi-permanent high in the northern hemisphere and is responsible for both the lowest temperature in the Northern Hemisphere outside Greenland, of −67.8 °C (−90.0 °F) on 15 January 1885 at Verkhoyansk, and the highest pressure, 1083.8 mbar at Agata, Krasnoyarsk Krai, on 31 December 1968, ever recorded. The Siberian High is responsible both for severe winter cold and attendant dry conditions with little snow and few or no glaciers across Asian part of Russia, Mongolia, and China. During the summer, the Siberian High is largely replaced by the Asiatic low.
The North American High is an impermanent high-pressure area or anticyclone created by a formative process that occurs when cool or cold dry air settles over North America. During summer, it is replaced with an Arctic Low, or a North American Low should it move over continental land.
A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air; polar vortices encircle both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.
The Madden–Julian oscillation (MJO) is the largest element of the intraseasonal variability in the tropical atmosphere. It was discovered in 1971 by Roland Madden and Paul Julian of the American National Center for Atmospheric Research (NCAR). It is a large-scale coupling between atmospheric circulation and tropical deep atmospheric convection. Unlike a standing pattern like the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation is a traveling pattern that propagates eastward, at approximately 4 to 8 m/s, through the atmosphere above the warm parts of the Indian and Pacific oceans. This overall circulation pattern manifests itself most clearly as anomalous rainfall.
Blocks in meteorology are large-scale patterns in the atmospheric pressure field that are nearly stationary, effectively "blocking" or redirecting migratory cyclones. They are also known as blocking highs or blocking anticyclones. These blocks can remain in place for several days or even weeks, causing the areas affected by them to have the same kind of weather for an extended period of time. In the Northern Hemisphere, extended blocking occurs most frequently in the spring over the eastern Pacific and Atlantic Oceans. Whilst these events are linked to the occurrence of extreme weather events such as heat waves, particularly the onset and decay of these events is still not well captured in numerical weather forecasts and remains an open area of research.
Upper-atmospheric models are simulations of the Earth's atmosphere between 20 and 100 km that comprises the stratosphere, mesosphere, and the lower thermosphere. Whereas most climate models simulate a region of the Earth's atmosphere from the surface to the stratopause, there also exist numerical models which simulate the wind, temperature and composition of the Earth's tenuous upper atmosphere, from the mesosphere to the exosphere, including the ionosphere. This region is affected strongly by the 11 year Solar cycle through variations in solar UV/EUV/Xray radiation and solar wind leading to high latitude particle precipitation and aurora. It has been proposed that these phenomena may have an effect on the lower atmosphere, and should therefore be included in simulations of climate change. For this reason there has been a drive in recent years to create whole atmosphere models to investigate whether or not this is the case.
Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occur are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.
The Azores High also known as North Atlantic (Subtropical) High/Anticyclone or the Bermuda-Azores High, is a large subtropical semi-permanent centre of high atmospheric pressure typically found south of the Azores in the Atlantic Ocean, at the Horse latitudes. It forms one pole of the North Atlantic oscillation, the other being the Icelandic Low. The system influences the weather and climatic patterns of vast areas of North Africa, Western Asia, Southern Europe, and to a lesser extent, eastern North America. The aridity of the Sahara Desert and the summer drought of the Mediterranean Basin is due to the large-scale subsidence and sinking motion of air in the system. In its summer position, the high is centered near Bermuda, and creates a southwest flow of hot tropical air toward the East Coast of the United States. In summer, the Azores-Bermuda High is strongest. The central pressure hovers around 1024 mbar (hPa).
Polar amplification is the phenomenon that any change in the net radiation balance tends to produce a larger change in temperature near the poles than in the planetary average. This is commonly referred to as the ratio of polar warming to tropical warming. On a planet with an atmosphere that can restrict emission of longwave radiation to space, surface temperatures will be warmer than a simple planetary equilibrium temperature calculation would predict. Where the atmosphere or an extensive ocean is able to transport heat polewards, the poles will be warmer and equatorial regions cooler than their local net radiation balances would predict. The poles will experience the most cooling when the global-mean temperature is lower relative to a reference climate; alternatively, the poles will experience the greatest warming when the global-mean temperature is higher.
Teleconnection in atmospheric science refers to climate anomalies being related to each other at large distances. The most emblematic teleconnection is that linking sea-level pressure at Tahiti and Darwin, Australia, which defines the Southern Oscillation. Another well-known teleconnection links the sea-level pressure over Iceland with the one over the Azores, traditionally defining the North Atlantic Oscillation (NAO).
European windstorms are powerful extratropical cyclones which form as cyclonic windstorms associated with areas of low atmospheric pressure. They can occur throughout the year, but are most frequent between October and March, with peak intensity in the winter months. Deep areas of low pressure are common over the North Atlantic, and occasionally start as nor'easters off the New England coast. They frequently track across the North Atlantic Ocean towards the north of Scotland and into the Norwegian Sea, which generally minimizes the impact to inland areas; however, if the track is further south, it may cause adverse weather conditions across Central Europe, Northern Europe and especially Western Europe. The countries most commonly affected include the United Kingdom, Ireland, the Netherlands, Norway, Germany, the Faroe Islands and Iceland.
The climate of Argentina varies from region to region, as the vast size of the country and wide variation in altitude make for a wide range of climate types. Summers are the warmest and wettest season in most of Argentina, except for most of Patagonia, where it is the driest season. The climate is warm in the north, cool in the center, and cold in the southern parts, that experience frequent frost and snow. Because the southern parts of the country are moderated by the surrounding oceans, the cold is less intense and prolonged than areas at similar latitudes in the northern hemisphere. Spring and autumn are transition seasons that generally feature mild weather.
The Arctic dipole anomaly is a pressure pattern characterized by high pressure on the arctic regions of North America and low pressure on those of Eurasia. This pattern sometimes replaces the Arctic oscillation and the North Atlantic oscillation. It was observed for the first time in the first decade of 2000s and is perhaps linked to recent climate change. The Arctic dipole lets more southern winds into the Arctic Ocean resulting in more ice melting. The summer 2007 event played an important role in the record low sea ice extent which was recorded in September. The Arctic dipole has also been linked to changes in arctic circulation patterns that cause drier winters in Northern Europe, but much wetter winters in Southern Europe and colder winters in East Asia, Europe and the eastern half of North America.
Centers of action are extensive and almost stationary low or high pressure areas which control the movement of atmospheric disturbances over a large area. This does not mean that the position of the center is constant over a specific area but that the monthly atmospheric pressure corresponds to a high or a low pressure.