Parallel projection

Last updated

In three-dimensional geometry, a parallel projection (or axonometric projection) is a projection of an object in three-dimensional space onto a fixed plane, known as the projection plane or image plane , where the rays , known as lines of sight or projection lines, are parallel to each other. It is a basic tool in descriptive geometry. The projection is called orthographic if the rays are perpendicular (orthogonal) to the image plane, and oblique or skew if they are not.

Contents

Overview

Parallel projection terminology and notations. The two blue parallel line segments to the right remain parallel when projected onto the image plane to the left. Parallel-proj-def.svg
Parallel projection terminology and notations. The two blue parallel line segments to the right remain parallel when projected onto the image plane to the left.

A parallel projection is a particular case of projection in mathematics and graphical projection in technical drawing. Parallel projections can be seen as the limit of a central or perspective projection, in which the rays pass through a fixed point called the center or viewpoint, as this point is moved towards infinity. Put differently, a parallel projection corresponds to a perspective projection with an infinite focal length (the distance between the lens and the focal point in photography) or "zoom". Further, in parallel projections, lines that are parallel in three-dimensional space remain parallel in the two-dimensionally projected image.

A perspective projection of an object is often considered more realistic than a parallel projection, since it more closely resembles human vision and photography. However, parallel projections are popular in technical applications, since the parallelism of an object's lines and faces is preserved, and direct measurements can be taken from the image. Among parallel projections, orthographic projections are seen as the most realistic, and are commonly used by engineers. On the other hand, certain types of oblique projections (for instance cavalier projection, military projection) are very simple to implement, and are used to create quick and informal pictorials of objects.

The term parallel projection is used in the literature to describe both the procedure itself (a mathematical mapping function) as well as the resulting image produced by the procedure.

Properties

Two parallel projections of a cube. In an orthographic projection (at left), the projection lines are perpendicular to the image plane (pink). In an oblique projection (at right), the projection lines are at a skew angle to the image plane. Cube-parallel-proj-s.svg
Two parallel projections of a cube. In an orthographic projection (at left), the projection lines are perpendicular to the image plane (pink). In an oblique projection (at right), the projection lines are at a skew angle to the image plane.

Every parallel projection has the following properties:

Types

Classification of Parallel projection and some 3D projections Comparison of graphical projections.svg
Classification of Parallel projection and some 3D projections
A parallel projection corresponds to a perspective projection with a hypothetical viewpoint; i.e. one where the camera lies an infinite distance away from the object and has an infinite focal length, or "zoom". Camera focal length distance house animation.gif
A parallel projection corresponds to a perspective projection with a hypothetical viewpoint; i.e. one where the camera lies an infinite distance away from the object and has an infinite focal length, or "zoom".
Various projections and how they are produced Various projections of cube above plane.svg
Various projections and how they are produced

Orthographic projection

Orthographic projection is derived from the principles of descriptive geometry, and is a type of parallel projection where the projection rays are perpendicular to the projection plane. It is the projection type of choice for working drawings. The term orthographic is sometimes reserved specifically for depictions of objects where the principal axes or planes of the object are also parallel with the projection plane (or the paper on which the orthographic or parallel projection is drawn). However, the term primary view is also used. In multiview projections , up to six pictures of an object are produced, with each projection plane perpendicular to one of the coordinate axes. However, when the principal planes or axes of an object are not parallel with the projection plane, but are rather tilted to some degree to reveal multiple sides of the object, they are called auxiliary views or pictorials. Sometimes, the term axonometric projection is reserved solely for these views, and is juxtaposed with the term orthographic projection. But axonometric projection might be more accurately described as being synonymous with parallel projection, and orthographic projection a type of axonometric projection.

The primary views include plans, elevations and sections; and the isometric, dimetric and trimetric projections could be considered auxiliary views. A typical (but non-obligatory) characteristic of multiview orthographic projections is that one axis of space usually is displayed as vertical.

When the viewing direction is perpendicular to the surface of the depicted object, regardless of the object's orientation, it is referred to as a normal projection. Thus, in the case of a cube oriented with a space's coordinate system, the primary views of the cube would be considered normal projections.

Oblique projection

Comparison of several types of graphical projection. The presence of one or more 90deg principal angles is usually a good indication that the perspective is oblique. Graphical projection comparison.png
Comparison of several types of graphical projection. The presence of one or more 90° principal angles is usually a good indication that the perspective is oblique.

In an oblique projection, the parallel projection rays are not perpendicular to the viewing plane, but strike the projection plane at an angle other than ninety degrees. [1] In both orthographic and oblique projection, parallel lines in space appear parallel on the projected image. Because of its simplicity, oblique projection is used exclusively for pictorial purposes rather than for formal, working drawings. In an oblique pictorial drawing, the displayed angles separating the coordinate axes as well as the foreshortening factors (scaling) are arbitrary. The distortion created thereby is usually attenuated by aligning one plane of the imaged object to be parallel with the plane of projection, creating a truly-formed, full-size image of the chosen plane. Special types of oblique projections include military, cavalier and cabinet projection. [2]

Analytic representation

If the image plane is given by equation and the direction of projection by , then the projection line through the point is parametrized by

with .

The image of is the intersection of line with plane ; it is given by the equation

In several cases, these formulas can be simplified.

(S1) If one can choose the vectors and such that , the formula for the image simplifies to

(S2) In an orthographic projection, the vectors and are parallel. In this case, one can choose and one gets

(S3) If one can choose the vectors and such that , and if the image plane contains the origin, one has and the parallel projection is a linear mapping:

(Here is the identity matrix and the outer product.)

From this analytic representation of a parallel projection one can deduce most of the properties stated in the previous sections.

History

Axonometry originated in China. [3] [ unreliable source? ] Its function in Chinese art was unlike the linear perspective in European art since its perspective was not objective, or looking from the outside. Instead, its patterns used parallel projections within the painting that allowed the viewer to consider both the space and the ongoing progression of time in one scroll. [4] According to science author and Medium journalist Jan Krikke, axonometry, and the pictorial grammar that goes with it, had taken on a new significance with the introduction of visual computing and engineering drawing. [4] [3] [5] [6]

The concept of isometry had existed in a rough empirical form for centuries, well before Professor William Farish (1759–1837) of Cambridge University was the first to provide detailed rules for isometric drawing. [7] [8]

Farish published his ideas in the 1822 paper "On Isometric Perspective", in which he recognized the "need for accurate technical working drawings free of optical distortion. This would lead him to formulate isometry. Isometry means "equal measures" because the same scale is used for height, width, and depth". [9]

From the middle of the 19th century, according to Jan Krikke (2006) [9] isometry became an "invaluable tool for engineers, and soon thereafter axonometry and isometry were incorporated in the curriculum of architectural training courses in Europe and the U.S. The popular acceptance of axonometry came in the 1920s, when modernist architects from the Bauhaus and De Stijl embraced it". [9] De Stijl architects like Theo van Doesburg used axonometry for their architectural designs, which caused a sensation when exhibited in Paris in 1923". [9]

Since the 1920s axonometry, or parallel perspective, has provided an important graphic technique for artists, architects, and engineers. Like linear perspective, axonometry helps depict three-dimensional space on a two-dimensional picture plane. It usually comes as a standard feature of CAD systems and other visual computing tools. [4]

Limitations

IsometricFlaw 2.svg
In this drawing, the blue sphere is two units higher than the red one. However, this difference in elevation is not apparent if one covers the right half of the picture.
Impossible staircase.svg
The Penrose stairs depicts a staircase which seems to ascend (anticlockwise) or descend (clockwise) yet forms a continuous loop.
Paul Kuniholm Mural 1924-1st-Ave-Created-2019-July-6 Paul Kuniholm Mural 1924-1st-Ave-Created-2019-July-6.jpg
Paul Kuniholm Mural 1924-1st-Ave-Created-2019-July-6

Objects drawn with parallel projection do not appear larger or smaller as they lie closer to or farther away from the viewer. While advantageous for architectural drawings, where measurements must be taken directly from the image, the result is a perceived distortion, since unlike perspective projection, this is not how human vision or photography normally works. It also can easily result in situations where depth and altitude are difficult to gauge, as is shown in the illustration to the right.

This visual ambiguity has been exploited in op art, as well as "impossible object" drawings. Though not strictly parallel, M. C. Escher's Waterfall (1961) is a well-known image, in which a channel of water seems to travel unaided along a downward path, only to then paradoxically fall once again as it returns to its source. The water thus appears to disobey the law of conservation of energy. Oscar Reutersvard is credited with discovery of the impossible object, an example of the impossible triangle (top) shown in this mural by Paul Kuniholm.

See also

Related Research Articles

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Isometric projection</span> Method for visually representing three-dimensional objects

Isometric projection is a method for visually representing three-dimensional objects in two dimensions in technical and engineering drawings. It is an axonometric projection in which the three coordinate axes appear equally foreshortened and the angle between any two of them is 120 degrees.

<span class="mw-page-title-main">Engineering drawing</span> Type of technical drawing used to define requirements for engineered items

An engineering drawing is a type of technical drawing that is used to convey information about an object. A common use is to specify the geometry necessary for the construction of a component and is called a detail drawing. Usually, a number of drawings are necessary to completely specify even a simple component. These drawings are linked together by a "master drawing." This "master drawing" is more commonly known as an assembly drawing. The assembly drawing gives the drawing numbers of the subsequent detailed components, quantities required, construction materials and possibly 3D images that can be used to locate individual items. Although mostly consisting of pictographic representations, abbreviations and symbols are used for brevity and additional textual explanations may also be provided to convey the necessary information.

<span class="mw-page-title-main">Orthographic projection</span> Means of projecting three-dimensional objects in two dimensions

Orthographic projection is a means of representing three-dimensional objects in two dimensions. Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface. The obverse of an orthographic projection is an oblique projection, which is a parallel projection in which the projection lines are not orthogonal to the projection plane.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

<span class="mw-page-title-main">3D projection</span> Design technique

A 3D projection is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.

<span class="mw-page-title-main">Axonometric projection</span> Type of orthographic projection

Axonometric projection is a type of orthographic projection used for creating a pictorial drawing of an object, where the object is rotated around one or more of its axes to reveal multiple sides.

<span class="mw-page-title-main">Descriptive geometry</span> Branch of geometry which allows the representation of three-dimensional objects in two dimensions

Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. The theoretical basis for descriptive geometry is provided by planar geometric projections. The earliest known publication on the technique was "Underweysung der Messung mit dem Zirckel und Richtscheyt", published in Linien, Nuremberg: 1525, by Albrecht Dürer. Italian architect Guarino Guarini was also a pioneer of projective and descriptive geometry, as is clear from his Placita Philosophica (1665), Euclides Adauctus (1671) and Architettura Civile, anticipating the work of Gaspard Monge (1746–1818), who is usually credited with the invention of descriptive geometry. Gaspard Monge is usually considered the "father of descriptive geometry" due to his developments in geometric problem solving. His first discoveries were in 1765 while he was working as a draftsman for military fortifications, although his findings were published later on.

<span class="mw-page-title-main">Oblique projection</span> Type of technical drawing

Oblique projection is a simple type of technical drawing of graphical projection used for producing two-dimensional (2D) images of three-dimensional (3D) objects.

<span class="mw-page-title-main">Vanishing point</span> Artistic concept relating to perspective

A vanishing point is a point on the image plane of a perspective rendering where the two-dimensional perspective projections of mutually parallel lines in three-dimensional space appear to converge. When the set of parallel lines is perpendicular to a picture plane, the construction is known as one-point perspective, and their vanishing point corresponds to the oculus, or "eye point", from which the image should be viewed for correct perspective geometry. Traditional linear drawings use objects with one to three sets of parallels, defining one to three vanishing points.

2.5D perspective refers to gameplay or movement in a video game or virtual reality environment that is restricted to a two-dimensional (2D) plane with little or no access to a third dimension in a space that otherwise appears to be three-dimensional and is often simulated and rendered in a 3D digital environment.

<span class="mw-page-title-main">Picture plane</span>

In painting, photography, graphical perspective and descriptive geometry, a picture plane is an image plane located between the "eye point" and the object being viewed and is usually coextensive to the material surface of the work. It is ordinarily a vertical plane perpendicular to the sightline to the object of interest.

<span class="mw-page-title-main">Cross section (geometry)</span> Geometrical concept

In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.

<span class="mw-page-title-main">Plan (drawing)</span>

Plans are a set of drawings or two-dimensional diagrams used to describe a place or object, or to communicate building or fabrication instructions. Usually plans are drawn or printed on paper, but they can take the form of a digital file.

<span class="mw-page-title-main">Multiview orthographic projection</span> Technique of illustration

In technical drawing and computer graphics, a multiview projection is a technique of illustration by which a standardized series of orthographic two-dimensional pictures are constructed to represent the form of a three-dimensional object. Up to six pictures of an object are produced, with each projection plane parallel to one of the coordinate axes of the object. The views are positioned relative to each other according to either of two schemes: first-angle or third-angle projection. In each, the appearances of views may be thought of as being projected onto planes that form a six-sided box around the object. Although six different sides can be drawn, usually three views of a drawing give enough information to make a three-dimensional object.

<span class="mw-page-title-main">Isometric video game graphics</span> Type of video game graphics

Isometric video game graphics are graphics employed in video games and pixel art that use a parallel projection, but which angle the viewpoint to reveal facets of the environment that would otherwise not be visible from a top-down perspective or side view, thereby producing a three-dimensional (3D) effect. Despite the name, isometric computer graphics are not necessarily truly isometric—i.e., the x, y, and z axes are not necessarily oriented 120° to each other. Instead, a variety of angles are used, with dimetric projection and a 2:1 pixel ratio being the most common. The terms "3/4 perspective", "3/4 view", "2.5D", and "pseudo 3D" are also sometimes used, although these terms can bear slightly different meanings in other contexts.

<span class="mw-page-title-main">Projection plane</span>

A projection plane, or plane of projection, is a type of view in which graphical projections from an object intersect. Projection planes are used often in descriptive geometry and graphical representation. A picture plane in perspective drawing is a type of projection plane.

Pohlke's theorem is the fundamental theorem of axonometry. It was established 1853 by the German painter and teacher of descriptive geometry Karl Wilhelm Pohlke. The first proof of the theorem was published 1864 by the German mathematician Hermann Amandus Schwarz, who was a student of Pohlke. Therefore the theorem is sometimes called theorem of Pohlke and Schwarz, too.

<span class="mw-page-title-main">Axonometry</span> The process of projecting a three-dimensional object onto a two-dimensional plane

Axonometry is a graphical procedure belonging to descriptive geometry that generates a planar image of a three-dimensional object. The term "axonometry" means "to measure along axes", and indicates that the dimensions and scaling of the coordinate axes play a crucial role. The result of an axonometric procedure is a uniformly-scaled parallel projection of the object. In general, the resulting parallel projection is oblique ; but in special cases the result is orthographic, which in this context is called an orthogonal axonometry.

References

  1. Maynard, Patric (2005). Drawing distinctions: the varieties of graphic expression. Cornell University Press. p. 22. ISBN   0-8014-7280-6.
  2. Desai, Apurva A. (22 October 2008). Computer Graphics. PHI Learning Pvt. Ltd. p. 242. ISBN   978-81-203-3524-0.
  3. 1 2 Krikke, Jan (2018-01-02). "Why the world relies on a Chinese "perspective"".
  4. 1 2 3 Jan Krikke (2000). "Axonometry: a matter of perspective". In: Computer Graphics and Applications, IEEE Jul/Aug 2000. Vol 20 (4), pp. 7–11.
  5. Krikke, J. (July 2000). "Axonometry: A Matter of Perspective". IEEE Computer Graphics and Applications. 20 (4): 7–11. doi:10.1109/38.851742.
  6. "A Chinese Perspective for Cyberspace?".
  7. Barclay G. Jones (1986). Protecting historic architecture and museum collections from natural disasters. University of Michigan. ISBN   0-409-90035-4. p. 243.
  8. Charles Edmund Moorhouse (1974). Visual messages: graphic communication for senior students.
  9. 1 2 3 4 J. Krikke (1996). "A Chinese perspective for cyberspace? Archived 2009-06-01 at the Wayback Machine ". In: International Institute for Asian Studies Newsletter, 9, Summer 1996.
  10. William Farish (1822) "On Isometrical Perspective". In: Cambridge Philosophical Transactions. 1 (1822).