An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.
An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is bounded, which means that it may be enclosed in a sufficiently large sphere.
An ellipsoid has three pairwise perpendicular axes of symmetry which intersect at a center of symmetry, called the center of the ellipsoid. The line segments that are delimited on the axes of symmetry by the ellipsoid are called the principal axes, or simply axes of the ellipsoid. If the three axes have different lengths, the figure is a triaxial ellipsoid (rarely scalene ellipsoid), and the axes are uniquely defined.
If two of the axes have the same length, then the ellipsoid is an ellipsoid of revolution , also called a spheroid . In this case, the ellipsoid is invariant under a rotation around the third axis, and there are thus infinitely many ways of choosing the two perpendicular axes of the same length. If the third axis is shorter, the ellipsoid is an oblate spheroid ; if it is longer, it is a prolate spheroid . If the three axes have the same length, the ellipsoid is a sphere.
The general ellipsoid, also known as triaxial ellipsoid, is a quadratic surface which is defined in Cartesian coordinates as:
where , and are the length of the semi-axes.
The points , and lie on the surface. The line segments from the origin to these points are called the principal semi-axes of the ellipsoid, because a, b, c are half the length of the principal axes. They correspond to the semi-major axis and semi-minor axis of an ellipse.
In spherical coordinate system for which , the general ellipsoid is defined as:
where is the polar angle and is the azimuthal angle.
When , the ellipsoid is a sphere.
When , the ellipsoid is a spheroid or ellipsoid of revolution. In particular, if , it is an oblate spheroid; if , it is a prolate spheroid.
The ellipsoid may be parameterized in several ways, which are simpler to express when the ellipsoid axes coincide with coordinate axes. A common choice is
where
These parameters may be interpreted as spherical coordinates, where θ is the polar angle and φ is the azimuth angle of the point (x, y, z) of the ellipsoid. [1]
Measuring from the equator rather than a pole,
where
θ is the reduced latitude, parametric latitude, or eccentric anomaly and λ is azimuth or longitude.
Measuring angles directly to the surface of the ellipsoid, not to the circumscribed sphere,
where
γ would be geocentric latitude on the Earth, and λ is longitude. These are true spherical coordinates with the origin at the center of the ellipsoid.[ citation needed ]
In geodesy, the geodetic latitude is most commonly used, as the angle between the vertical and the equatorial plane, defined for a biaxial ellipsoid. For a more general triaxial ellipsoid, see ellipsoidal latitude.
The volume bounded by the ellipsoid is
In terms of the principal diameters A, B, C (where A = 2a, B = 2b, C = 2c), the volume is
This equation reduces to that of the volume of a sphere when all three elliptic radii are equal, and to that of an oblate or prolate spheroid when two of them are equal.
The volume of an ellipsoid is 2/3 the volume of a circumscribed elliptic cylinder, and π/6 the volume of the circumscribed box. The volumes of the inscribed and circumscribed boxes are respectively:
The surface area of a general (triaxial) ellipsoid is [2]
where
and where F(φ, k) and E(φ, k) are incomplete elliptic integrals of the first and second kind respectively. [3]
The surface area of this general ellipsoid can also be expressed in terms of , one of the Carlson symmetric forms of elliptic integrals: [4]
Simplifying above formula using properties of RG, [5] this can be also be expressed in terms of the volume of the ellipsoid V:
Unlike the expression with F(φ, k) and E(φ, k), the equations in terms of RG do not depend on the choice of an order on a, b, and c.
The surface area of an ellipsoid of revolution (or spheroid) may be expressed in terms of elementary functions:
or
or
and
which, as follows from basic trigonometric identities, are equivalent expressions (i.e. the formula for Soblate can be used to calculate the surface area of a prolate ellipsoid and vice versa). In both cases e may again be identified as the eccentricity of the ellipse formed by the cross section through the symmetry axis. (See ellipse). Derivations of these results may be found in standard sources, for example Mathworld. [6]
Here p ≈ 1.6075 yields a relative error of at most 1.061%; [7] a value of p = 8/5 = 1.6 is optimal for nearly spherical ellipsoids, with a relative error of at most 1.178%.
In the "flat" limit of c much smaller than a and b, the area is approximately 2πab, equivalent to p = log23 ≈ 1.5849625007.
The intersection of a plane and a sphere is a circle (or is reduced to a single point, or is empty). Any ellipsoid is the image of the unit sphere under some affine transformation, and any plane is the image of some other plane under the same transformation. So, because affine transformations map circles to ellipses, the intersection of a plane with an ellipsoid is an ellipse or a single point, or is empty. [8] Obviously, spheroids contain circles. This is also true, but less obvious, for triaxial ellipsoids (see Circular section).
Given: Ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 and the plane with equation nxx + nyy + nzz = d, which have an ellipse in common.
Wanted: Three vectors f0 (center) and f1, f2 (conjugate vectors), such that the ellipse can be represented by the parametric equation
(see ellipse).
Solution: The scaling u = x/a, v = y/b, w = z/c transforms the ellipsoid onto the unit sphere u2 + v2 + w2 = 1 and the given plane onto the plane with equation
Let muu + mvv + mww = δ be the Hesse normal form of the new plane and
its unit normal vector. Hence
is the center of the intersection circle and
its radius (see diagram).
Where mw = ±1 (i.e. the plane is horizontal), let
Where mw ≠ ±1, let
In any case, the vectors e1, e2 are orthogonal, parallel to the intersection plane and have length ρ (radius of the circle). Hence the intersection circle can be described by the parametric equation
The reverse scaling (see above) transforms the unit sphere back to the ellipsoid and the vectors e0, e1, e2 are mapped onto vectors f0, f1, f2, which were wanted for the parametric representation of the intersection ellipse.
How to find the vertices and semi-axes of the ellipse is described in ellipse.
Example: The diagrams show an ellipsoid with the semi-axes a = 4, b = 5, c = 3 which is cut by the plane x + y + z = 5.
The pins-and-string construction of an ellipsoid is a transfer of the idea constructing an ellipse using two pins and a string (see diagram).
A pins-and-string construction of an ellipsoid of revolution is given by the pins-and-string construction of the rotated ellipse.
The construction of points of a triaxial ellipsoid is more complicated. First ideas are due to the Scottish physicist J. C. Maxwell (1868). [9] Main investigations and the extension to quadrics was done by the German mathematician O. Staude in 1882, 1886 and 1898. [10] [11] [12] The description of the pins-and-string construction of ellipsoids and hyperboloids is contained in the book Geometry and the imagination written by D. Hilbert & S. Vossen, [13] too.
Equations for the semi-axes of the generated ellipsoid can be derived by special choices for point P:
The lower part of the diagram shows that F1 and F2 are the foci of the ellipse in the xy-plane, too. Hence, it is confocal to the given ellipse and the length of the string is l = 2rx + (a − c). Solving for rx yields rx = 1/2(l − a + c); furthermore r2
y = r2
x − c2.
From the upper diagram we see that S1 and S2 are the foci of the ellipse section of the ellipsoid in the xz-plane and that r2
z = r2
x − a2.
If, conversely, a triaxial ellipsoid is given by its equation, then from the equations in step 3 one can derive the parameters a, b, l for a pins-and-string construction.
If E is an ellipsoid confocal to E with the squares of its semi-axes
then from the equations of E
one finds, that the corresponding focal conics used for the pins-and-string construction have the same semi-axes a, b, c as ellipsoid E. Therefore (analogously to the foci of an ellipse) one considers the focal conics of a triaxial ellipsoid as the (infinite many) foci and calls them the focal curves of the ellipsoid. [14]
The converse statement is true, too: if one chooses a second string of length l and defines
then the equations
are valid, which means the two ellipsoids are confocal.
In case of a = c (a spheroid) one gets S1 = F1 and S2 = F2, which means that the focal ellipse degenerates to a line segment and the focal hyperbola collapses to two infinite line segments on the x-axis. The ellipsoid is rotationally symmetric around the x-axis and
The focal ellipse together with its inner part can be considered as the limit surface (an infinitely thin ellipsoid) of the pencil of confocal ellipsoids determined by a, b for rz → 0. For the limit case one gets
A hyperellipsoid, or ellipsoid of dimension in a Euclidean space of dimension , is a quadric hypersurface defined by a polynomial of degree two that has a homogeneous part of degree two which is a positive definite quadratic form.
One can also define a hyperellipsoid as the image of a sphere under an invertible affine transformation. The spectral theorem can again be used to obtain a standard equation of the form
The volume of an n-dimensional hyperellipsoid can be obtained by replacing Rn by the product of the semi-axes a1a2...an in the formula for the volume of a hypersphere:
(where Γ is the gamma function).
If A is a real, symmetric, n-by-n positive-definite matrix, and v is a vector in then the set of points x that satisfy the equation
is an n-dimensional ellipsoid centered at v. The expression is also called the ellipsoidal norm of x - v. For every ellipsoid, there are unique A and v that satisfy the above equation. [18] : 67
The eigenvectors of A are the principal axes of the ellipsoid, and the eigenvalues of A are the reciprocals of the squares of the semi-axes (in three dimensions these are a−2, b−2 and c−2). [19] In particular:
An invertible linear transformation applied to a sphere produces an ellipsoid, which can be brought into the above standard form by a suitable rotation, a consequence of the polar decomposition (also, see spectral theorem). If the linear transformation is represented by a symmetric 3 × 3 matrix, then the eigenvectors of the matrix are orthogonal (due to the spectral theorem) and represent the directions of the axes of the ellipsoid; the lengths of the semi-axes are computed from the eigenvalues. The singular value decomposition and polar decomposition are matrix decompositions closely related to these geometric observations.
For every positive definite matrix , there exists a unique positive definite matrix denoted A1/2, such that this notation is motivated by the fact that this matrix can be seen as the "positive square root" of The ellipsoid defined by can also be presented as [18] : 67
where S(0,1) is the unit sphere around the origin.
The key to a parametric representation of an ellipsoid in general position is the alternative definition:
An affine transformation can be represented by a translation with a vector f0 and a regular 3 × 3 matrix A:
where f1, f2, f3 are the column vectors of matrix A.
A parametric representation of an ellipsoid in general position can be obtained by the parametric representation of a unit sphere (see above) and an affine transformation:
If the vectors f1, f2, f3 form an orthogonal system, the six points with vectors f0 ± f1,2,3 are the vertices of the ellipsoid and |f1|, |f2|, |f3| are the semi-principal axes.
A surface normal vector at point x(θ, φ) is
For any ellipsoid there exists an implicit representation F(x, y, z) = 0. If for simplicity the center of the ellipsoid is the origin, f0 = 0, the following equation describes the ellipsoid above: [20]
The ellipsoidal shape finds many practical applications:
The mass of an ellipsoid of uniform density ρ is
The moments of inertia of an ellipsoid of uniform density are
For a = b = c these moments of inertia reduce to those for a sphere of uniform density.
Ellipsoids and cuboids rotate stably along their major or minor axes, but not along their median axis. This can be seen experimentally by throwing an eraser with some spin. In addition, moment of inertia considerations mean that rotation along the major axis is more easily perturbed than rotation along the minor axis. [22]
One practical effect of this is that scalene astronomical bodies such as Haumea generally rotate along their minor axes (as does Earth, which is merely oblate); in addition, because of tidal locking, moons in synchronous orbit such as Mimas orbit with their major axis aligned radially to their planet.
A spinning body of homogeneous self-gravitating fluid will assume the form of either a Maclaurin spheroid (oblate spheroid) or Jacobi ellipsoid (scalene ellipsoid) when in hydrostatic equilibrium, and for moderate rates of rotation. At faster rotations, non-ellipsoidal piriform or oviform shapes can be expected, but these are not stable.
The ellipsoid is the most general shape for which it has been possible to calculate the creeping flow of fluid around the solid shape. The calculations include the force required to translate through a fluid and to rotate within it. Applications include determining the size and shape of large molecules, the sinking rate of small particles, and the swimming abilities of microorganisms. [23]
The elliptical distributions, which generalize the multivariate normal distribution and are used in finance, can be defined in terms of their density functions. When they exist, the density functions f have the structure:
where k is a scale factor, x is an n-dimensional random row vector with median vector μ (which is also the mean vector if the latter exists), Σ is a positive definite matrix which is proportional to the covariance matrix if the latter exists, and g is a function mapping from the non-negative reals to the non-negative reals giving a finite area under the curve. [24] The multivariate normal distribution is the special case in which g(z) = exp(−z/2) for quadratic form z.
Thus the density function is a scalar-to-scalar transformation of a quadric expression. Moreover, the equation for any iso-density surface states that the quadric expression equals some constant specific to that value of the density, and the iso-density surface is an ellipsoid.
{{cite web}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: archived copy as title (link) pp. 17–18.In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.
In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic re the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they exist as shapes in 1- and 2-dimensional space. As such, the -sphere is the setting for -dimensional spherical geometry.
In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.
In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.
In cartography, a Tissot's indicatrix is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
Prolate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the focal axis of the ellipse, i.e., the symmetry axis on which the foci are located. Rotation about the other axis produces oblate spheroidal coordinates. Prolate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two smallest principal axes are equal in length.
In physics, the Green's function for the Laplacian in three variables is used to describe the response of a particular type of physical system to a point source. In particular, this Green's function arises in systems that can be described by Poisson's equation, a partial differential equation (PDE) of the form where is the Laplace operator in , is the source term of the system, and is the solution to the equation. Because is a linear differential operator, the solution to a general system of this type can be written as an integral over a distribution of source given by : where the Green's function for Laplacian in three variables describes the response of the system at the point to a point source located at : and the point source is given by , the Dirac delta function.
In physics and mathematics, the solid harmonics are solutions of the Laplace equation in spherical polar coordinates, assumed to be (smooth) functions . There are two kinds: the regular solid harmonics, which are well-defined at the origin and the irregular solid harmonics, which are singular at the origin. Both sets of functions play an important role in potential theory, and are obtained by rescaling spherical harmonics appropriately:
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.