Exploded-view drawing

Last updated
Exploded-view drawing of a gear pump Gear pump exploded.svg
Exploded-view drawing of a gear pump

An exploded-view drawing is a diagram, picture, schematic or technical drawing of an object, that shows the relationship or order of assembly of various parts. [1]

Contents

It shows the components of an object slightly separated by distance, or suspended in surrounding space in the case of a three-dimensional exploded diagram. An object is represented as if there had been a small controlled explosion emanating from the middle of the object, causing the object's parts to be separated an equal distance away from their original locations.

The exploded-view drawing is used in parts catalogs, assembly and maintenance manuals and other instructional material.

The projection of an exploded view is usually shown from above and slightly in diagonal from the left or right side of the drawing. (See exploded-view drawing of a gear pump to the right: it is slightly from above and shown from the left side of the drawing in diagonal.)

Overview

Fully assembled and exploded view in a patent drawing Fully assembled view and exploded view.jpg
Fully assembled and exploded view in a patent drawing
A physical exploded view made by arranging parts of a camera Sony Alpha ILCE-7R taken apart 2014 CP+.jpg
A physical exploded view made by arranging parts of a camera

An exploded-view drawing is a type of drawing, that shows the intended assembly of mechanical or other parts. It shows all parts of the assembly and how they fit together. In mechanical systems usually the component closest to the center are assembled first, or is the main part in which the other parts get assembled. This drawing can also help to represent the disassembly of parts, where the parts on the outside normally get removed first. [2]

Exploded diagrams are common in descriptive manuals showing parts placement, or parts contained in an assembly or sub-assembly. Usually such diagrams have the part identification number and a label indicating which part fills the particular position in the diagram. Many spreadsheet applications can automatically create exploded diagrams, such as exploded pie charts.

In patent drawings in an exploded views the separated parts should be embraced by a bracket, to show the relationship or order of assembly of various parts are permissible, see image. When an exploded view is shown in a figure that is on the same sheet as another figure, the exploded view should be placed in brackets. [1]

Exploded views can also be used in architectural drawing, for example in the presentation of landscape design. An exploded view can create an image in which the elements are flying through the air above the architectural plan, almost like a cubist painting. The locations can be shadowed or dotted in the siteplan of the elements. [3]

History

Exploded view by Leonardo da Vinci Transformatsiia peremennogo dvizheniia v nepreryvnoe.jpg
Exploded view by Leonardo da Vinci

The exploded view was among the many graphic inventions of the Renaissance, which were developed to clarify pictorial representation in a renewed naturalistic way. The exploded view can be traced back to the early fifteenth century notebooks of Marino Taccola (1382–1453), and were perfected by Francesco di Giorgio (1439–1502) and Leonardo da Vinci (1452–1519). [4]

One of the first clearer examples of an exploded view was created by Leonardo in his design drawing of a reciprocating motion machine. Leonardo applied this method of presentation in several other studies, including those on human anatomy. [5]

The term "Exploded-View Drawing" emerged in the 1940s, and is one of the first times defined in 1965 as "Three-dimensional (isometric) illustration that shows the mating relationships of parts, subassemblies, and higher assemblies. May also show the sequence of assembling or disassembling the detail parts." [6]

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-Aided Design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Technical drawing</span> Creation of standards and the technical drawings

Technical drawing, drafting or drawing, is the act and discipline of composing drawings that visually communicate how something functions or is constructed.

<span class="mw-page-title-main">Engineering drawing</span> Type of technical drawing used to define requirements for engineered items

An engineering drawing is a type of technical drawing that is used to convey information about an object. A common use is to specify the geometry necessary for the construction of a component and is called a detail drawing. Usually, a number of drawings are necessary to completely specify even a simple component. These drawings are linked together by a "master drawing." This "master drawing" is more commonly known as an assembly drawing. The assembly drawing gives the drawing numbers of the subsequent detailed components, quantities required, construction materials and possibly 3D images that can be used to locate individual items. Although mostly consisting of pictographic representations, abbreviations and symbols are used for brevity and additional textual explanations may also be provided to convey the necessary information.

<span class="mw-page-title-main">3D projection</span> Design technique

A 3D projection is a design technique used to display a three-dimensional (3D) object on a two-dimensional (2D) surface. These projections rely on visual perspective and aspect analysis to project a complex object for viewing capability on a simpler plane.

<span class="mw-page-title-main">Truss</span> Rigid structure that consists of two-force members only

A truss is an assembly of members such as beams, connected by nodes, that creates a rigid structure.

<span class="mw-page-title-main">Solid modeling</span> Set of principles for modeling solid geometry

Solid modeling is a consistent set of principles for mathematical and computer modeling of three-dimensional shapes (solids). Solid modeling is distinguished within the broader related areas of geometric modeling and computer graphics, such as 3D modeling, by its emphasis on physical fidelity. Together, the principles of geometric and solid modeling form the foundation of 3D-computer-aided design and in general support the creation, exchange, visualization, animation, interrogation, and annotation of digital models of physical objects.

<span class="mw-page-title-main">Floor plan</span> Architectural diagram showing interior layout of a building

In architecture and building engineering, a floor plan is a technical drawing to scale, showing a view from above, of the relationships between rooms, spaces, traffic patterns, and other physical features at one level of a structure.

A diagram is a symbolic representation of information using visualization techniques. Diagrams have been used since prehistoric times on walls of caves, but became more prevalent during the Enlightenment. Sometimes, the technique uses a three-dimensional visualization which is then projected onto a two-dimensional surface. The word graph is sometimes used as a synonym for diagram.

<span class="mw-page-title-main">Cross section (geometry)</span> Geometrical concept

In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.

An interference fit, also known as a pressed fit or friction fit, is a form of fastening between two tightfitting mating parts that produces a joint which is held together by friction after the parts are pushed together.

<span class="mw-page-title-main">Technical illustration</span> Process of visually communicating technical concepts or subjects

Technical illustration is illustration meant to visually communicate information of a technical nature. Technical illustrations can be components of technical drawings or diagrams. Technical illustrations in general aim "to generate expressive images that effectively convey certain information via the visual channel to the human observer".

<span class="mw-page-title-main">Plan (drawing)</span>

Plans are a set of drawings or two-dimensional diagrams used to describe a place or object, or to communicate building or fabrication instructions. Usually plans are drawn or printed on paper, but they can take the form of a digital file.

<span class="mw-page-title-main">Cutaway drawing</span> Diagram of an object with segments removed to show the interior

A cutaway drawing, also called a cutaway diagram is a 3D graphics, drawing, diagram and or illustration, in which surface elements of a three-dimensional model are selectively removed, to make internal features visible, but without sacrificing the outer context entirely.

<span class="mw-page-title-main">Drafter</span> Person who makes technical drawings

A drafter is an engineering technician who makes detailed technical drawings or plans for machinery, buildings, electronics, infrastructure, sections, etc. Drafters use computer software and manual sketches to convert the designs, plans, and layouts of engineers and architects into a set of technical drawings. Drafters operate as the supporting developers and sketch engineering designs and drawings from preliminary design concepts.

<span class="mw-page-title-main">Multiview orthographic projection</span>

In technical drawing and computer graphics, a multiview projection is a technique of illustration by which a standardized series of orthographic two-dimensional pictures are constructed to represent the form of a three-dimensional object. Up to six pictures of an object are produced, with each projection plane parallel to one of the coordinate axes of the object. The views are positioned relative to each other according to either of two schemes: first-angle or third-angle projection. In each, the appearances of views may be thought of as being projected onto planes that form a six-sided box around the object. Although six different sides can be drawn, usually three views of a drawing give enough information to make a three-dimensional object.

<span class="mw-page-title-main">Architectural drawing</span> Technical drawing of a building (or building project)

An architectural drawing or architect's drawing is a technical drawing of a building that falls within the definition of architecture. Architectural drawings are used by architects and others for a number of purposes: to develop a design idea into a coherent proposal, to communicate ideas and concepts, to convince clients of the merits of a design, to assist a building contractor to construct it based on design intent, as a record of the design and planned development, or to make a record of a building that already exists.

<span class="mw-page-title-main">Patent drawing</span> Drawings illustrating patents

A patent application or patent may contain drawings, also called patent drawings, illustrating the invention, some of its embodiments, or the prior art. The drawings may be required by the law to be in a particular form, and the requirements may vary depending on the jurisdiction.

ISO 128 is an international standard (ISO), about the general principles of presentation in technical drawings, specifically the graphical representation of objects on technical drawings.

<span class="mw-page-title-main">Mechanical systems drawing</span>

Mechanical systems drawing is a type of technical drawing that shows information about heating, ventilating, air conditioning and transportation around the building. It is a powerful tool that helps analyze complex systems. These drawings are often a set of detailed drawings used for construction projects; it is a requirement for all HVAC work. They are based on the floor and reflected ceiling plans of the architect. After the mechanical drawings are complete, they become part of the construction drawings, which is then used to apply for a building permit. They are also used to determine the price of the project.

<span class="mw-page-title-main">Alibre Design</span> CAD software

Alibre Design is a 3D parametric computer aided design software suite developed by Alibre for Microsoft Windows. Available in fifteen languages. Alibre is a brand of Alibre, LLC, a company based in Texas.

References

  1. 1 2 "Design Patent Application Guide". United States Patent and Trademark Office. 2020-08-31. 37 CFR 1.84 Standards for drawings – (h)(1) Exploded views. Archived from the original on 2021-11-23. Retrieved 2021-12-02.
  2. Michael E. Brumbach, Jeffrey A. Clade (2003). Industrial Maintenance. p.65
  3. Chip Sullivan (2004) Drawing the Landscape. p.245.
  4. Eugene S. Ferguson (1999). Engineering and the Mind's Eye. p.82.
  5. Domenico Laurenza, Mario Taddei, Edoardo Zanon (2006). Leonardo's Machines. p.165
  6. Thomas F. Walton (1965). Technical Data Requirements for Systems Engineering and Support. Prentice-Hall. p.170