In mathematics, an implicit surface is a surface in Euclidean space defined by an equation
An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z.
The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: , where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters . Generally the change of representations is simple only when the explicit representation is given: (implicit), (parametric).
Examples:
For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example.
The implicit function theorem describes conditions under which an equation can be solved (at least implicitly) for x, y or z. But in general the solution may not be made explicit. This theorem is the key to the computation of essential geometric features of a surface: tangent planes, surface normals, curvatures (see below). But they have an essential drawback: their visualization is difficult.
If is polynomial in x, y and z, the surface is called algebraic. Example 5 is non-algebraic.
Despite difficulty of visualization, implicit surfaces provide relatively simple techniques to generate theoretically (e.g. Steiner surface) and practically (see below) interesting surfaces.
Throughout the following considerations the implicit surface is represented by an equation where function meets the necessary conditions of differentiability. The partial derivatives of are .
A surface point is called regular if and only if the gradient of at is not the zero vector , meaning
If the surface point is not regular, it is called singular.
The equation of the tangent plane at a regular point is
and a normal vector is
In order to keep the formula simple the arguments are omitted:
is the normal curvature of the surface at a regular point for the unit tangent direction . is the Hessian matrix of (matrix of the second derivatives).
The proof of this formula relies (as in the case of an implicit curve) on the implicit function theorem and the formula for the normal curvature of a parametric surface.
As in the case of implicit curves it is an easy task to generate implicit surfaces with desired shapes by applying algebraic operations (addition, multiplication) on simple primitives.
The electrical potential of a point charge at point generates at point the potential (omitting physical constants)
The equipotential surface for the potential value is the implicit surface which is a sphere with center at point .
The potential of point charges is represented by
For the picture the four charges equal 1 and are located at the points . The displayed surface is the equipotential surface (implicit surface) .
A Cassini oval can be defined as the point set for which the product of the distances to two given points is constant (in contrast, for an ellipse the sum is constant). In a similar way implicit surfaces can be defined by a constant distance product to several fixed points.
In the diagram metamorphoses the upper left surface is generated by this rule: With
the constant distance product surface is displayed.
A further simple method to generate new implicit surfaces is called metamorphosis of implicit surfaces:
For two implicit surfaces (in the diagram: a constant distance product surface and a torus) one defines new surfaces using the design parameter :
In the diagram the design parameter is successively .
-surfaces [1] can be used to approximate any given smooth and bounded object in whose surface is defined by a single polynomial as a product of subsidiary polynomials. In other words, we can design any smooth object with a single algebraic surface. Let us denote the defining polynomials as . Then, the approximating object is defined by the polynomial
where stands for the blending parameter that controls the approximating error.
Analogously to the smooth approximation with implicit curves, the equation
represents for suitable parameters smooth approximations of three intersecting tori with equations
(In the diagram the parameters are )
There are various algorithms for rendering implicit surfaces, [2] including the marching cubes algorithm. [3] Essentially there are two ideas for visualizing an implicit surface: One generates a net of polygons which is visualized (see surface triangulation) and the second relies on ray tracing which determines intersection points of rays with the surface. [4] The intersection points can be approximated by sphere tracing, using a signed distance function to find the distance to the surface. [5]
In mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable.
A sphere is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, called a parametric curve and parametric surface, respectively. In such cases, the equations are collectively called a parametric representation, or parametric system, or parameterization of the object.
In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function.
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, . Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in . A predecessor and special case of Grassmann coordinates, Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control.
In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility.
In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.
Simplicial continuation, or piecewise linear continuation, is a one-parameter continuation method which is well suited to small to medium embedding spaces. The algorithm has been generalized to compute higher-dimensional manifolds by and.
In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation . In general, every implicit curve is defined by an equation of the form
The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and in 2009 further developed by Daniel White and Paul Nylander using spherical coordinates.
In mathematics, the Jacobi curve is a representation of an elliptic curve different from the usual one defined by the Weierstrass equation. Sometimes it is used in cryptography instead of the Weierstrass form because it can provide a defence against simple and differential power analysis style (SPA) attacks; it is possible, indeed, to use the general addition formula also for doubling a point on an elliptic curve of this form: in this way the two operations become indistinguishable from some side-channel information. The Jacobi curve also offers faster arithmetic compared to the Weierstrass curve.
In the geometry of curves, an orthoptic is the set of points for which two tangents of a given curve meet at a right angle.
In geometry, an intersection is a point, line, or curve common to two or more objects. The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point or does not exist. Other types of geometric intersection include:
In geometry, two conic sections are called confocal if they have the same foci.
In geometry, a circular section is a circle on a quadric surface. It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle.