This article needs additional citations for verification .(July 2017) (Learn how and when to remove this template message) |

In geometry, a **point at infinity** or **ideal point** is an idealized limiting point at the "end" of each line.

- Affine geometry
- Perspective
- Hyperbolic geometry
- Projective geometry
- Other generalisations
- See also
- References

In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Adjoining these points produces a projective plane, in which no point can be distinguished, if we "forget" which points were added. This holds for a geometry over any field, and more generally over any division ring.^{ [1] }

In the real case, a point at infinity completes a line into a topologically closed curve. In higher dimensions, all the points at infinity form a projective subspace of one dimension less than that of the whole projective space to which they belong. A point at infinity can also be added to the complex line (which may be thought of as the complex plane), thereby turning it into a closed surface known as the complex projective line, **C**P^{1}, also called the Riemann sphere (when complex numbers are mapped to each point).

In the case of a hyperbolic space, each line has two distinct ideal points. Here, the set of ideal points takes the form of a quadric.

In an affine or Euclidean space of higher dimension, the **points at infinity** are the points which are added to the space to get the projective completion. The set of the points at infinity is called, depending on the dimension of the space, the line at infinity, the plane at infinity or the hyperplane at infinity, in all cases a projective space of one less dimension.

As a projective space over a field is a smooth algebraic variety, the same is true for the set of points at infinity. Similarly, if the ground field is the real or the complex field, the set of points at infinity is a manifold.

In artistic drawing and technical perspective, the projection on the picture plane of the point at infinity of a class of parallel lines is called their vanishing point.

In hyperbolic geometry, **points at infinity** are typically named ideal points. Unlike Euclidean and elliptic geometries, each line has two points at infinity: given a line *l* and a point *P* not on *l*, the right- and left-limiting parallels converge asymptotically to different points at infinity.

All points at infinity together form the Cayley absolute or boundary of a hyperbolic plane.

A symmetry of points and lines arises in a projective plane: just as a pair of points determine a line, so a pair of lines determine a point. The existence of parallel lines leads to establishing a point at infinity which represents the intersection of these parallels. This axiomatic symmetry grew out of a study of graphical perspective where a parallel projection arises as a central projection where the center *C* is a point at infinity, or **figurative point**.^{ [2] } The axiomatic symmetry of points and lines is called duality.

Though a point at infinity is considered on a par with any other point of a projective range, in the representation of points with projective coordinates, distinction is noted: finite points are represented with a 1 in the final coordinate while a point at infinity has a 0 there. The need to represent points at infinity requires that one extra coordinate beyond the space of finite points is needed.

This construction can be generalized to topological spaces. Different compactifications may exist for a given space, but arbitrary topological space admits Alexandroff extension, also called the *one-point compactification * when the original space is not itself compact. Projective line (over arbitrary field) is the Alexandroff extension of the corresponding field. Thus the circle is the one-point compactification of the real line, and the sphere is the one-point compactification of the plane. Projective spaces **P**^{n} for n > 1 are not *one-point* compactifications of corresponding affine spaces for the reason mentioned above under § Affine geometry, and completions of hyperbolic spaces with ideal points are also not one-point compactifications.

In mathematics, in general topology, **compactification** is the process or result of making a topological space into a compact space. A compact space is a space in which every open cover of the space contains a finite subcover. The methods of compactification are various, but each is a way of controlling points from "going off to infinity" by in some way adding "points at infinity" or preventing such an "escape".

**Euclidean space** is the fundamental space of classical geometry. Originally it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension, including the three-dimensional space and the *Euclidean plane*. It was introduced by the Ancient Greek mathematician Euclid of Alexandria, and the qualifier *Euclidean* is used to distinguish it from other spaces that were later discovered in physics and modern mathematics.

In mathematics, a **projective plane** is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect in a single point, but there are some pairs of lines that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus *any* two distinct lines in a projective plane intersect in one and only one point.

In mathematics, the **real line**, or **real number line** is the line whose points are the real numbers. That is, the real line is the set **R** of all real numbers, viewed as a geometric space, namely the Euclidean space of dimension one. It can be thought of as a vector space, a metric space, a topological space, a measure space, or a linear continuum.

In the mathematical field of topology, the **Alexandroff extension** is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named for the Russian mathematician Pavel Alexandroff. More precisely, let *X* be a topological space. Then the Alexandroff extension of *X* is a certain compact space *X** together with an open embedding *c* : *X* → *X** such that the complement of *X* in *X** consists of a single point, typically denoted ∞. The map *c* is a Hausdorff compactification if and only if *X* is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the **one-point compactification** or **Alexandroff compactification**. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space, a much larger class of spaces.

In mathematics, a **plane** is a flat, two-dimensional surface that extends infinitely far. A plane is the two-dimensional analogue of a point, a line and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of Euclidean geometry.

In geometry, a **hyperplane** is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined.

In mathematics, **hyperbolic geometry** is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In mathematics, the concept of a **projective space** originated from the visual effect of perspective, where parallel lines seem to meet *at infinity*. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

In mathematics, **projective geometry** is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.

In mathematics, **affine geometry** is what remains of Euclidean geometry when not using the metric notions of distance and angle.

In mathematics, an **affine space** is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments.

In geometry and topology, the **line at infinity** is a projective line that is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at infinity is also called the **ideal line**.

In mathematics, the **real projective plane** is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in **R**^{3} passing through the origin.

In geometry, **parallel** lines are lines in a plane which do not meet; that is, two straight lines in a plane that do not intersect at any point are said to be parallel. Colloquially, curves that do not touch each other or intersect and keep a fixed minimum distance are said to be parallel. A line and a plane, or two planes, in three-dimensional Euclidean space that do not share a point are also said to be parallel. However, two lines in three-dimensional space which do not meet must be in a common plane to be considered parallel; otherwise they are called skew lines. Parallel planes are planes in the same three-dimensional space that never meet.

In mathematics, a **projection** is a mapping of a set into a subset, which is equal to its square for mapping composition. The restriction to a subspace of a projection is also called a *projection*, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane. The projection of a point is its shadow on the paper sheet. The shadow of a point on the paper sheet is this point itself (idempotency). The shadow of a three-dimensional sphere is a closed disk. Originally, the notion of projection was introduced in Euclidean geometry to denote the projection of the Euclidean space of three dimensions onto a plane in it, like the shadow example. The two main projections of this kind are:

In geometry, the **Beltrami–Klein model**, also called the **projective model**, **Klein disk model**, and the **Cayley–Klein model**, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

In mathematics, a **space** is a set with some added structure.

In mathematics, the **Riemann sphere**, named after Bernhard Riemann, is a model of the **extended complex plane**, the complex plane plus a point at infinity. This extended plane represents the **extended complex numbers**, that is, the complex numbers plus a value ∞ for infinity. With the Riemann model, the point "∞" is near to very large numbers, just as the point "0" is near to very small numbers.

- ↑ Weisstein, Eric W. "Point at Infinity".
*mathworld.wolfram.com*. Wolfram Research. Retrieved 28 December 2016. - ↑ G. B. Halsted (1906) Synthetic Projective Geometry, page 7

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.