In geometry and topology, the line at infinity is a projective line that is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at infinity is also called the ideal line. [1]
In projective geometry, any pair of lines always intersects at some point, but parallel lines do not intersect in the real plane. The line at infinity is added to the real plane. This completes the plane, because now parallel lines intersect at a point which lies on the line at infinity. Also, if any pair of lines do not intersect at a point on the line, then the pair of lines are parallel.
Every line intersects the line at infinity at some point. The point at which the parallel lines intersect depends only on the slope of the lines, not at all on their y-intercept.
In the affine plane, a line extends in two opposite directions. In the projective plane, the two opposite directions of a line meet each other at a point on the line at infinity. Therefore, lines in the projective plane are closed curves, i.e., they are cyclical rather than linear. This is true of the line at infinity itself; it meets itself at its two endpoints (which are therefore not actually endpoints at all) and so it is actually cyclical.
The line at infinity can be visualized as a circle which surrounds the affine plane. However, diametrically opposite points of the circle are equivalent—they are the same point. The combination of the affine plane and the line at infinity makes the real projective plane, .
A hyperbola can be seen as a closed curve which intersects the line at infinity in two different points. These two points are specified by the slopes of the two asymptotes of the hyperbola. Likewise, a parabola can be seen as a closed curve which intersects the line at infinity in a single point. This point is specified by the slope of the axis of the parabola. If the parabola is cut by its vertex into a symmetrical pair of "horns", then these two horns become more parallel to each other further away from the vertex, and are actually parallel to the axis and to each other at infinity, so that they intersect at the line at infinity.
The analogue for the complex projective plane is a 'line' at infinity that is (naturally) a complex projective line. Topologically this is quite different, in that it is a Riemann sphere, which is therefore a 2-sphere, being added to a complex affine space of two dimensions over C (so four real dimensions), resulting in a four-dimensional compact manifold. The result is orientable, while the real projective plane is not.
The complex line at infinity was much used in nineteenth century geometry. In fact one of the most applied tricks was to regard a circle as a conic constrained to pass through two points at infinity, the solutions of
This equation is the form taken by that of any circle when we drop terms of lower order in X and Y. More formally, we should use homogeneous coordinates
and note that the line at infinity is specified by setting
Making equations homogeneous by introducing powers of Z, and then setting Z = 0, does precisely eliminate terms of lower order.
Solving the equation, therefore, we find that all circles 'pass through' the circular points at infinity
These of course are complex points, for any representing set of homogeneous coordinates. Since the projective plane has a large enough symmetry group, they are in no way special, though. The conclusion is that the three-parameter family of circles can be treated as a special case of the linear system of conics passing through two given distinct points P and Q.
Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.
In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. It is named after Étienne Bézout.
In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix. They are also used in fundamental elliptic curve cryptography algorithms.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.
In projective geometry, Pascal's theorem states that if six arbitrary points are chosen on a conic and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.
In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it or by a single letter.
In geometry, focuses or foci are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.
In geometry, a pencil is a family of geometric objects with a common property, for example the set of lines that pass through a given point in a plane, or the set of circles that pass through two given points in a plane.
Affine geometry, broadly speaking, is the study of the geometrical properties of lines, planes, and their higher dimensional analogs, in which a notion of "parallel" is retained, but no metrical notions of distance or angle are. Affine spaces differ from linear spaces in that they do not have a distinguished choice of origin. So, in the words of Marcel Berger, "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps." Accordingly, a complex affine space, that is an affine space over the complex numbers, is like a complex vector space, but without a distinguished point to serve as the origin.
In geometry, a centre or center of an object is a point in some sense in the middle of the object. According to the specific definition of centre taken into consideration, an object might have no centre. If geometry is regarded as the study of isometry groups, then a centre is a fixed point of all the isometries that move the object onto itself.
In mathematics, a Benz plane is a type of 2-dimensional geometrical structure, named after the German mathematician Walter Benz. The term was applied to a group of objects that arise from a common axiomatization of certain structures and split into three families, which were introduced separately: Möbius planes, Laguerre planes, and Minkowski planes.
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.
In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
The Steiner conic or more precisely Steiner's generation of a conic, named after the Swiss mathematician Jakob Steiner, is an alternative method to define a non-degenerate projective conic section in a projective plane over a field.
In geometry, two conic sections are called confocal if they have the same foci.