Rendering (computer graphics)

Last updated
A variety of rendering techniques applied to a single 3D scene Render Types.png
A variety of rendering techniques applied to a single 3D scene
An image created by using POV-Ray 3.6 Glasses 800 edit.png
An image created by using POV-Ray 3.6

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program.[ citation needed ] The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.


Rendering is one of the major sub-topics of 3D computer graphics, and in practice it is always connected to the others. It is the last major step in the graphics pipeline, giving models and animation their final appearance. With the increasing sophistication of computer graphics since the 1970s, it has become a more distinct subject.

Rendering has uses in architecture, video games, simulators, movie and TV visual effects, and design visualization, each employing a different balance of features and techniques. A wide variety of renderers are available for use. Some are integrated into larger modeling and animation packages, some are stand-alone, and some are free open-source projects. On the inside, a renderer is a carefully engineered program based on multiple disciplines, including light physics, visual perception, mathematics, and software development.

Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image on a screen from a 3D representation stored in a scene file are handled by the graphics pipeline in a rendering device such as a GPU. A GPU is a purpose-built device that assists a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software must solve the rendering equation. The rendering equation doesn't account for all lighting phenomena, but instead acts as a general lighting model for computer-generated imagery.

In the case of 3D graphics, scenes can be pre-rendered or generated in realtime. Pre-rendering is a slow, computationally intensive process that is typically used for movie creation, where scenes can be generated ahead of time, while real-time rendering is often done for 3D video games and other applications that must dynamically create scenes. 3D hardware accelerators can improve realtime rendering performance.


When the pre-image (a wireframe sketch usually) is complete, rendering is used, which adds in bitmap textures or procedural textures, lights, bump mapping and relative position to other objects. The result is a completed image the consumer or intended viewer sees.

For movie animations, several images (frames) must be rendered, and stitched together in a program capable of making an animation of this sort. Most 3D image editing programs can do this.


A rendered image can be understood in terms of a number of visible features. Rendering research and development has been largely motivated by finding ways to simulate these efficiently. Some relate directly to particular algorithms and techniques, while others are produced together.


Rendering of a fractal terrain by ray marching Real-time Raymarched Terrain.png
Rendering of a fractal terrain by ray marching

Many rendering algorithms have been researched, and software used for rendering may employ a number of different techniques to obtain a final image.

Tracing every particle of light in a scene is nearly always completely impractical and would take a stupendous amount of time. Even tracing a portion large enough to produce an image takes an inordinate amount of time if the sampling is not intelligently restricted.

Therefore, a few loose families of more-efficient light transport modeling techniques have emerged:

The fourth type of light transport technique, radiosity is not usually implemented as a rendering technique but instead calculates the passage of light as it leaves the light source and illuminates surfaces. These surfaces are usually rendered to the display using one of the other three techniques.

Most advanced software combines two or more of the techniques to obtain good-enough results at reasonable cost.

Another distinction is between image order algorithms, which iterate over pixels of the image plane, and object order algorithms, which iterate over objects in the scene. Generally object order is more efficient, as there are usually fewer objects in a scene than pixels.

Scanline rendering and rasterization

Rendering of the European Extremely Large Telescope Latest Rendering of the E-ELT.jpg
Rendering of the European Extremely Large Telescope

A high-level representation of an image necessarily contains elements in a different domain from pixels. These elements are referred to as primitives. In a schematic drawing, for instance, line segments and curves might be primitives. In a graphical user interface, windows and buttons might be the primitives. In rendering of 3D models, triangles and polygons in space might be primitives.

If a pixel-by-pixel (image order) approach to rendering is impractical or too slow for some task, then a primitive-by-primitive (object order) approach to rendering may prove useful. Here, one loop through each of the primitives, determines which pixels in the image it affects, and modifies those pixels accordingly. This is called rasterization, and is the rendering method used by all current graphics cards.

Rasterization is frequently faster than pixel-by-pixel rendering. First, large areas of the image may be empty of primitives; rasterization will ignore these areas, but pixel-by-pixel rendering must pass through them. Second, rasterization can improve cache coherency and reduce redundant work by taking advantage of the fact that the pixels occupied by a single primitive tend to be contiguous in the image. For these reasons, rasterization is usually the approach of choice when interactive rendering is required; however, the pixel-by-pixel approach can often produce higher-quality images and is more versatile because it does not depend on as many assumptions about the image as rasterization.

The older form of rasterization is characterized by rendering an entire face (primitive) as a single color. Alternatively, rasterization can be done in a more complicated manner by first rendering the vertices of a face and then rendering the pixels of that face as a blending of the vertex colors. This version of rasterization has overtaken the old method as it allows the graphics to flow without complicated textures (a rasterized image when used face by face tends to have a very block-like effect if not covered in complex textures; the faces are not smooth because there is no gradual color change from one primitive to the next). This newer method of rasterization utilizes the graphics card's more taxing shading functions and still achieves better performance because the simpler textures stored in memory use less space. Sometimes designers will use one rasterization method on some faces and the other method on others based on the angle at which that face meets other joined faces, thus increasing speed and not hurting the overall effect.

Ray casting

In ray casting the geometry which has been modeled is parsed pixel by pixel, line by line, from the point of view outward, as if casting rays out from the point of view. Where an object is intersected, the color value at the point may be evaluated using several methods. In the simplest, the color value of the object at the point of intersection becomes the value of that pixel. The color may be determined from a texture-map. A more sophisticated method is to modify the color value by an illumination factor, but without calculating the relationship to a simulated light source. To reduce artifacts, a number of rays in slightly different directions may be averaged.

Ray casting involves calculating the "view direction" (from camera position), and incrementally following along that "ray cast" through "solid 3d objects" in the scene, while accumulating the resulting value from each point in 3D space. This is related and similar to "ray tracing" except that the raycast is usually not "bounced" off surfaces (where the "ray tracing" indicates that it is tracing out the lights path including bounces). "Ray casting" implies that the light ray is following a straight path (which may include traveling through semi-transparent objects). The ray cast is a vector that can originate from the camera or from the scene endpoint ("back to front", or "front to back"). Sometimes the final light value is derived from a "transfer function" and sometimes it's used directly.

Rough simulations of optical properties may be additionally employed: a simple calculation of the ray from the object to the point of view is made. Another calculation is made of the angle of incidence of light rays from the light source(s), and from these as well as the specified intensities of the light sources, the value of the pixel is calculated. Another simulation uses illumination plotted from a radiosity algorithm, or a combination of these two.

Ray tracing

Spiral Sphere and Julia, Detail, a computer-generated image created by visual artist Robert W. McGregor using only POV-Ray 3.6 and its built-in scene description language SpiralSphereAndJuliaDetail1.jpg
Spiral Sphere and Julia, Detail, a computer-generated image created by visual artist Robert W. McGregor using only POV-Ray 3.6 and its built-in scene description language

Ray tracing aims to simulate the natural flow of light, interpreted as particles. Often, ray tracing methods are utilized to approximate the solution to the rendering equation by applying Monte Carlo methods to it. Some of the most used methods are path tracing, bidirectional path tracing, or Metropolis light transport, but also semi realistic methods are in use, like Whitted Style Ray Tracing, or hybrids. While most implementations let light propagate on straight lines, applications exist to simulate relativistic spacetime effects. [1]

In a final, production quality rendering of a ray traced work, multiple rays are generally shot for each pixel, and traced not just to the first object of intersection, but rather, through a number of sequential 'bounces', using the known laws of optics such as "angle of incidence equals angle of reflection" and more advanced laws that deal with refraction and surface roughness.

Once the ray either encounters a light source, or more probably once a set limiting number of bounces has been evaluated, then the surface illumination at that final point is evaluated using techniques described above, and the changes along the way through the various bounces evaluated to estimate a value observed at the point of view. This is all repeated for each sample, for each pixel.

In distribution ray tracing, at each point of intersection, multiple rays may be spawned. In path tracing, however, only a single ray or none is fired at each intersection, utilizing the statistical nature of Monte Carlo experiments.

As a brute-force method, ray tracing has been too slow to consider for real-time, and until recently too slow even to consider for short films of any degree of quality, although it has been used for special effects sequences, and in advertising, where a short portion of high quality (perhaps even photorealistic) footage is required.

However, efforts at optimizing to reduce the number of calculations needed in portions of a work where detail is not high or does not depend on ray tracing features have led to a realistic possibility of wider use of ray tracing. There is now some hardware accelerated ray tracing equipment, at least in prototype phase, and some game demos which show use of real-time software or hardware ray tracing.

Neural rendering

Neural rendering is a rendering method using artificial neural networks. [2] [3] Neural rendering includes image-based rendering methods that are used to reconstruct 3D models from 2-dimensional images. [2] One of these methods are photogrammetry, which is a method in which a collection of images from multiple angles of an object are turned into a 3D model. There have also been recent developments in generating and rendering 3D models from text and coarse paintings by notably NVIDIA, Google and various other companies.


Radiosity is a method which attempts to simulate the way in which directly illuminated surfaces act as indirect light sources that illuminate other surfaces. This produces more realistic shading and seems to better capture the 'ambience' of an indoor scene. A classic example is a way that shadows 'hug' the corners of rooms.

The optical basis of the simulation is that some diffused light from a given point on a given surface is reflected in a large spectrum of directions and illuminates the area around it.

The simulation technique may vary in complexity. Many renderings have a very rough estimate of radiosity, simply illuminating an entire scene very slightly with a factor known as ambiance. However, when advanced radiosity estimation is coupled with a high quality ray tracing algorithm, images may exhibit convincing realism, particularly for indoor scenes.

In advanced radiosity simulation, recursive, finite-element algorithms 'bounce' light back and forth between surfaces in the model, until some recursion limit is reached. The colouring of one surface in this way influences the colouring of a neighbouring surface, and vice versa. The resulting values of illumination throughout the model (sometimes including for empty spaces) are stored and used as additional inputs when performing calculations in a ray-casting or ray-tracing model.

Due to the iterative/recursive nature of the technique, complex objects are particularly slow to emulate. Prior to the standardization of rapid radiosity calculation, some digital artists used a technique referred to loosely as false radiosity by darkening areas of texture maps corresponding to corners, joints and recesses, and applying them via self-illumination or diffuse mapping for scanline rendering. Even now, advanced radiosity calculations may be reserved for calculating the ambiance of the room, from the light reflecting off walls, floor and ceiling, without examining the contribution that complex objects make to the radiosity  or complex objects may be replaced in the radiosity calculation with simpler objects of similar size and texture.

Radiosity calculations are viewpoint independent which increases the computations involved, but makes them useful for all viewpoints. If there is little rearrangement of radiosity objects in the scene, the same radiosity data may be reused for a number of frames, making radiosity an effective way to improve on the flatness of ray casting, without seriously impacting the overall rendering time-per-frame.

Because of this, radiosity is a prime component of leading real-time rendering methods, and has been used from beginning-to-end to create a large number of well-known recent feature-length animated 3D-cartoon films.

Sampling and filtering

One problem that any rendering system must deal with, no matter which approach it takes, is the sampling problem. Essentially, the rendering process tries to depict a continuous function from image space to colors by using a finite number of pixels. As a consequence of the Nyquist–Shannon sampling theorem (or Kotelnikov theorem), any spatial waveform that can be displayed must consist of at least two pixels, which is proportional to image resolution. In simpler terms, this expresses the idea that an image cannot display details, peaks or troughs in color or intensity, that are smaller than one pixel.

If a naive rendering algorithm is used without any filtering, high frequencies in the image function will cause ugly aliasing to be present in the final image. Aliasing typically manifests itself as jaggies, or jagged edges on objects where the pixel grid is visible. In order to remove aliasing, all rendering algorithms (if they are to produce good-looking images) must use some kind of low-pass filter on the image function to remove high frequencies, a process called antialiasing.


Due to the large number of calculations, a work in progress is usually only rendered in detail appropriate to the portion of the work being developed at a given time, so in the initial stages of modeling, wireframe and ray casting may be used, even where the target output is ray tracing with radiosity. It is also common to render only parts of the scene at high detail, and to remove objects that are not important to what is currently being developed.

For real-time, it is appropriate to simplify one or more common approximations, and tune to the exact parameters of the scenery in question, which is also tuned to the agreed parameters to get the most 'bang for the buck'.

Academic core

The implementation of a realistic renderer always has some basic element of physical simulation or emulation  some computation which resembles or abstracts a real physical process.

The term " physically based " indicates the use of physical models and approximations that are more general and widely accepted outside rendering. A particular set of related techniques have gradually become established in the rendering community.

The basic concepts are moderately straightforward, but intractable to calculate; and a single elegant algorithm or approach has been elusive for more general purpose renderers. In order to meet demands of robustness, accuracy and practicality, an implementation will be a complex combination of different techniques.

Rendering research is concerned with both the adaptation of scientific models and their efficient application.

The rendering equation

This is the key academic/theoretical concept in rendering. It serves as the most abstract formal expression of the non-perceptual aspect of rendering. All more complete algorithms can be seen as solutions to particular formulations of this equation.

Meaning: at a particular position and direction, the outgoing light (Lo) is the sum of the emitted light (Le) and the reflected light. The reflected light being the sum of the incoming light (Li) from all directions, multiplied by the surface reflection and incoming angle. By connecting outward light to inward light, via an interaction point, this equation stands for the whole 'light transport'  all the movement of light  in a scene.

The bidirectional reflectance distribution function

The bidirectional reflectance distribution function (BRDF) expresses a simple model of light interaction with a surface as follows:

Light interaction is often approximated by the even simpler models: diffuse reflection and specular reflection, although both can ALSO be BRDFs.

Geometric optics

Rendering is practically exclusively concerned with the particle aspect of light physics  known as geometrical optics. Treating light, at its basic level, as particles bouncing around is a simplification, but appropriate: the wave aspects of light are negligible in most scenes, and are significantly more difficult to simulate. Notable wave aspect phenomena include diffraction (as seen in the colours of CDs and DVDs) and polarisation (as seen in LCDs). Both types of effect, if needed, are made by appearance-oriented adjustment of the reflection model.

Visual perception

Though it receives less attention, an understanding of human visual perception is valuable to rendering. This is mainly because image displays and human perception have restricted ranges. A renderer can simulate a wide range of light brightness and color, but current displays  movie screen, computer monitor, etc.  cannot handle so much, and something must be discarded or compressed. Human perception also has limits, and so does not need to be given large-range images to create realism. This can help solve the problem of fitting images into displays, and, furthermore, suggest what short-cuts could be used in the rendering simulation, since certain subtleties won't be noticeable. This related subject is tone mapping.

Mathematics used in rendering includes: linear algebra, calculus, numerical mathematics, signal processing, and Monte Carlo methods.

Rendering for movies often takes place on a network of tightly connected computers known as a render farm.

The current[ when? ] state of the art in 3-D image description for movie creation is the Mental Ray scene description language designed at Mental Images and RenderMan Shading Language designed at Pixar [4] (compare with simpler 3D fileformats such as VRML or APIs such as OpenGL and DirectX tailored for 3D hardware accelerators).

Other renderers (including proprietary ones) can and are sometimes used, but most other renderers tend to miss one or more of the often needed features like good texture filtering, texture caching, programmable shaders, highend geometry types like hair, subdivision or nurbs surfaces with tesselation on demand, geometry caching, raytracing with geometry caching, high quality shadow mapping, speed or patent-free implementations. Other highly sought features these days may include interactive photorealistic rendering  (IPR) and hardware rendering/shading.

Chronology of important published ideas

Rendering of an ESTCube-1 satellite ESTCube orbiidil 2.jpg
Rendering of an ESTCube-1 satellite

See also

Related Research Articles

<span class="mw-page-title-main">Global illumination</span> Group of rendering algorithms used in 3D computer graphics

Global illumination (GI), or indirect illumination, is a group of algorithms used in 3D computer graphics that are meant to add more realistic lighting to 3D scenes. Such algorithms take into account not only the light that comes directly from a light source, but also subsequent cases in which light rays from the same source are reflected by other surfaces in the scene, whether reflective or not.

<span class="mw-page-title-main">Radiosity (computer graphics)</span> Computer graphics rendering method using diffuse reflection

In 3D computer graphics, radiosity is an application of the finite element method to solving the rendering equation for scenes with surfaces that reflect light diffusely. Unlike rendering methods that use Monte Carlo algorithms, which handle all types of light paths, typical radiosity only account for paths which leave a light source and are reflected diffusely some number of times before hitting the eye. Radiosity is a global illumination algorithm in the sense that the illumination arriving on a surface comes not just directly from the light sources, but also from other surfaces reflecting light. Radiosity is viewpoint independent, which increases the calculations involved, but makes them useful for all viewpoints.

<span class="mw-page-title-main">Ray tracing (graphics)</span> Rendering method

In 3D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.

<span class="mw-page-title-main">Scanline rendering</span> 3D computer graphics image rendering method

Scanline rendering is an algorithm for visible surface determination, in 3D computer graphics, that works on a row-by-row basis rather than a polygon-by-polygon or pixel-by-pixel basis. All of the polygons to be rendered are first sorted by the top y coordinate at which they first appear, then each row or scan line of the image is computed using the intersection of a scanline with the polygons on the front of the sorted list, while the sorted list is updated to discard no-longer-visible polygons as the active scan line is advanced down the picture.

<span class="mw-page-title-main">Rasterisation</span> Conversion of a vector-graphics image to a raster image

In computer graphics, rasterisation or rasterization is the task of taking an image described in a vector graphics format (shapes) and converting it into a raster image. The rasterized image may then be displayed on a computer display, video display or printer, or stored in a bitmap file format. Rasterization may refer to the technique of drawing 3D models, or the conversion of 2D rendering primitives such as polygons, line segments into a rasterized format.

In computer graphics, photon mapping is a two-pass global illumination rendering algorithm developed by Henrik Wann Jensen between 1995 and 2001 that approximately solves the rendering equation for integrating light radiance at a given point in space. Rays from the light source and rays from the camera are traced independently until some termination criterion is met, then they are connected in a second step to produce a radiance value. The algorithm is used to realistically simulate the interaction of light with different types of objects. Specifically, it is capable of simulating the refraction of light through a transparent substance such as glass or water, diffuse interreflection between illuminated objects, the subsurface scattering of light in translucent materials, and some of the effects caused by particulate matter such as smoke or water vapor. Photon mapping can also be extended to more accurate simulations of light, such as spectral rendering. Progressive photon mapping (PPM) starts with ray tracing and then adds more and more photon mapping passes to provide a progressively more accurate render.

<span class="mw-page-title-main">Ray casting</span> Methodological basis for 3D CAD/CAM solid modeling and image rendering

Ray casting is the methodological basis for 3D CAD/CAM solid modeling and image rendering. It is essentially the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the 3D scene. The term "Ray Casting" was introduced by Scott Roth while at the General Motors Research Labs from 1978–1980. His paper, "Ray Casting for Modeling Solids", describes modeled solid objects by combining primitive solids, such as blocks and cylinders, using the set operators union (+), intersection (&), and difference (-). The general idea of using these binary operators for solid modeling is largely due to Voelcker and Requicha's geometric modelling group at the University of Rochester. See Solid modeling for a broad overview of solid modeling methods. This figure on the right shows a U-Joint modeled from cylinders and blocks in a binary tree using Roth's ray casting system, circa 1979.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Reyes rendering</span> Computer software architecture in 3D computer graphics

Reyes rendering is a computer software architecture used in 3D computer graphics to render photo-realistic images. It was developed in the mid-1980s by Loren Carpenter and Robert L. Cook at Lucasfilm's Computer Graphics Research Group, which is now Pixar. It was first used in 1982 to render images for the Genesis effect sequence in the movie Star Trek II: The Wrath of Khan. Pixar's RenderMan was one implementation of the Reyes algorithm, until its removal in 2016. According to the original paper describing the algorithm, the Reyes image rendering system is "An architecture for fast high-quality rendering of complex images." Reyes was proposed as a collection of algorithms and data processing systems. However, the terms "algorithm" and "architecture" have come to be used synonymously in this context and are used interchangeably in this article.

<span class="mw-page-title-main">Ambient occlusion</span> Computer graphics shading and rendering technique

In 3D computer graphics, modeling, and animation, ambient occlusion is a shading and rendering technique used to calculate how exposed each point in a scene is to ambient lighting. For example, the interior of a tube is typically more occluded than the exposed outer surfaces, and becomes darker the deeper inside the tube one goes.

<span class="mw-page-title-main">Real-time computer graphics</span> Sub-field of computer graphics

Real-time computer graphics or real-time rendering is the sub-field of computer graphics focused on producing and analyzing images in real time. The term can refer to anything from rendering an application's graphical user interface (GUI) to real-time image analysis, but is most often used in reference to interactive 3D computer graphics, typically using a graphics processing unit (GPU). One example of this concept is a video game that rapidly renders changing 3D environments to produce an illusion of motion.

Cone tracing and beam tracing are a derivative of the ray tracing algorithm that replaces rays, which have no thickness, with thick rays.

<span class="mw-page-title-main">Path tracing</span> Computer graphics method

Path-tracing is a computer graphics Monte Carlo method of rendering images of three-dimensional scenes such that the global illumination is faithful to reality. Fundamentally, the algorithm is integrating over all the illuminance arriving to a single point on the surface of an object. This illuminance is then reduced by a surface reflectance function (BRDF) to determine how much of it will go towards the viewpoint camera. This integration procedure is repeated for every pixel in the output image. When combined with physically accurate models of surfaces, accurate models of real light sources, and optically correct cameras, path tracing can produce still images that are indistinguishable from photographs.

In computer graphics, per-pixel lighting refers to any technique for lighting an image or scene that calculates illumination for each pixel on a rendered image. This is in contrast to other popular methods of lighting such as vertex lighting, which calculates illumination at each vertex of a 3D model and then interpolates the resulting values over the model's faces to calculate the final per-pixel color values.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">3D computer graphics</span> Graphics that use a three-dimensional representation of geometric data

3D computer graphics, sometimes called CGI, 3D-CGI or three-dimensional computer graphics are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later or displayed in real time.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

This is a glossary of terms relating to computer graphics.

Michael F. Cohen is an American computer scientist and researcher in computer graphics. He was a senior research scientist at Microsoft Research for 21 years until he joined Facebook Research in 2015. In 1998, he received the ACM SIGGRAPH CG Achievement Award for his work in developing radiosity methods for realistic image synthesis. He was elected a Fellow of the Association for Computing Machinery in 2007 for his "contributions to computer graphics and computer vision." In 2019, he received the ACM SIGGRAPH Steven A. Coons Award for Outstanding Creative Contributions to Computer Graphics for “his groundbreaking work in numerous areas of research—radiosity, motion simulation & editing, light field rendering, matting & compositing, and computational photography”.


  1. "Relativistic Ray-Tracing: Simulating the Visual Appearance of Rapidly Moving Objects". 1995. CiteSeerX .{{cite journal}}: Cite journal requires |journal= (help)
  2. 1 2 Tewari, A.; Fried, O.; Thies, J.; Sitzmann, V.; Lombardi, S.; Sunkavalli, K.; Martin‐Brualla, R.; Simon, T.; Saragih, J.; Nießner, M.; Pandey, R.; Fanello, S.; Wetzstein, G.; Zhu, J.‐Y.; Theobalt, C.; Agrawala, M.; Shechtman, E.; Goldman, D. B.; Zollhöfer, M. (2020). "State of the Art on Neural Rendering". Computer Graphics Forum. 39 (2): 701–727. arXiv: 2004.03805 . doi:10.1111/cgf.14022. S2CID   215416317.
  3. Knight, Will. "A New Trick Lets Artificial Intelligence See in 3D". Wired. ISSN   1059-1028 . Retrieved 2022-02-08.
  4. Raghavachary, Saty (30 July 2006). "A brief introduction to RenderMan". ACM SIGGRAPH 2006 Courses on - SIGGRAPH '06. ACM. p. 2. doi:10.1145/1185657.1185817. ISBN   978-1595933645. S2CID   34496605 . Retrieved 7 May 2018 via
  5. Appel, A. (1968). "Some techniques for shading machine renderings of solids" (PDF). Proceedings of the Spring Joint Computer Conference. Vol. 32. pp. 37–49. Archived (PDF) from the original on 2012-03-13.
  6. Bouknight, W. J. (1970). "A procedure for generation of three-dimensional half-tone computer graphics presentations". Communications of the ACM. 13 (9): 527–536. doi:10.1145/362736.362739. S2CID   15941472.
  7. Gouraud, H. (1971). "Continuous shading of curved surfaces" (PDF). IEEE Transactions on Computers. 20 (6): 623–629. doi:10.1109/t-c.1971.223313. S2CID   123827991. Archived from the original (PDF) on 2010-07-02.
  8. 1 2 3 4 "History | School of Computing". Archived from the original on 2013-12-03. Retrieved 2021-11-22.
  9. Phong, B-T (1975). "Illumination for computer generated pictures" (PDF). Communications of the ACM. 18 (6): 311–316. CiteSeerX . doi:10.1145/360825.360839. S2CID   1439868. Archived from the original (PDF) on 2012-03-27.
  10. Bui Tuong Phong, Illumination for computer generated pictures Archived 2016-03-20 at the Wayback Machine , Communications of ACM 18 (1975), no. 6, 311–317.
  11. 1 2 Putas. "The way to home 3d". Archived from the original on 15 December 2017. Retrieved 7 May 2018.
  12. 1 2 Catmull, E. (1974). A subdivision algorithm for computer display of curved surfaces (PDF) (PhD thesis). University of Utah. Archived from the original (PDF) on 2014-11-14. Retrieved 2011-07-15.
  13. Blinn, J.F.; Newell, M.E. (1976). "Texture and reflection in computer generated images". Communications of the ACM. 19 (10): 542–546. CiteSeerX . doi:10.1145/360349.360353. S2CID   408793.
  14. Blinn, James F. (20 July 1977). "Models of light reflection for computer synthesized pictures". ACM SIGGRAPH Computer Graphics. 11 (2): 192–198. doi: 10.1145/965141.563893 via
  15. "Bomber - Videogame by Sega". Archived from the original on 17 October 2017. Retrieved 7 May 2018.
  16. Crow, F.C. (1977). "Shadow algorithms for computer graphics" (PDF). Computer Graphics (Proceedings of SIGGRAPH 1977). Vol. 11. pp. 242–248. Archived from the original (PDF) on 2012-01-13. Retrieved 2011-07-15.
  17. Williams, L. (1978). "Casting curved shadows on curved surfaces". Computer Graphics (Proceedings of SIGGRAPH 1978). Vol. 12. pp. 270–274. CiteSeerX .
  18. Blinn, J.F. (1978). Simulation of wrinkled surfaces (PDF). Computer Graphics (Proceedings of SIGGRAPH 1978). Vol. 12. pp. 286–292. Archived (PDF) from the original on 2012-01-21.
  19. Wolf, Mark J. P. (15 June 2012). Before the Crash: Early Video Game History. Wayne State University Press. ISBN   978-0814337226. Archived from the original on 2 May 2019. Retrieved 7 May 2018 via Google Books.
  20. Fuchs, H.; Kedem, Z.M.; Naylor, B.F. (1980). On visible surface generation by a priori tree structures. Computer Graphics (Proceedings of SIGGRAPH 1980). Vol. 14. pp. 124–133. CiteSeerX .
  21. Whitted, T. (1980). "An improved illumination model for shaded display". Communications of the ACM. 23 (6): 343–349. CiteSeerX . doi:10.1145/358876.358882. S2CID   9524504.
  22. Purcaru, Bogdan Ion (13 March 2014). "Games vs. Hardware. The History of PC video games: The 80's". Purcaru Ion Bogdan. Archived from the original on 30 April 2021. Retrieved 7 May 2018 via Google Books.
  23. "System 16 - Sega VCO Object Hardware (Sega)". Archived from the original on 5 April 2016. Retrieved 7 May 2018.
  24. Cook, R.L.; Torrance, K.E. (1981). A reflectance model for computer graphics. Computer Graphics (Proceedings of SIGGRAPH 1981). Vol. 15. pp. 307–316. CiteSeerX .
  25. Williams, L. (1983). Pyramidal parametrics. Computer Graphics (Proceedings of SIGGRAPH 1983). Vol. 17. pp. 1–11. CiteSeerX .
  26. Glassner, A.S. (1984). "Space subdivision for fast ray tracing". IEEE Computer Graphics & Applications. 4 (10): 15–22. doi:10.1109/mcg.1984.6429331. S2CID   16965964.
  27. Porter, T.; Duff, T. (1984). Compositing digital images (PDF). Computer Graphics (Proceedings of SIGGRAPH 1984). Vol. 18. pp. 253–259. Archived (PDF) from the original on 2015-02-16.
  28. Cook, R.L.; Porter, T.; Carpenter, L. (1984). Distributed ray tracing (PDF). Computer Graphics (Proceedings of SIGGRAPH 1984). Vol. 18. pp. 137–145.[ permanent dead link ]
  29. Goral, C.; Torrance, K.E.; Greenberg, D.P.; Battaile, B. (1984). Modeling the interaction of light between diffuse surfaces. Computer Graphics (Proceedings of SIGGRAPH 1984). Vol. 18. pp. 213–222. CiteSeerX .
  30. "Archived copy". Archived from the original on 2016-03-04. Retrieved 2016-08-08.{{cite web}}: CS1 maint: archived copy as title (link)
  31. Cohen, M.F.; Greenberg, D.P. (1985). The hemi-cube: a radiosity solution for complex environments (PDF). Computer Graphics (Proceedings of SIGGRAPH 1985). Vol. 19. pp. 31–40. doi:10.1145/325165.325171. Archived from the original (PDF) on 2014-04-24. Retrieved 2020-03-25.
  32. Arvo, J. (1986). Backward ray tracing. SIGGRAPH 1986 Developments in Ray Tracing course notes. CiteSeerX .
  33. Kajiya, J. (1986). The rendering equation. Computer Graphics (Proceedings of SIGGRAPH 1986). Vol. 20. pp. 143–150. CiteSeerX .
  34. Cook, R.L.; Carpenter, L.; Catmull, E. (1987). The Reyes image rendering architecture (PDF). Computer Graphics (Proceedings of SIGGRAPH 1987). Vol. 21. pp. 95–102. Archived (PDF) from the original on 2011-07-15.
  35. 1 2 3 "MAME | SRC/Mame/Drivers/Namcos21.c". Archived from the original on 2014-10-03. Retrieved 2014-10-02.
  36. Wu, Xiaolin (July 1991). An efficient antialiasing technique. Computer Graphics . Vol. 25. pp. 143–152. doi:10.1145/127719.122734. ISBN   978-0-89791-436-9.
  37. Wu, Xiaolin (1991). "Fast Anti-Aliased Circle Generation". In James Arvo (ed.). Graphics Gems II. San Francisco: Morgan Kaufmann. pp. 446–450. ISBN   978-0-12-064480-3.
  38. Hanrahan, P.; Salzman, D.; Aupperle, L. (1991). A rapid hierarchical radiosity algorithm. Computer Graphics (Proceedings of SIGGRAPH 1991). Vol. 25. pp. 197–206. CiteSeerX .
  39. "IGN Presents the History of SEGA". 21 April 2009. Archived from the original on 16 March 2018. Retrieved 7 May 2018.
  40. "System 16 - Sega Model 2 Hardware (Sega)". Archived from the original on 21 December 2010. Retrieved 7 May 2018.
  41. 1 2 3 4 "System 16 - Namco Magic Edge Hornet Simulator Hardware (Namco)". Archived from the original on 12 September 2014. Retrieved 7 May 2018.
  42. M. Oren and S.K. Nayar, "Generalization of Lambert's Reflectance Model Archived 2010-02-15 at the Wayback Machine ". SIGGRAPH. pp.239-246, Jul, 1994
  43. Tumblin, J.; Rushmeier, H.E. (1993). "Tone reproduction for realistic computer generated images" (PDF). IEEE Computer Graphics & Applications. 13 (6): 42–48. doi:10.1109/38.252554. S2CID   6459836. Archived (PDF) from the original on 2011-12-08.
  44. Hanrahan, P.; Krueger, W. (1993). Reflection from layered surfaces due to subsurface scattering. Computer Graphics (Proceedings of SIGGRAPH 1993). Vol. 27. pp. 165–174. CiteSeerX .
  45. Miller, Gavin (24 July 1994). "Efficient algorithms for local and global accessibility shading". Proceedings of the 21st annual conference on Computer graphics and interactive techniques - SIGGRAPH '94. ACM. pp. 319–326. doi:10.1145/192161.192244. ISBN   978-0897916677. S2CID   15271113. Archived from the original on 22 November 2021. Retrieved 7 May 2018 via
  46. "Archived copy" (PDF). Archived (PDF) from the original on 2016-10-11. Retrieved 2016-08-08.{{cite web}}: CS1 maint: archived copy as title (link)
  47. Jensen, H.W.; Christensen, N.J. (1995). "Photon maps in bidirectional monte carlo ray tracing of complex objects". Computers & Graphics. 19 (2): 215–224. CiteSeerX . doi:10.1016/0097-8493(94)00145-o.
  48. "System 16 - Sega Model 3 Step 1.0 Hardware (Sega)". Archived from the original on 6 October 2014. Retrieved 7 May 2018.
  49. Veach, E.; Guibas, L. (1997). Metropolis light transport. Computer Graphics (Proceedings of SIGGRAPH 1997). Vol. 16. pp. 65–76. CiteSeerX .
  50. Keller, A. (1997). Instant Radiosity. Computer Graphics (Proceedings of SIGGRAPH 1997). Vol. 24. pp. 49–56. CiteSeerX .
  51. "Hardware Review: Neon 250 Specs & Features". Archived from the original on 2007-08-07. Retrieved 2021-11-22.
  52. Lewis, J. P.; Cordner, Matt; Fong, Nickson (1 July 2000). "Pose space deformation". Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. ACM Press/Addison-Wesley Publishing Co. pp. 165–172. doi:10.1145/344779.344862. ISBN   978-1581132083. S2CID   12672235 via
  53. Sloan, P.; Kautz, J.; Snyder, J. (2002). Precomputed Radiance Transfer for Real-Time Rendering in Dynamic, Low Frequency Lighting Environments (PDF). Computer Graphics (Proceedings of SIGGRAPH 2002). Vol. 29. pp. 527–536. Archived from the original (PDF) on 2011-07-24.

Further reading