A circle of radius a compressed to an ellipse.A sphere of radius a compressed to an oblate ellipsoid of revolution.
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is
The compression factor is in each case; for the ellipse, this is also its aspect ratio.
Definitions
There are three variants: the flattening [1] sometimes called the first flattening,[2] as well as two other "flattenings" and each sometimes called the second flattening,[3] sometimes only given a symbol,[4] or sometimes called the second flattening and third flattening, respectively.[5]
In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flattenings are zero for a circle (a = b).
↑ For example, is called the second flattening in: Taff, Laurence G. (1980). An Astronomical Glossary (Technical report). MIT Lincoln Lab. p.84. However, is called the second flattening in: Hooijberg, Maarten (1997). Practical Geodesy: Using Computers. Springer. p.41. doi:10.1007/978-3-642-60584-0_3.
↑ F. W. Bessel, 1825, Uber die Berechnung der geographischen Langen und Breiten aus geodatischen Vermessungen, Astron.Nachr., 4(86), 241–254, doi:10.1002/asna.201011352, translated into English by C. F. F. Karney and R. E. Deakin as The calculation of longitude and latitude from geodesic measurements, Astron. Nachr. 331(8), 852–861 (2010), E-print arXiv:0908.1824, Bibcode:1825AN......4..241B
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.