A vanishing point is a point on the image plane of a perspective rendering where the two-dimensional perspective projections of mutually parallel lines in three-dimensional space appear to converge. When the set of parallel lines is perpendicular to a picture plane, the construction is known as one-point perspective, and their vanishing point corresponds to the oculus, or "eye point", from which the image should be viewed for correct perspective geometry. [1] Traditional linear drawings use objects with one to three sets of parallels, defining one to three vanishing points.
Part of a series on |
Graphical projection |
---|
Italian humanist polymath and architect Leon Battista Alberti first introduced the concept in his treatise on perspective in art, De pictura , written in 1435. [2] Straight railroad tracks are a familiar modern example. [3]
The vanishing point may also be referred to as the "direction point", as lines having the same directional vector, say D, will have the same vanishing point. Mathematically, let q ≡ (x, y, f) be a point lying on the image plane, where f is the focal length (of the camera associated with the image), and let vq ≡ (x/h, y/h, f/h) be the unit vector associated with q, where h = √x2 + y2 + f2. If we consider a straight line in space S with the unit vector ns ≡ (nx, ny, nz) and its vanishing point vs, the unit vector associated with vs is equal to ns, assuming both point towards the image plane. [4]
When the image plane is parallel to two world-coordinate axes, lines parallel to the axis that is cut by this image plane will have images that meet at a single vanishing point. Lines parallel to the other two axes will not form vanishing points as they are parallel to the image plane. This is one-point perspective. Similarly, when the image plane intersects two world-coordinate axes, lines parallel to those planes will meet form two vanishing points in the picture plane. This is called two-point perspective. In three-point perspective the image plane intersects the x, y, and z axes and therefore lines parallel to these axes intersect, resulting in three different vanishing points.
The vanishing point theorem is the principal theorem in the science of perspective. It says that the image in a picture plane π of a line L in space, not parallel to the picture, is determined by its intersection with π and its vanishing point. Some authors have used the phrase, "the image of a line includes its vanishing point". Guidobaldo del Monte gave several verifications, and Humphry Ditton called the result the "main and Great Proposition". [5] Brook Taylor wrote the first book in English on perspective in 1714, which introduced the term "vanishing point" and was the first to fully explain the geometry of multipoint perspective, and historian Kirsti Andersen compiled these observations. [1] : 244–6 She notes, in terms of projective geometry, the vanishing point is the image of the point at infinity associated with L, as the sightline from O through the vanishing point is parallel to L.
As a vanishing point originates in a line, so a vanishing line originates in a plane α that is not parallel to the picture π. Given the eye point O, and β the plane parallel to α and lying on O, then the vanishing line of α is β ∩ π. For example, when α is the ground plane and β is the horizon plane, then the vanishing line of α is the horizon line β ∩ π.
To put it simply, the vanishing line of some plane, say α, is obtained by the intersection of the image plane with another plane, say β, parallel to the plane of interest (α), passing through the camera center. For different sets of lines parallel to this plane α, their respective vanishing points will lie on this vanishing line. The horizon line is a theoretical line that represents the eye level of the observer. If the object is below the horizon line, its lines angle up to the horizon line. If the object is above, they slope down.
1. Projections of two sets of parallel lines lying in some plane πA appear to converge, i.e. the vanishing point associated with that pair, on a horizon line, or vanishing line H formed by the intersection of the image plane with the plane parallel to πA and passing through the pinhole. Proof: Consider the ground plane π, as y = c which is, for the sake of simplicity, orthogonal to the image plane. Also, consider a line L that lies in the plane π, which is defined by the equation ax + bz = d. Using perspective pinhole projections, a point on L projected on the image plane will have coordinates defined as,
This is the parametric representation of the image L′ of the line L with z as the parameter. When z → −∞ it stops at the point (x′,y′) = (−fb/a,0) on the x′ axis of the image plane. This is the vanishing point corresponding to all parallel lines with slope −b/a in the plane π. All vanishing points associated with different lines with different slopes belonging to plane π will lie on the x′ axis, which in this case is the horizon line.
2. Let A, B, and C be three mutually orthogonal straight lines in space and vA ≡ (xA, yA, f), vB ≡ (xB, yB, f), vC ≡ (xC, yC, f) be the three corresponding vanishing points respectively. If we know the coordinates of one of these points, say vA, and the direction of a straight line on the image plane, which passes through a second point, say vB, we can compute the coordinates of both vB and vC [4]
3. Let A, B, and C be three mutually orthogonal straight lines in space and vA ≡ (xA, yA, f), vB ≡ (xB, yB, f), vC ≡ (xC, yC, f) be the three corresponding vanishing points respectively. The orthocenter of the triangle with vertices in the three vanishing points is the intersection of the optical axis and the image plane. [4]
A curvilinear perspective is a drawing with either 4 or 5 vanishing points. In 5-point perspective the vanishing points are mapped into a circle with 4 vanishing points at the cardinal headings N, W, S, E and one at the circle's origin.
A reverse perspective is a drawing with vanishing points that are placed outside the painting with the illusion that they are "in front of" the painting.
Several methods for vanishing point detection make use of the line segments detected in images. Other techniques involve considering the intensity gradients of the image pixels directly.
There are significantly large numbers of vanishing points present in an image. Therefore, the aim is to detect the vanishing points that correspond to the principal directions of a scene. This is generally achieved in two steps. The first step, called the accumulation step, as the name suggests, clusters the line segments with the assumption that a cluster will have a common vanishing point. The next step finds the principal clusters present in the scene and therefore it is called the search step.
In the accumulation step, the image is mapped onto a bounded space called the accumulator space. The accumulator space is partitioned into units called cells. Barnard [6] assumed this space to be a Gaussian sphere centered on the optical center of the camera as an accumulator space. A line segment on the image corresponds to a great circle on this sphere, and the vanishing point in the image is mapped to a point. The Gaussian sphere has accumulator cells that increase when a great circle passes through them, i.e. in the image a line segment intersects the vanishing point. Several modifications have been made since, but one of the most efficient techniques was using the Hough Transform, mapping the parameters of the line segment to the bounded space. Cascaded Hough Transforms have been applied for multiple vanishing points.
The process of mapping from the image to the bounded spaces causes the loss of the actual distances between line segments and points.
In the search step, the accumulator cell with the maximum number of line segments passing through it is found. This is followed by removal of those line segments, and the search step is repeated until this count goes below a certain threshold. As more computing power is now available, points corresponding to two or three mutually orthogonal directions can be found.
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.
In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.
In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
A 3D projection is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.
Oblique projection is a simple type of technical drawing of graphical projection used for producing two-dimensional (2D) images of three-dimensional (3D) objects.
Curvilinear perspective, also five-point perspective, is a graphical projection used to draw 3D objects on 2D surfaces. It was formally codified in 1968 by the artists and art historians André Barre and Albert Flocon in the book La Perspective curviligne, which was translated into English in 1987 as Curvilinear Perspective: From Visual Space to the Constructed Image and published by the University of California Press.
In painting, photography, graphical perspective and descriptive geometry, a picture plane is an image plane located between the "eye point" and the object being viewed and is usually coextensive to the material surface of the work. It is ordinarily a vertical plane perpendicular to the sightline to the object of interest.
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.
In three-dimensional geometry, a parallel projection is a projection of an object in three-dimensional space onto a fixed plane, known as the projection plane or image plane, where the rays, known as lines of sight or projection lines, are parallel to each other. It is a basic tool in descriptive geometry. The projection is called orthographic if the rays are perpendicular (orthogonal) to the image plane, and oblique or skew if they are not.
In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.
In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, some collineations are not homographies, but the fundamental theorem of projective geometry asserts that is not so in the case of real projective spaces of dimension at least two. Synonyms include projectivity, projective transformation, and projective collineation.
In mathematics, a projection is an idempotent mapping of a set into a subset. In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane : the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the three-dimensional Euclidean space onto a plane in it, like the shadow example. The two main projections of this kind are:
Camera resectioning is the process of estimating the parameters of a pinhole camera model approximating the camera that produced a given photograph or video; it determines which incoming light ray is associated with each pixel on the resulting image. Basically, the process determines the pose of the pinhole camera.
The generalized Hough transform (GHT), introduced by Dana H. Ballard in 1981, is the modification of the Hough transform using the principle of template matching. The Hough transform was initially developed to detect analytically defined shapes. In these cases, we have knowledge of the shape and aim to find out its location and orientation in the image. This modification enables the Hough transform to be used to detect an arbitrary object described with its model.
In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.
The Rytz’s axis construction is a basic method of descriptive geometry to find the axes, the semi-major axis and semi-minor axis and the vertices of an ellipse, starting from two conjugated half-diameters. If the center and the semi axis of an ellipse are determined the ellipse can be drawn using an ellipsograph or by hand.
Axonometry is a graphical procedure belonging to descriptive geometry that generates a planar image of a three-dimensional object. The term "axonometry" means "to measure along axes", and indicates that the dimensions and scaling of the coordinate axes play a crucial role. The result of an axonometric procedure is a uniformly-scaled parallel projection of the object. In general, the resulting parallel projection is oblique ; but in special cases the result is orthographic, which in this context is called an orthogonal axonometry.