Earth ellipsoid

Last updated
A scale diagram of the oblateness of the 2003 IERS reference ellipsoid.
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Ellipse with the same eccentricity as that of Earth, with north at the top
Circle with diameter equal to the ellipse's minor axis
Karman line, 100 km (62 mi) above sea level
Altitude range of the ISS in low Earth orbit Earth oblateness to scale.svg
A scale diagram of the oblateness of the 2003 IERS reference ellipsoid.
   Ellipse with the same eccentricity as that of Earth, with north at the top
  Circle with diameter equal to the ellipse's minor axis
   Karman line, 100 km (62 mi) above sea level
   Altitude range of the ISS in low Earth orbit

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

Contents

It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation. The ellipsoid is defined by the equatorial axis (a) and the polar axis (b); their radial difference is slightly more than 21 km, or 0.335% of a (which is not quite 6,400 km).

Many methods exist for determination of the axes of an Earth ellipsoid, ranging from meridian arcs up to modern satellite geodesy or the analysis and interconnection of continental geodetic networks. Amongst the different set of data used in national surveys are several of special importance: the Bessel ellipsoid of 1841, the international Hayford ellipsoid of 1924, and (for GPS positioning) the WGS84 ellipsoid.

Types

There are two types of ellipsoid: mean and reference.

A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.

While the mean Earth ellipsoid is the ideal basis of global geodesy, for regional networks a so-called reference ellipsoid may be the better choice. [1] When geodetic measurements have to be computed on a mathematical reference surface, this surface should have a similar curvature as the regional geoid; otherwise, reduction of the measurements will get small distortions.

This is the reason for the "long life" of former reference ellipsoids like the Hayford or the Bessel ellipsoid, despite the fact that their main axes deviate by several hundred meters from the modern values. Another reason is a judicial one: the coordinates of millions of boundary stones should remain fixed for a long period. If their reference surface changes, the coordinates themselves also change.

However, for international networks, GPS positioning, or astronautics, these regional reasons are less relevant. As knowledge of the Earth's figure is increasingly accurate, the International Geoscientific Union IUGG usually adapts the axes of the Earth ellipsoid to the best available data.

Reference ellipsoid

Flattened sphere OblateSpheroid.PNG
Flattened sphere

In geodesy, a reference ellipsoid is a mathematically defined surface that approximates the geoid, which is the truer, imperfect figure of the Earth, or other planetary body, as opposed to a perfect, smooth, and unaltered sphere, which factors in the undulations of the bodies' gravity due to variations in the composition and density of the interior, as well as the subsequent flattening caused by the centrifugal force from the rotation of these massive objects (for planetary bodies that do rotate). Because of their relative simplicity, reference ellipsoids are used as a preferred surface on which geodetic network computations are performed and point coordinates such as latitude, longitude, and elevation are defined.

In the context of standardization and geographic applications, a geodesic reference ellipsoid is the mathematical model used as foundation by spatial reference system or geodetic datum definitions.

Ellipsoid parameters

In 1687 Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of a flattened ("oblate") ellipsoid of revolution, generated by an ellipse rotated around its minor diameter; a shape which he termed an oblate spheroid. [2] [3]

In geophysics, geodesy, and related areas, the word 'ellipsoid' is understood to mean 'oblate ellipsoid of revolution', and the older term 'oblate spheroid' is hardly used. [4] [5] For bodies that cannot be well approximated by an ellipsoid of revolution a triaxial (or scalene) ellipsoid is used.

The shape of an ellipsoid of revolution is determined by the shape parameters of that ellipse. The semi-major axis of the ellipse, a, becomes the equatorial radius of the ellipsoid: the semi-minor axis of the ellipse, b, becomes the distance from the centre to either pole. These two lengths completely specify the shape of the ellipsoid.

In geodesy publications, however, it is common to specify the semi-major axis (equatorial radius) a and the flattening f, defined as:

That is, f is the amount of flattening at each pole, relative to the radius at the equator. This is often expressed as a fraction 1/m; m = 1/f then being the "inverse flattening". A great many other ellipse parameters are used in geodesy but they can all be related to one or two of the set a, b and f.

A great many ellipsoids have been used to model the Earth in the past, with different assumed values of a and b as well as different assumed positions of the center and different axis orientations relative to the solid Earth. Starting in the late twentieth century, improved measurements of satellite orbits and star positions have provided extremely accurate determinations of the Earth's center of mass and of its axis of revolution; and those parameters have been adopted also for all modern reference ellipsoids.

The ellipsoid WGS-84, widely used for mapping and satellite navigation has f close to 1/300 (more precisely, 1/298.257223563, by definition), corresponding to a difference of the major and minor semi-axes of approximately 21 km (13 miles) (more precisely, 21.3846857548205 km). For comparison, Earth's Moon is even less elliptical, with a flattening of less than 1/825, while Jupiter is visibly oblate at about 1/15 and one of Saturn's triaxial moons, Telesto, is highly flattened, with f between 1/3 and 1/2 (meaning that the polar diameter is between 50% and 67% of the equatorial.

Determination

Arc measurement is the historical method of determining the ellipsoid. Two meridian arc measurements will allow the derivation of two parameters required to specify a reference ellipsoid. For example, if the measurements were hypothetically performed exactly over the equator plane and either geographical pole, the radii of curvature so obtained would be related to the equatorial radius and the polar radius, respectively a and b (see: Earth polar and equatorial radius of curvature). Then, the flattening would readily follow from its definition:

.

For two arc measurements each at arbitrary average latitudes , , the solution starts from an initial approximation for the equatorial radius and for the flattening . The theoretical Earth's meridional radius of curvature can be calculated at the latitude of each arc measurement as:

where . [6] Then discrepancies between empirical and theoretical values of the radius of curvature can be formed as . Finally, corrections for the initial equatorial radius and the flattening can be solved by means of a system of linear equations formulated via linearization of : [7]

where the partial derivatives are: [7]

Longer arcs with multiple intermediate-latitude determinations can completely determine the ellipsoid that best fits the surveyed region. In practice, multiple arc measurements are used to determine the ellipsoid parameters by the method of least squares adjustment. The parameters determined are usually the semi-major axis, , and any of the semi-minor axis, , flattening, or eccentricity.

Regional-scale systematic effects observed in the radius of curvature measurements reflect the geoid undulation and the deflection of the vertical, as explored in astrogeodetic leveling.

Gravimetry is another technique for determining Earth's flattening, as per Clairaut's theorem.

Modern geodesy no longer uses simple meridian arcs or ground triangulation networks, but the methods of satellite geodesy, especially satellite gravimetry.

Geodetic coordinates

Geodetic coordinates P(F,l,h) Geodetic coordinates.svg
Geodetic coordinates P(ɸ,λ,h)

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid . They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height [8] ).

The triad is also known as Earth ellipsoidal coordinates [9] (not to be confused with ellipsoidal-harmonic coordinates or ellipsoidal coordinates ).

Historical Earth ellipsoids

Equatorial (a), polar (b) and mean Earth radii as defined in the 1984 World Geodetic System revision (not to scale) WGS84 mean Earth radius.svg
Equatorial (a), polar (b) and mean Earth radii as defined in the 1984 World Geodetic System revision (not to scale)

The reference ellipsoid models listed below have had utility in geodetic work and many are still in use. The older ellipsoids are named for the individual who derived them and the year of development is given. In 1887 the English surveyor Colonel Alexander Ross Clarke CB FRS RE was awarded the Gold Medal of the Royal Society for his work in determining the figure of the Earth. The international ellipsoid was developed by John Fillmore Hayford in 1910 and adopted by the International Union of Geodesy and Geophysics (IUGG) in 1924, which recommended it for international use.

At the 1967 meeting of the IUGG held in Lucerne, Switzerland, the ellipsoid called GRS-67 (Geodetic Reference System 1967) in the listing was recommended for adoption. The new ellipsoid was not recommended to replace the International Ellipsoid (1924), but was advocated for use where a greater degree of accuracy is required. It became a part of the GRS-67 which was approved and adopted at the 1971 meeting of the IUGG held in Moscow. It is used in Australia for the Australian Geodetic Datum and in the South American Datum 1969.

The GRS-80 (Geodetic Reference System 1980) as approved and adopted by the IUGG at its Canberra, Australia meeting of 1979 is based on the equatorial radius (semi-major axis of Earth ellipsoid) , total mass , dynamic form factor and angular velocity of rotation , making the inverse flattening a derived quantity. The minute difference in seen between GRS-80 and WGS-84 results from an unintentional truncation in the latter's defining constants: while the WGS-84 was designed to adhere closely to the GRS-80, incidentally the WGS-84 derived flattening turned out to differ slightly from the GRS-80 flattening because the normalized second degree zonal harmonic gravitational coefficient, that was derived from the GRS-80 value for , was truncated to eight significant digits in the normalization process. [10]

An ellipsoidal model describes only the ellipsoid's geometry and a normal gravity field formula to go with it. Commonly an ellipsoidal model is part of a more encompassing geodetic datum. For example, the older ED-50 (European Datum 1950) is based on the Hayford or International Ellipsoid. WGS-84 is peculiar in that the same name is used for both the complete geodetic reference system and its component ellipsoidal model. Nevertheless, the two concepts—ellipsoidal model and geodetic reference system—remain distinct.

Note that the same ellipsoid may be known by different names. It is best to mention the defining constants for unambiguous identification.

Reference ellipsoid nameEquatorial radius (m)Polar radius (m)Inverse flatteningWhere used
Maupertuis (1738)6,397,3006,363,806.283191France
Plessis (1817)6,376,523.06,355,862.9333308.64France
Everest (1830)6,377,299.3656,356,098.359300.80172554India
Everest 1830 Modified (1967)6,377,304.0636,356,103.0390300.8017West Malaysia & Singapore
Everest 1830 (1967 Definition)6,377,298.5566,356,097.550300.8017Brunei & East Malaysia
Airy (1830)6,377,563.3966,356,256.909299.3249646Britain
Bessel (1841)6,377,397.1556,356,078.963299.1528128Europe, Japan
Clarke (1866)6,378,206.46,356,583.8294.9786982North America
Clarke (1878)6,378,1906,356,456293.4659980North America
Clarke (1880)6,378,249.1456,356,514.870293.465France, Africa
Helmert (1906)6,378,2006,356,818.17298.3Egypt
Hayford (1910)6,378,3886,356,911.946297USA
International (1924)6,378,3886,356,911.946297Europe
Krassovsky (1940)6,378,2456,356,863.019298.3USSR, Russia, Romania
WGS66 (1966)6,378,1456,356,759.769298.25USA/DoD
Australian National (1966)6,378,1606,356,774.719298.25Australia
New International (1967)6,378,157.56,356,772.2298.24961539
GRS-67 (1967)6,378,1606,356,774.516298.247167427
South American (1969)6,378,1606,356,774.719298.25South America
WGS-72 (1972)6,378,1356,356,750.52298.26USA/DoD
GRS-80 (1979)6,378,1376,356,752.3141298.257222101Global ITRS [11]
WGS-84 (1984)6,378,1376,356,752.3142298.257223563Global GPS
IERS (1989)6,378,1366,356,751.302298.257
IERS (2003) [12] 6,378,136.66,356,751.9298.25642 [11]

See also

Related Research Articles

<span class="mw-page-title-main">Geodesy</span> Science of measuring the shape, orientation, and gravity of the Earth and other astronomical bodies

Geodesy is the science of measuring and representing the geometry, gravity, and spatial orientation of the Earth in temporally varying 3D. It is called planetary geodesy when studying other astronomical bodies, such as planets or circumplanetary systems.

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Geographic coordinate system</span> System to specify locations on Earth

A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on the Earth as latitude and longitude. It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system, the geographic coordinate system is not cartesian because the measurements are angles and are not on a planar surface.

<span class="mw-page-title-main">Spheroid</span> Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

<span class="mw-page-title-main">Earth radius</span> Distance from the Earth surface to a point near its center

Earth radius is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).

<span class="mw-page-title-main">World Geodetic System</span> Geodetic reference system

The World Geodetic System (WGS) is a standard used in cartography, geodesy, and satellite navigation including GPS. The current version, WGS 84, defines an Earth-centered, Earth-fixed coordinate system and a geodetic datum, and also describes the associated Earth Gravitational Model (EGM) and World Magnetic Model (WMM). The standard is published and maintained by the United States National Geospatial-Intelligence Agency.

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is satisfactory for geography, astronomy and many other purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

<span class="mw-page-title-main">Geodetic Reference System 1980</span> Collection of data on Earths gravity and shape

The Geodetic Reference System 1980 (GRS80) is a geodetic reference system consisting of a global reference ellipsoid and a normal gravity model.

<span class="mw-page-title-main">Geodetic datum</span> Reference frame for measuring location

A geodetic datum or geodetic system is a global datum reference or reference frame for precisely representing the position of locations on Earth or other planetary bodies by means of geodetic coordinates. Datums are crucial to any technology or technique based on spatial location, including geodesy, navigation, surveying, geographic information systems, remote sensing, and cartography. A horizontal datum is used to measure a location across the Earth's surface, in latitude and longitude or another coordinate system; a vertical datum is used to measure the elevation or depth relative to a standard origin, such as mean sea level (MSL). Since the rise of the global positioning system (GPS), the ellipsoid and datum WGS 84 it uses has supplanted most others in many applications. The WGS 84 is intended for global use, unlike most earlier datums.

<span class="mw-page-title-main">Arc measurement</span>

Arc measurement, sometimes degree measurement, is the astrogeodetic technique of determining the radius of Earth – more specifically, the local Earth radius of curvature of the figure of the Earth – by relating the latitude difference and the geographic distance surveyed between two locations on Earth's surface. The most common variant involves only astronomical latitudes and the meridian arc length and is called meridian arc measurement; other variants may involve only astronomical longitude or both geographic coordinates . Arc measurement campaigns in Europe were the precursors to the International Association of Geodesy (IAG).

<span class="mw-page-title-main">North American Datum</span> Reference frame for geodesy on the continent

The North American Datum (NAD) is the horizontal datum now used to define the geodetic network in North America. A datum is a formal description of the shape of the Earth along with an "anchor" point for the coordinate system. In surveying, cartography, and land-use planning, two North American Datums are in use for making lateral or "horizontal" measurements: the North American Datum of 1927 (NAD 27) and the North American Datum of 1983 (NAD 83). Both are geodetic reference systems based on slightly different assumptions and measurements.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

The Bessel ellipsoid is an important reference ellipsoid of geodesy. It is currently used by several countries for their national geodetic surveys, but will be replaced in the next decades by modern ellipsoids of satellite geodesy.

<span class="mw-page-title-main">Vertical datum</span> Reference surface for vertical positions

In geodesy, surveying, hydrography and navigation, vertical datum or altimetric datum, is a reference coordinate surface used for vertical positions, such as the elevations of Earth-bound features and altitudes of satellite orbits and in aviation. In planetary science, vertical datums are also known as zero-elevation surface or zero-level reference.

<span class="mw-page-title-main">Equator</span> Imaginary line halfway between Earths North and South poles

The equator is a circle of latitude that divides a spheroid, such as Earth, into the Northern and Southern hemispheres. On Earth, the Equator is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. The term can also be used for any other celestial body that is roughly spherical.

<span class="mw-page-title-main">Geodetic coordinates</span> Geographic coordinate system

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal heighth. The triad is also known as Earth ellipsoidal coordinates.

In geodesy and geophysics, theoretical gravity or normal gravity is an approximation of the true gravity on Earth's surface by means of a mathematical model representing Earth. The most common model of a smoothed Earth is a rotating Earth ellipsoid of revolution.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

<span class="mw-page-title-main">Web Mercator projection</span> Mercator variant map projection

Web Mercator, Google Web Mercator, Spherical Mercator, WGS 84 Web Mercator or WGS 84/Pseudo-Mercator is a variant of the Mercator map projection and is the de facto standard for Web mapping applications. It rose to prominence when Google Maps adopted it in 2005. It is used by virtually all major online map providers, including Google Maps, CARTO, Mapbox, Bing Maps, OpenStreetMap, Mapquest, Esri, and many others. Its official EPSG identifier is EPSG:3857, although others have been used historically.

References

  1. Alexander, J. C. (1985). "The Numerics of Computing Geodetic Ellipsoids". SIAM Review. 27 (2): 241–247. Bibcode:1985SIAMR..27..241A. doi:10.1137/1027056.
  2. Heine, George (September 2013). "Euler and the Flattening of the Earth". Math Horizons. 21 (1): 25–29. doi:10.4169/mathhorizons.21.1.25. S2CID   126412032.
  3. Choi, Charles Q. (12 April 2007). "Strange but True: Earth Is Not Round". Scientific American. Retrieved 4 May 2021.
  4. Torge, W (2001) Geodesy (3rd edition), published by de Gruyter, ISBN   3-11-017072-8
  5. Snyder, John P. (1993). Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press. p. 82. ISBN   0-226-76747-7.
  6. Snyder, John P. (1987). Map Projections — A Working Manual. USGS Professional Paper 1395. Washington, D.C.: Government Printing Office. p. 17.
  7. 1 2 Bomford, G. (1952). Geodesy.
  8. National Geodetic Survey (U.S.).; National Geodetic Survey (U.S.) (1986). Geodetic Glossary. NOAA technical publications. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services. p. 107. Retrieved 2021-10-24.
  9. Awange, J.L.; Grafarend, E.W.; Paláncz, B.; Zaletnyik, P. (2010). Algebraic Geodesy and Geoinformatics. Springer Berlin Heidelberg. p. 156. ISBN   978-3-642-12124-1 . Retrieved 2021-10-24.
  10. NIMA Technical Report TR8350.2, "Department of Defense World Geodetic System 1984, Its Definition and Relationships With Local Geodetic Systems", Third Edition, 4 July 1997
  11. 1 2 Note that the current best estimates, given by the IERS Conventions, "should not be mistaken for conventional values, such as those of the Geodetic Reference System GRS80 ... which are, for example, used to express geographic coordinates" (chap. 1); note further that "ITRF solutions are specified by Cartesian equatorial coordinates X, Y and Z. If needed, they can be transformed to geographical coordinates (λ, φ, h) referred to an ellipsoid. In this case the GRS80 ellipsoid is recommended." (chap. 4).
  12. IERS Conventions (2003) Archived 2014-04-19 at the Wayback Machine (Chp. 1, page 12)

Bibliography