Confocal conic sections

Last updated
Pencils of confocal ellipses and hyperbolas Ell-hyp-konfokal.svg
Pencils of confocal ellipses and hyperbolas

In geometry, two conic sections are called confocal if they have the same foci.

Contents

Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles).

Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below).

A circle is an ellipse with both foci coinciding at the center. Circles that share the same focus are called concentric circles , and they orthogonally intersect any line passing through that center.

The formal extension of the concept of confocal conics to surfaces leads to confocal quadrics .

Confocal ellipses and hyperbolas

Any hyperbola or (non-circular) ellipse has two foci, and any pair of distinct points in the Euclidean plane and any third point not on line connecting them uniquely determine an ellipse and hyperbola, with shared foci and intersecting orthogonally at the point (See Ellipse § Definition as locus of points and Hyperbola § As locus of points.)

The foci thus determine two pencils of confocal ellipses and hyperbolas.

By the principal axis theorem, the plane admits a Cartesian coordinate system with its origin at the midpoint between foci and its axes aligned with the axes of the confocal ellipses and hyperbolas. If is the linear eccentricity (half the distance between and ), then in this coordinate system

A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse. Confocal conics parametrized by semi-major axis.png
A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.

Each ellipse or hyperbola in the pencil is the locus of points satisfying the equation

with semi-major axis as parameter. If the semi-major axis is less than the linear eccentricity (), the equation defines a hyperbola, while if the semi-major axis is greater than the linear eccentricity (), it defines an ellipse.

Another common representation specifies a pencil of ellipses and hyperbolas confocal with a given ellipse of semi-major axis and semi-minor axis (so that ), each conic generated by choice of the parameter

If the conic is an ellipse. If the conic is a hyperbola. For there are no solutions. The common foci of every conic in the pencil are the points This representation generalizes naturally to higher dimensions (see § Confocal quadrics).

Limit curves

As the parameter approaches the value from below, the limit of the pencil of confocal ellipses degenerates to the line segment between foci on the x-axis (an infinitely flat ellipse). As approaches from above, the limit of the pencil of confocal hyperbolas degenerates to the relative complement of that line segment with respect to the x-axis; that is, to the two rays with endpoints at the foci pointed outward along the x-axis (an infinitely flat hyperbola). These two limit curves have the two foci in common.

This property appears analogously in the 3-dimensional case, leading to the definition of the focal curves of confocal quadrics. See § Confocal quadrics below.

Twofold orthogonal system

Visual proof that confocal ellipses and hyperbolas intersect orthogonally, because each has a "reflection property" Ell-hyp-konf-bw.svg
Visual proof that confocal ellipses and hyperbolas intersect orthogonally, because each has a "reflection property"

Considering the pencils of confocal ellipses and hyperbolas (see lead diagram) one gets from the geometrical properties of the normal and tangent at a point (the normal of an ellipse and the tangent of a hyperbola bisect the angle between the lines to the foci). Any ellipse of the pencil intersects any hyperbola orthogonally (see diagram).

This arrangement, in which each curve in a pencil of non-intersecting curves orthogonally intersects each curve in another pencil of non-intersecting curves is sometimes called an orthogonal net. The orthogonal net of ellipses and hyperbolas is the base of an elliptic coordinate system.

Confocal parabolas

A parabola is the limit curve of a pencil of ellipses with a common vertex and one common focus, as the other focus is moved to infinity to the right, and also the limit curve of a pencil of hyperbolas with a common vertex and one common focus, as the other focus is moved to infinity to the left. Parabola as a limit of ellipses and hyperbolas.png
A parabola is the limit curve of a pencil of ellipses with a common vertex and one common focus, as the other focus is moved to infinity to the right, and also the limit curve of a pencil of hyperbolas with a common vertex and one common focus, as the other focus is moved to infinity to the left.

A parabola has only one focus, and can be considered as a limit curve of a set of ellipses (or a set of hyperbolas), where one focus and one vertex are kept fixed, while the second focus is moved to infinity. If this transformation is performed on each conic in an orthogonal net of confocal ellipses and hyperbolas, the limit is an orthogonal net of confocal parabolas facing opposite directions.

Every parabola with focus at the origin and x-axis as its axis of symmetry is the locus of points satisfying the equation

for some value of the parameter where is the semi-latus rectum. If then the parabola opens to the right, and if the parabola opens to the left. The point is the vertex of the parabola.

Pencil of confocal parabolas Parab-konf-schar.svg
Pencil of confocal parabolas

From the definition of a parabola, for any point not on the x-axis, there is a unique parabola with focus at the origin opening to the right and a unique parabola with focus at the origin opening to the left, intersecting orthogonally at the point . (The parabolas are orthogonal for an analogous reason to confocal ellipses and hyperbolas: parabolas have a reflective property.)

Analogous to confocal ellipses and hyperbolas, the plane can be covered by an orthogonal net of parabolas, which can be used for a parabolic coordinate system.

The net of confocal parabolas can be considered as the image of a net of lines parallel to the coordinate axes and contained in the right half of the complex plane by the conformal map (see External links).

Concentric circles and intersecting lines

A circle is an ellipse with two coinciding foci. The limit of hyperbolas as the foci are brought together is degenerate: a pair of intersecting lines.

If an orthogonal net of ellipses and hyperbolas is transformed by bringing the two foci together, the result is thus an orthogonal net of concentric circles and lines passing through the circle center. These are the basis for the polar coordinate system. [1]

The limit of a pencil of ellipses sharing the same center and axes and passing through a given point degenerates to a pair of lines parallel with the major axis as the two foci are moved to infinity in opposite directions. Likewise the limit of an analogous pencil of hyperbolas degenerates to a pair of lines perpendicular to the major axis. Thus a rectangular grid consisting of orthogonal pencils of parallel lines is a kind of net of degenerate confocal conics. Such an orthogonal net is the basis for the Cartesian coordinate system.

Graves's theorem

Construction of confocal ellipses Ellipse-konf-fad.svg
Construction of confocal ellipses

In 1850 the Irish bishop Charles Graves proved and published the following method for the construction of confocal ellipses with help of a string: [2]

If one surrounds a given ellipse E by a closed string, which is longer than the given ellipse's circumference, and draws a curve similar to the gardener's construction of an ellipse (see diagram), then one gets an ellipse, that is confocal to E.

The proof of this theorem uses elliptical integrals and is contained in Klein's book. Otto Staude extended this method to the construction of confocal ellipsoids (see Klein's book).

If ellipse E collapses to a line segment , one gets a slight variation of the gardener's method drawing an ellipse with foci .

Confocal quadrics

Confocal quadrics:

a
=
1
,
b
=
0.8
,
c
=
0.6
,
{\displaystyle a=1,\;b=0.8,\;c=0.6,\ }


l
1
=
0.1
{\displaystyle \lambda _{1}=0.1}
(red),
l
2
=
0.5
{\displaystyle \ \lambda _{2}=0.5}
(blue),
l
3
=
0.8
{\displaystyle \lambda _{3}=0.8}
(purple) Quadriken-konfok.svg
Confocal quadrics:

(red), (blue), (purple)
Types dependent on
l
{\displaystyle \lambda } Ello-hypb1-hypb2-lambda.svg
Types dependent on

Two quadric surfaces are confocal if they share the same axes and if their intersections with each plane of symmetry are confocal conics. Analogous to conics, nondegenerate pencils of confocal quadrics come in two types: triaxial ellipsoids, hyperboloids of one sheet, and hyperboloids of two sheets; and elliptic paraboloids, hyperbolic paraboloids, and elliptic paraboloids opening in the opposite direction.

A triaxial ellipsoid with semi-axes where determines a pencil of confocal quadrics. Each quadric, generated by a parameter is the locus of points satisfying the equation:

If , the quadric is an ellipsoid ; if (in the diagram: blue), it is a hyperboloid of one sheet; if it is a hyperboloid of two sheets. For there are no solutions.

Focal curves

Focal conics (ellipse, hyperbola, black) Quadriken-konf-fk.svg
Focal conics (ellipse, hyperbola, black)
c
2
=
0.36
,
b
2
=
0.64
,
{\displaystyle c^{2}=0.36,\ b^{2}=0.64,\quad }
top:
l
=
{\displaystyle \lambda =}


0.3575
{\displaystyle 0.3575}
(ellipsoid, red),
0.3625
{\displaystyle \ 0.3625}
(1s hyperb., blue),

0.638
{\displaystyle 0.638}
(1s hyperb., blue),
0.642
{\displaystyle \ 0.642}
(2s hyperb., purple)
bottom: Limit surfaces between the types Quadriken-konf-fk-ex-gf.svg
top:
(ellipsoid, red), (1s hyperb., blue),
(1s hyperb., blue), (2s hyperb., purple)
bottom: Limit surfaces between the types

Limit surfaces for :

As the parameter approaches the value from below, the limit ellipsoid is infinitely flat, or more precisely is the area of the x-y-plane consisting of the ellipse

and its doubly covered interior (in the diagram: below, on the left, red).

As approaches from above, the limit hyperboloid of one sheet is infinitely flat, or more precisely is the area of the x-y-plane consisting of the same ellipse and its doubly covered exterior (in the diagram: bottom, on the left, blue).

The two limit surfaces have the points of ellipse in common.

Limit surfaces for :

Similarly, as approaches from above and below, the respective limit hyperboloids (in diagram: bottom, right, blue and purple) have the hyperbola

in common.

Focal curves:

The foci of the ellipse are the vertices of the hyperbola and vice versa. So and are a pair of focal conics.

Reverse: Because any quadric of the pencil of confocal quadrics determined by can be constructed by a pins-and-string method (see ellipsoid) the focal conics play the role of infinite many foci and are called focal curves of the pencil of confocal quadrics. [3] [4] [5]

Threefold orthogonal system

Analogous to the case of confocal ellipses/hyperbolas,

Any point with lies on exactly one surface of any of the three types of confocal quadrics.
The three quadrics through a point intersect there orthogonally (see external link).
Example for function
f
(
l
)
{\displaystyle f(\lambda )} Konf-quad-flambda.svg
Example for function

Proof of the existence and uniqueness of three quadrics through a point:
For a point with let be . This function has three vertical asymptotes and is in any of the open intervals a continuous and monotone increasing function. From the behaviour of the function near its vertical asymptotes and from one finds (see diagram):
Function has exactly 3 zeros with

Proof of the orthogonality of the surfaces:
Using the pencils of functions with parameter the confocal quadrics can be described by . For any two intersecting quadrics with one gets at a common point

From this equation one gets for the scalar product of the gradients at a common point

which proves the orthogonality.

Ellipsoid with lines of curvature as intersection curves with confocal hyperboloids

a
=
1
,
b
=
0.8
,
c
=
0.6
{\displaystyle a=1,\;b=0.8,\;c=0.6} Ellipsoid-kl.svg
Ellipsoid with lines of curvature as intersection curves with confocal hyperboloids

Applications:
Due to Dupin's theorem on threefold orthogonal systems of surfaces, the intersection curve of any two confocal quadrics is a line of curvature. Analogously to the planar elliptic coordinates there exist ellipsoidal coordinates.

In physics confocal ellipsoids appear as equipotential surfaces of a charged ellipsoid. [6]

Ivory's theorem

Ivory's theorem Ell-hyp-konf-ivory.svg
Ivory's theorem

Ivory's theorem (or Ivory's lemma ), [7] named after the Scottish mathematician and astronomer James Ivory (1765–1842), is a statement on the diagonals of a net-rectangle, a quadrangle formed by orthogonal curves:

For any net-rectangle, which is formed by two confocal ellipses and two confocal hyperbolas with the same foci, the diagonals have equal length (see diagram).

Intersection points of an ellipse and a confocal hyperbola:
Let be the ellipse with the foci and the equation

and the confocal hyperbola with equation

Computing the intersection points of and one gets the four points:

Diagonals of a net-rectangle:
To simplify the calculation, let without loss of generality (any other confocal net can be obtained by uniform scaling) and among the four intersections between an ellipse and a hyperbola choose those in the positive quadrant (other sign combinations yield the same result after an analogous calculation).

Let be two confocal ellipses and two confocal hyperbolas with the same foci. The diagonals of the four points of the net-rectangle consisting of the points

are:

The last expression is invariant under the exchange . Exactly this exchange leads to . Hence

The proof of the statement for confocal parabolas is a simple calculation.

Ivory even proved the 3-dimensional version of his theorem (s. Blaschke, p. 111):

For a 3-dimensional rectangular cuboid formed by confocal quadrics the diagonals connecting opposite points have equal length.

See also

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

<span class="mw-page-title-main">Dupin cyclide</span> Geometric inversion of a torus, cylinder or double cone

In mathematics, a Dupin cyclide or cyclide of Dupin is any geometric inversion of a standard torus, cylinder or double cone. In particular, these latter are themselves examples of Dupin cyclides. They were discovered c. 1802 by Charles Dupin, while he was still a student at the École polytechnique following Gaspard Monge's lectures. The key property of a Dupin cyclide is that it is a channel surface in two different ways. This property means that Dupin cyclides are natural objects in Lie sphere geometry.

<span class="mw-page-title-main">Focus (geometry)</span> Geometric point from which certain types of curves are constructed

In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

<span class="mw-page-title-main">Eccentricity (mathematics)</span> Characteristic of conic sections

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.

<span class="mw-page-title-main">Cassini oval</span> Class of quartic plane curves

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is based on confocal quadrics.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Focaloid</span> Geometrical shell

In geometry, a focaloid is a shell bounded by two concentric, confocal ellipses or ellipsoids (in 3D). When the thickness of the shell becomes negligible, it is called a thin focaloid.

In mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away. This means that the origin O' of the new coordinate system has coordinates (h, k) in the original system. The positive x' and y' directions are taken to be the same as the positive x and y directions. A point P has coordinates (x, y) with respect to the original system and coordinates (x', y') with respect to the new system, where

In mathematics, a generalized conic is a geometrical object defined by a property which is a generalization of some defining property of the classical conic. For example, in elementary geometry, an ellipse can be defined as the locus of a point which moves in a plane such that the sum of its distances from two fixed points – the foci – in the plane is a constant. The curve obtained when the set of two fixed points is replaced by an arbitrary, but fixed, finite set of points in the plane is called an n–ellipse and can be thought of as a generalized ellipse. Since an ellipse is the equidistant set of two circles, where one circle is inside the other, the equidistant set of two arbitrary sets of points in a plane can be viewed as a generalized conic. In rectangular Cartesian coordinates, the equation y = x2 represents a parabola. The generalized equation y = xr, for r ≠ 0 and r ≠ 1, can be treated as defining a generalized parabola. The idea of generalized conic has found applications in approximation theory and optimization theory.

<span class="mw-page-title-main">Focal conics</span>

In geometry, focal conics are a pair of curves consisting of either

<span class="mw-page-title-main">Dupin's theorem</span>

In differential geometry Dupin's theorem, named after the French mathematician Charles Dupin, is the statement:

In Euclidean geometry, a triangle conic is a conic in the plane of the reference triangle and associated with it in some way. For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse, which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle; the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the orthocentre of the reference triangle; and the Artzt parabolas, which are parabolas touching two sidelines of the reference triangle at vertices of the triangle.

References

  1. Hilbert & Cohn-Vossen 1952, p.  6.
  2. Felix Klein: Vorlesungen über Höhere Geometrie, Sringer-Verlag, Berlin, 1926, S.32.
  3. Staude, O.: Ueber Fadenconstructionen des Ellipsoides. Math. Ann. 20, 147–184 (1882)
  4. Staude, O.: Ueber neue Focaleigenschaften der Flächen 2. Grades. Math. Ann. 27, 253–271 (1886).
  5. Staude, O.: Die algebraischen Grundlagen der Focaleigenschaften der Flächen 2. Ordnung Math. Ann. 50, 398 – 428 (1898)
  6. D. Fuchs, S. Tabachnikov: Ein Schaubild der Mathematik. Springer-Verlag, Berlin/Heidelberg 2011, ISBN   978-3-642-12959-9, p. 480.
  7. Ivory used it as a lemma in proving the theorem that equipotential surfaces of the gravitational field external to a homogeneous triaxial ellipsoid are the confocal ellipsoids.