Flattening

Last updated
A circle of radius a compressed to an ellipse. An ellipse with auxiliary circle.svg
A circle of radius a compressed to an ellipse.
A sphere of radius a compressed to an oblate ellipsoid of revolution. Ellipsoid revolution oblate aab auxiliary sphere.svg
A sphere of radius a compressed to an oblate ellipsoid of revolution.

Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is

Contents

The compression factor is in each case; for the ellipse, this is also its aspect ratio.

Definitions

There are three variants: the flattening [1] sometimes called the first flattening, [2] as well as two other "flattenings" and each sometimes called the second flattening, [3] sometimes only given a symbol, [4] or sometimes called the second flattening and third flattening, respectively. [5]

In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flattenings are zero for a circle (a = b).

(First) flattening Fundamental. Geodetic reference ellipsoids are specified by giving
Second flatteningRarely used.
Third flatteningUsed in geodetic calculations as a small expansion parameter. [6]

Identities

The flattenings can be related to each-other:

The flattenings are related to other parameters of the ellipse. For example,

where is the eccentricity.

See also

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Latitude</span> Geographic coordinate specifying north–south position

In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.

<span class="mw-page-title-main">Spheroid</span> Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Earth radius</span> Distance from the Earth surface to a point near its center

Earth radius is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid, the radius ranges from a maximum of nearly 6,378 km (3,963 mi) to a minimum of nearly 6,357 km (3,950 mi).

<span class="mw-page-title-main">Figure of the Earth</span> Size and shape used to model the Earth for geodesy

Figure of the Earth is a term of art in geodesy that refers to the size and shape used to model Earth. The size and shape it refers to depend on context, including the precision needed for the model. A sphere is a well-known historical approximation of the figure of the Earth that is satisfactory for many purposes. Several models with greater accuracy have been developed so that coordinate systems can serve the precise needs of navigation, surveying, cadastre, land use, and various other concerns.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

<span class="mw-page-title-main">Transverse Mercator projection</span> Adaptation of the standard Mercator projection

The transverse Mercator map projection is an adaptation of the standard Mercator projection. The transverse version is widely used in national and international mapping systems around the world, including the Universal Transverse Mercator. When paired with a suitable geodetic datum, the transverse Mercator delivers high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Geodetic Reference System 1980</span> Collection of data on Earths gravity and shape

The Geodetic Reference System 1980 is a geodetic reference system consisting of a global reference ellipsoid and a normal gravity model.

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> System for assigning planar coordinates to locations on the surface of the Earth.

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

<span class="mw-page-title-main">Tissot's indicatrix</span> Characterization of distortion in map protections

In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.

<span class="mw-page-title-main">Angular eccentricity</span>

Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a :

<span class="mw-page-title-main">Great ellipse</span> Ellipse on a spheroid centered on its origin

A great ellipse is an ellipse passing through two points on a spheroid and having the same center as that of the spheroid. Equivalently, it is an ellipse on the surface of a spheroid and centered on the origin, or the curve formed by intersecting the spheroid by a plane through its center. For points that are separated by less than about a quarter of the circumference of the earth, about , the length of the great ellipse connecting the points is close to the geodesic distance. The great ellipse therefore is sometimes proposed as a suitable route for marine navigation. The great ellipse is special case of an earth section path.

In geodesy and navigation, a meridian arc is the curve between two points on the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length.

<span class="mw-page-title-main">Earth ellipsoid</span> Shape of planet Earth

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's form, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different ellipsoids have been used as approximations.

Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such as great-circle distance.

<span class="mw-page-title-main">Geographical distance</span> Distance measured along the surface of the earth

Geographical distance or geodetic distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

<span class="mw-page-title-main">Geodetic coordinates</span>

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal heighth. The triad is also known as Earth ellipsoidal coordinates.

The article Transverse Mercator projection restricts itself to general features of the projection. This article describes in detail one of the (two) implementations developed by Louis Krüger in 1912; that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

<span class="mw-page-title-main">Geodesics on an ellipsoid</span> Shortest paths on a bounded deformed sphere-like quadric surface

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.

References

  1. Snyder, John P. (1987). Map Projections: A Working Manual. U.S. Geological Survey Professional Paper. Vol. 1395. Washington, D.C.: U.S. Government Printing Office. doi: 10.3133/pp1395 .
  2. Tenzer, Róbert (2002). "Transformation of the Geodetic Horizontal Control to Another Reference Ellipsoid". Studia Geophysica et Geodaetica. 46 (1): 27–32. doi:10.1023/A:1019881431482. S2CID   117114346. ProQuest   750849329.
  3. For example, is called the second flattening in: Taff, Laurence G. (1980). An Astronomical Glossary (Technical report). MIT Lincoln Lab. p. 84.
    However, is called the second flattening in: Hooijberg, Maarten (1997). Practical Geodesy: Using Computers. Springer. p. 41. doi:10.1007/978-3-642-60584-0_3.
  4. Maling, Derek Hylton (1992). Coordinate Systems and Map Projections (2nd ed.). Oxford; New York: Pergamon Press. p. 65. ISBN   0-08-037233-3.
    Rapp, Richard H. (1991). Geometric Geodesy, Part I (Technical report). Ohio State Univ. Dept. of Geodetic Science and Surveying.
    Osborne, P. (2008). "The Mercator Projections" (PDF). §5.2. Archived from the original (PDF) on 2012-01-18.
  5. Lapaine, Miljenko (2017). "Basics of Geodesy for Map Projections". In Lapaine, Miljenko; Usery, E. Lynn (eds.). Choosing a Map Projection. Lecture Notes in Geoinformation and Cartography. pp. 327–343. doi:10.1007/978-3-319-51835-0_13. ISBN   978-3-319-51834-3.
    Karney, Charles F.F. (2022). "On auxiliary latitudes". arXiv: 2212.05818 [physics.geo-ph].
  6. F. W. Bessel, 1825, Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen, Astron.Nachr., 4(86), 241–254, doi : 10.1002/asna.201011352, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print arXiv : 0908.1824, Bibcode : 1825AN......4..241B