Circular points at infinity

Last updated

In projective geometry, the circular points at infinity (also called cyclic points or isotropic points) are two special points at infinity in the complex projective plane that are contained in the complexification of every real circle.

Contents

Coordinates

A point of the complex projective plane may be described in terms of homogeneous coordinates, being a triple of complex numbers (x : y : z), where two triples describe the same point of the plane when the coordinates of one triple are the same as those of the other aside from being multiplied by the same nonzero factor. In this system, the points at infinity may be chosen as those whose z-coordinate is zero. The two circular points at infinity are two of these, usually taken to be those with homogeneous coordinates

(1 : i : 0) and (1 : i : 0).

Trilinear coordinates

Let A. B. C be the measures of the vertex angles of the reference triangle ABC. Then the trilinear coordinates of the circular points at infinity in the plane of the reference triangle are as given below:

or, equivalently,

or, again equivalently,

where . [1]

Complexified circles

A real circle, defined by its center point (x0,y0) and radius r (all three of which are real numbers) may be described as the set of real solutions to the equation

Converting this into a homogeneous equation and taking the set of all complex-number solutions gives the complexification of the circle. The two circular points have their name because they lie on the complexification of every real circle. More generally, both points satisfy the homogeneous equations of the type

The case where the coefficients are all real gives the equation of a general circle (of the real projective plane). In general, an algebraic curve that passes through these two points is called circular.

Additional properties

The circular points at infinity are the points at infinity of the isotropic lines. [2] They are invariant under translations and rotations of the plane.

The concept of angle can be defined using the circular points, natural logarithm and cross-ratio: [3]

The angle between two lines is a certain multiple of the logarithm of the cross-ratio of the pencil formed by the two lines and the lines joining their intersection to the circular points.

Sommerville configures two lines on the origin as Denoting the circular points as ω and ω′, he obtains the cross ratio

so that

Imaginary transformation

The transformation is called the imaginary transformation by Felix Klein. He notes that the equation becomes under the transformation, which

changes the imaginary circular points x : y = ± i, z = 0, into the real infinitely distant points x : y’ = ± 1, z = 0, which are the points at infinity in the two directions that make an angle of 45° with the axes. Thus all circles are transformed into conics which go through these two real infinitely distant points, i.e. into equilateral hyperbolas whose asymptotes make an angle of 45° with the axes. [4]

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is the set of points with instead. Each is an example of two-dimensional half-space.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Parametric equation</span> Representation of a curve by a function of a parameter

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization of the object.

<span class="mw-page-title-main">Hopf fibration</span> Fiber bundle of the 3-sphere over the 2-sphere, with 1-spheres as fibers

In differential topology, the Hopf fibration describes a 3-sphere in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere is mapped from a distinct great circle of the 3-sphere. Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then for some matrix , called the transformation matrix of . Note that has rows and columns, whereas the transformation is from to . There are alternative expressions of transformation matrices involving row vectors that are preferred by some authors.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

<span class="mw-page-title-main">Cissoid of Diocles</span> Cubic plane curve

In geometry, the cissoid of Diocles is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as the cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

<span class="mw-page-title-main">Scheimpflug principle</span> Optical imaging rule

The Scheimpflug principle is a description of the geometric relationship between the orientation of the plane of focus, the lens plane, and the image plane of an optical system when the lens plane is not parallel to the image plane. It is applicable to the use of some camera movements on a view camera. It is also the principle used in corneal pachymetry, the mapping of corneal topography, done prior to refractive eye surgery such as LASIK, and used for early detection of keratoconus. The principle is named after Austrian army Captain Theodor Scheimpflug, who used it in devising a systematic method and apparatus for correcting perspective distortion in aerial photographs, although Captain Scheimpflug himself credits Jules Carpentier with the rule, thus making it an example of Stigler's law of eponymy.

Sinusoidal plane-wave solutions are particular solutions to the wave equation.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

<span class="mw-page-title-main">Scherk surface</span>

In mathematics, a Scherk surface is an example of a minimal surface. Scherk described two complete embedded minimal surfaces in 1834; his first surface is a doubly periodic surface, his second surface is singly periodic. They were the third non-trivial examples of minimal surfaces. The two surfaces are conjugates of each other.

<span class="mw-page-title-main">Inverse curve</span> Curve created by a geometric operation

In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k2. The inverse of the curve C is then the locus of P as Q runs over C. The point O in this construction is called the center of inversion, the circle the circle of inversion, and k the radius of inversion.

References

  1. Whitworth William Allen (1866). Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions. Deighton Bell And Company. p. 127. Retrieved 8 December 2021.
  2. C. E. Springer (1964) Geometry and Analysis of Projective Spaces, page 141, W. H. Freeman and Company
  3. Duncan Sommerville (1914) Elements of Non-Euclidean Geometry, page 157, link from University of Michigan Historical Math Collection
  4. Felix Klein, translators E.R. Hendrick & C.A. Noble (1939) [1908] Elementary Mathematics from an Advanced Standpoint – Geometry, third edition, pages 119, 120