Skew lines

Last updated
Rectangular parallelepiped. The line through segment AD and the line through segment B1B are skew lines because they are not in the same plane. Rectangular parallelepiped.png
Rectangular parallelepiped. The line through segment AD and the line through segment B1B are skew lines because they are not in the same plane.

In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar.

Contents

General position

If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines. After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero. If it does not, the lines defined by the points will be skew.

Similarly, in three-dimensional space a very small perturbation of any two parallel or intersecting lines will almost certainly turn them into skew lines. Therefore, any four points in general position always form skew lines.

In this sense, skew lines are the "usual" case, and parallel or intersecting lines are special cases.

Formulas

PQ, the shortest distance between two skew lines AB and CD is perpendicular to both AB and CD Skew lines shortest distance.svg
PQ, the shortest distance between two skew lines AB and CD is perpendicular to both AB and CD

Testing for skewness

If each line in a pair of skew lines is defined by two points that it passes through, then these four points must not be coplanar, so they must be the vertices of a tetrahedron of nonzero volume. Conversely, any two pairs of points defining a tetrahedron of nonzero volume also define a pair of skew lines. Therefore, a test of whether two pairs of points define skew lines is to apply the formula for the volume of a tetrahedron in terms of its four vertices. Denoting one point as the 1×3 vector a whose three elements are the point's three coordinate values, and likewise denoting b, c, and d for the other points, we can check if the line through a and b is skew to the line through c and d by seeing if the tetrahedron volume formula gives a non-zero result:

Nearest points

Expressing the two lines as vectors:

The cross product of and is perpendicular to the lines.

The plane formed by the translations of Line 2 along contains the point and is perpendicular to .

Therefore, the intersecting point of Line 1 with the above-mentioned plane, which is also the point on Line 1 that is nearest to Line 2 is given by

Similarly, the point on Line 2 nearest to Line 1 is given by (where )

Distance

The nearest points and form the shortest line segment joining Line 1 and Line 2:

The distance between nearest points in two skew lines may also be expressed using other vectors:

Here the 1×3 vector x represents an arbitrary point on the line through particular point a with b representing the direction of the line and with the value of the real number determining where the point is on the line, and similarly for arbitrary point y on the line through particular point c in direction d.

The cross product of b and d is perpendicular to the lines, as is the unit vector

The perpendicular distance between the lines is then [1]

(if |b × d| is zero the lines are parallel and this method cannot be used).

More than two lines

Configurations

A configuration of skew lines is a set of lines in which all pairs are skew. Two configurations are said to be isotopic if it is possible to continuously transform one configuration into the other, maintaining throughout the transformation the invariant that all pairs of lines remain skew. Any two configurations of two lines are easily seen to be isotopic, and configurations of the same number of lines in dimensions higher than three are always isotopic, but there exist multiple non-isotopic configurations of three or more lines in three dimensions. [2] The number of nonisotopic configurations of n lines in R3, starting at n = 1, is

1, 1, 2, 3, 7, 19, 74, ... (sequence A110887 in the OEIS ).

Ruled surfaces

A fibration of projective space by skew lines on nested hyperboloids. Nested hyperboloids.png
A fibration of projective space by skew lines on nested hyperboloids.

If one rotates a line L around another line M skew but not perpendicular to it, the surface of revolution swept out by L is a hyperboloid of one sheet. For instance, the three hyperboloids visible in the illustration can be formed in this way by rotating a line L around the central white vertical line M. The copies of L within this surface form a regulus; the hyperboloid also contains a second family of lines that are also skew to M at the same distance as L from it but with the opposite angle that form the opposite regulus. The two reguli display the hyperboloid as a ruled surface.

An affine transformation of this ruled surface produces a surface which in general has an elliptical cross-section rather than the circular cross-section produced by rotating L around L'; such surfaces are also called hyperboloids of one sheet, and again are ruled by two families of mutually skew lines. A third type of ruled surface is the hyperbolic paraboloid. Like the hyperboloid of one sheet, the hyperbolic paraboloid has two families of skew lines; in each of the two families the lines are parallel to a common plane although not to each other. Any three skew lines in R3 lie on exactly one ruled surface of one of these types. [3]

Gallucci's theorem

If three skew lines all meet three other skew lines, any transversal of the first set of three meets any transversal of the second set. [4] [5]

Skew flats in higher dimensions

In higher-dimensional space, a flat of dimension k is referred to as a k-flat. Thus, a line may also be called a 1-flat.

Generalizing the concept of skew lines to d-dimensional space, an i-flat and a j-flat may be skew if i + j<d. As with lines in 3-space, skew flats are those that are neither parallel nor intersect.

In affine d-space, two flats of any dimension may be parallel. However, in projective space, parallelism does not exist; two flats must either intersect or be skew. Let I be the set of points on an i-flat, and let J be the set of points on a j-flat. In projective d-space, if i + jd then the intersection of I and J must contain a (i+jd)-flat. (A 0-flat is a point.)

In either geometry, if I and J intersect at a k-flat, for k ≥ 0, then the points of IJ determine a (i+jk)-flat.

See also

Related Research Articles

<span class="mw-page-title-main">Parallelepiped</span> Hexahedron with parallelogram faces

In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms. By analogy, it relates to a parallelogram just as a cube relates to a square.

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Affine transformation</span> Geometric transformation that preserves lines but not angles nor the origin

In Euclidean geometry, an affine transformation or affinity is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.

<span class="mw-page-title-main">Euclidean planes in three-dimensional space</span> Flat surface

In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space . A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimal thin. While a pair of real numbers suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space .

<span class="mw-page-title-main">Parallelogram</span> Quadrilateral with two pairs of parallel sides

In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Cross product</span> Mathematical operation on vectors in 3D space

In mathematics, the cross product or vector product is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space, and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b, is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product.

<span class="mw-page-title-main">Ruled surface</span> Surface containing a line through every point

In geometry, a surface S in 3-dimensional Euclidean space is ruled if through every point of S, there is a straight line that lies on S. Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, . Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in . A predecessor and special case of Grassmann coordinates, Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control.

Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies.

<span class="mw-page-title-main">Coplanarity</span> Geometric property of objects being in the same plane

In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Beltrami–Klein model</span> Model of hyperbolic geometry

In geometry, the Beltrami–Klein model, also called the projective model, Klein disk model, and the Cayley–Klein model, is a model of hyperbolic geometry in which points are represented by the points in the interior of the unit disk and lines are represented by the chords, straight line segments with ideal endpoints on the boundary sphere.

<span class="mw-page-title-main">Line–line intersection</span> Common point(s) shared by two lines in Euclidean geometry

In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line. Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.

<span class="mw-page-title-main">Euclidean plane</span> Geometric model of the planar projection of the physical universe

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

<span class="mw-page-title-main">Poincaré disk model</span> Model of hyperbolic geometry

In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.

<span class="mw-page-title-main">Quadrisecant</span> Line through four points of a curve

In geometry, a quadrisecant or quadrisecant line of a space curve is a line that passes through four points of the curve. This is the largest possible number of intersections that a generic space curve can have with a line, and for such curves the quadrisecants form a discrete set of lines. Quadrisecants have been studied for curves of several types:

<span class="mw-page-title-main">Dupin's theorem</span>

In differential geometry Dupin's theorem, named after the French mathematician Charles Dupin, is the statement:

References

  1. Weisstein, Eric W., "Line-Line Distance", MathWorld
  2. Viro, Julia Drobotukhina; Viro, Oleg (1990), "Configurations of skew lines" (PDF), Leningrad Math. J. (in Russian), 1 (4): 1027–1050, archived from the original (PDF) on 2021-11-09, retrieved 2006-10-24. Revised version in English: arXiv:math.GT/0611374
  3. Hilbert, David; Cohn-Vossen, Stephan (1952), Geometry and the Imagination (2nd ed.), Chelsea, pp. 13–17, ISBN   0-8284-1087-9
  4. Coxeter, H. S. M. (1969), Introduction to Geometry (2nd ed.), John Wiley & Sons, p. 257
  5. G. Gallucci (1906), "Studio della figura delle otto rette e sue applicazioni alla geometria del tetraedro ed alla teoria della configurazioni", Rendiconto dell'Accademia della Scienza Fisiche e Matematiche, 3rd series, 12: 49–79