3D modeling

Last updated

In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object (inanimate or living) in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space. [1] [2] [3]

Contents

Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. [4] Being a collection of data (points and other information), 3D models can be created manually, algorithmically (procedural modeling), or by scanning. [5] [6] Their surfaces may be further defined with texture mapping.

Outline

The product is called a 3D model, while someone who works with 3D models may be referred to as a 3D artist or a 3D modeler.

A 3D model can also be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena.

3D models may be created automatically or manually. The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. The 3D model can be physically created using 3D printing devices that form 2D layers of the model with three-dimensional material, one layer at a time. Without a 3D model, a 3D print is not possible.

3D modeling software is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called modeling applications. [7]

History

Three-dimensional model of a spectrograph An early concept design of the ERIS instrument.jpg
Three-dimensional model of a spectrograph
Rotating 3D video-game model Low-poly hand-painted 3D house rotating.gif
Rotating 3D video-game model
3D selfie models are generated from 2D pictures taken at the Fantasitron 3D photo booth at Madurodam. Fantasitron photo booth at Madurodam can scan up to two people at a time IMG 3797 FRD.jpg
3D selfie models are generated from 2D pictures taken at the Fantasitron 3D photo booth at Madurodam.

3D models are now widely used anywhere in  3D graphics  and  CAD but their history predates the widespread use of 3D graphics on  personal computers. [9]

In the past, many  computer games  used pre-rendered images of 3D models as  sprites  before computers could render them in real-time. The designer can then see the model in various directions and views, this can help the designer see if the object is created as intended to compared to their original vision. Seeing the design this way can help the designer or company figure out changes or improvements needed to the product. [10]

Representation

A modern render of the iconic Utah teapot model developed by Martin Newell (1975). The Utah teapot is one of the most common models used in 3D graphics education. Utah teapot simple 2.png
A modern render of the iconic Utah teapot model developed by Martin Newell (1975). The Utah teapot is one of the most common models used in 3D graphics education.

Almost all 3D models can be divided into two categories:

Solid and shell modeling can create functionally identical objects. Differences between them are mostly variations in the way they are created and edited and conventions of use in various fields and differences in types of approximations between the model and reality.

Shell models must be manifold (having no holes or cracks in the shell) to be meaningful as a real object. In a shell model of a cube, the bottom and top surface of the cube must have a uniform thickness with no holes or cracks in the first and last layer printed. Polygonal meshes (and to a lesser extent subdivision surfaces) are by far the most common representation. Level sets are a useful representation for deforming surfaces which undergo many topological changes such as fluids.

The process of transforming representations of objects, such as the middle point coordinate of a sphere and a point on its circumference into a polygon representation of a sphere, is called tessellation. This step is used in polygon-based rendering, where objects are broken down from abstract representations ("primitives") such as spheres, cones etc., to so-called meshes , which are nets of interconnected triangles. Meshes of triangles (instead of e.g. squares) are popular as they have proven to be easy to rasterize (the surface described by each triangle is planar, so the projection is always convex); . [11] Polygon representations are not used in all rendering techniques, and in these cases the tessellation step is not included in the transition from abstract representation to rendered scene.

Process

Exploring Different Types of 3D Modelling Techniques [12]

A 3D fantasy fish composed of organic surfaces generated using LAI4D Lai4d 3D fantasy fish.jpg
A 3D fantasy fish composed of organic surfaces generated using LAI4D

The modeling stage consists of shaping individual objects that are later used in the scene. There are a number of modeling techniques, including:

Modeling can be performed by means of a dedicated program (e.g., 3D modeling software by Adobe Substance, Blender, Cinema 4D, LightWave, Maya, Modo, 3ds Max) or an application component (Shaper, Lofter in 3ds Max) or some scene description language (as in POV-Ray). In some cases, there is no strict distinction between these phases; in such cases modeling is just part of the scene creation process (this is the case, for example, with Caligari trueSpace and Realsoft 3D).

3D models can also be created using the technique of Photogrammetry with dedicated programs such as RealityCapture, Metashape and 3DF Zephyr. Cleanup and further processing can be performed with applications such as MeshLab, the GigaMesh Software Framework, netfabb or MeshMixer. Photogrammetry creates models using algorithms to interpret the shape and texture of real-world objects and environments based on photographs taken from many angles of the subject.

Complex materials such as blowing sand, clouds, and liquid sprays are modeled with particle systems, and are a mass of 3D coordinates which have either points, polygons, texture splats, or sprites assigned to them.

3D modeling software

There are a variety of 3D modeling programs that can be used in the industries of engineering, interior design, film, and others. Each 3D modeling software has specific capabilities and can be utilized to fulfill demands for the industry.

G-code

Many programs include export options to form a g-code, applicable to additive or subtractive manufacturing machinery. G-code (computer numerical control) works with automated technology to form a real-world rendition of 3-D models. This code is a specific set of instructions to carry out steps of a product's manufacturing. [13]

Human models

The first widely available commercial application of human virtual models appeared in 1998 on the Lands' End web site. The human virtual models were created by the company My Virtual Mode Inc. and enabled users to create a model of themselves and try on 3D clothing. There are several modern programs that allow for the creation of virtual human models (Poser being one example).

3D clothing

Dynamic 3D clothing model made in Marvelous Designer Dynamic 3D Clothing Model made in Marvelous Designer.jpg
Dynamic 3D clothing model made in Marvelous Designer

The development of cloth simulation software such as Marvelous Designer, CLO3D and Optitex, has enabled artists and fashion designers to model dynamic 3D clothing on the computer. [14] Dynamic 3D clothing is used for virtual fashion catalogs, as well as for dressing 3D characters for video games, 3D animation movies, for digital doubles in movies [15] , as a creation tool for digital fashion brands, as well as for making clothes for avatars in virtual worlds such as SecondLife.

Comparison with 2D methods

3D photorealistic effects are often achieved without wire-frame modeling and are sometimes indistinguishable in the final form. Some graphic art software includes filters that can be applied to 2D vector graphics or 2D raster graphics on transparent layers.

Advantages of wireframe 3D modeling over exclusively 2D methods include:

Disadvantages compare to 2D photorealistic rendering may include a software learning curve and difficulty achieving certain photorealistic effects. Some photorealistic effects may be achieved with special rendering filters included in the 3D modeling software. For the best of both worlds, some artists use a combination of 3D modeling followed by editing the 2D computer-rendered images from the 3D model.

3D model market

A large market for 3D models (as well as 3D-related content, such as textures, scripts, etc.) exists – either for individual models or large collections. Several online marketplaces for 3D content allow individual artists to sell content that they have created, including TurboSquid, MyMiniFactory, Sketchfab, CGTrader, and Cults. Often, the artists' goal is to get additional value out of assets they have previously created for projects. By doing so, artists can earn more money out of their old content, and companies can save money by buying pre-made models instead of paying an employee to create one from scratch. These marketplaces typically split the sale between themselves and the artist that created the asset, artists get 40% to 95% of the sales according to the marketplace. In most cases, the artist retains ownership of the 3d model while the customer only buys the right to use and present the model. Some artists sell their products directly in its own stores offering their products at a lower price by not using intermediaries.

The architecture, engineering, and construction (AEC) industry is the biggest market for 3D modeling, with an estimated value of $12.13 billion by 2028. [16] This is due to the increasing adoption of 3D modeling in the AEC industry, which helps to improve design accuracy, reduce errors and omissions, and facilitate collaboration among project stakeholders. [17] [18]

Over the last several years numerous marketplaces specializing in 3D rendering and printing models have emerged. Some of the 3D printing marketplaces are a combination of models sharing sites, with or without a built in e-com capability. Some of those platforms also offer 3D printing services on demand, software for model rendering and dynamic viewing of items.

3D printing

The term 3D printing or three-dimensional printing is a form of additive manufacturing technology where a three-dimensional object is created from successive layers material. [19] Objects can be created without the need for complex expensive molds or assembly with multiple parts. 3D printing allows ideas to be prototyped and tested without having to go through a production process. [19] [20]

3D models can be purchased from online marketplaces and printed by individuals or companies using commercially available 3D printers, enabling the home-production of objects such as spare parts and even medical equipment—. [21] [22]

Uses

Steps of forensic facial reconstruction of a mummy made in Blender by the Brazilian 3D designer Cicero Moraes Steps of forensic facial reconstruction - Virtual Mummy - cogitas3d.gif
Steps of forensic facial reconstruction of a mummy made in Blender by the Brazilian 3D designer Cícero Moraes

Today, 3D modeling is used in various industries like film, animation and gaming, interior design and architecture. [23] They are also used in the medical industry to create interactive representations of anatomy. [24]

The medical industry uses detailed models of organs; these may be created with multiple 2-D image slices from an MRI or CT scan. The movie industry uses them as characters and objects for animated and real-life motion pictures. The video game industry uses them as assets for computer and video games.

The science sector uses them as highly detailed models of chemical compounds. [25]

The architecture industry uses them to demonstrate proposed buildings and landscapes in lieu of traditional, physical architectural models. Additionally, the use of Level of Detail (LOD) in 3D models is becoming increasingly important in the AEC industry. LOD is a measure of the level of detail and accuracy included in a 3D model. The LOD levels range from 100 to 500, with LOD 100 representing a conceptual model that shows the basic massing and location of objects, and LOD 500 representing an extremely detailed model that includes information about every aspect of the building, including MEP systems and interior finishes. By using LOD, architects, engineers, and General contractor can more effectively communicate design intent and make more informed decisions throughout the construction process. [26] [27]

The archaeology community is now creating 3D models of cultural heritage for research and visualization. [28] [29]

The engineering community utilizes them as designs of new devices, vehicles and structures as well as a host of other uses.

In recent decades the earth science community has started to construct 3D geological models as a standard practice.

3D models can also be the basis for physical devices that are built with 3D printers or CNC machines.

In terms of video game development, 3D modeling is one stage in a longer development process. Simply put, the source of the geometry for the shape of an object can be:

  1. A designer, industrial engineer or artist using a 3D-CAD system
  2. An existing object, reverse engineered or copied using a 3-D shape digitizer or scanner
  3. Mathematical data stored in memory based on a numerical description or calculation of the object. [19]

A wide number of 3D software are also used in constructing digital representation of mechanical models or parts before they are actually manufactured. CAD- and CAM-related software is used in such fields, and with this software, not only can you construct the parts, but also assemble them, and observe their functionality.

3D modeling is also used in the field of industrial design, wherein products are 3D modeled [30] before representing them to the clients. In media and event industries, 3D modeling is used in stage and set design. [31]

The OWL 2 translation of the vocabulary of X3D can be used to provide semantic descriptions for 3D models, which is suitable for indexing and retrieval of 3D models by features such as geometry, dimensions, material, texture, diffuse reflection, transmission spectra, transparency, reflectivity, opalescence, glazes, varnishes, and enamels (as opposed to unstructured textual descriptions or 2.5D virtual museums and exhibitions using Google Street View on Google Arts & Culture, for example). [32] The RDF representation of 3D models can be used in reasoning, which enables intelligent 3D applications which, for example, can automatically compare two 3D models by volume. [33]

Testing a 3D solid model

3D solid models can be tested in different ways depending on what is needed by using simulation, mechanism design, and analysis. If a motor is designed and assembled correctly (this can be done differently depending on what 3D modeling program is being used), using the mechanism tool the user should be able to tell if the motor or machine is assembled correctly by how it operates. Different design will need to be tested in different ways. For example; a pool pump would need a simulation ran of the water running through the pump to see how the water flows through the pump. These tests verify if a product is developed correctly or if it needs to be modified to meet its requirements.

See also

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, textures, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Vector graphics</span> Computer graphics images defined by points, lines and curves

Vector graphics are a form of computer graphics in which visual images are created directly from geometric shapes defined on a Cartesian plane, such as points, lines, curves and polygons. The associated mechanisms may include vector display and printing hardware, vector data models and file formats, as well as the software based on these data models. Vector graphics is an alternative to raster or bitmap graphics, with each having advantages and disadvantages in specific situations.

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional 3D computer graphics program for making 3D animations, models, games and images. It is developed and produced by Autodesk Media and Entertainment. It has modeling capabilities and a flexible plugin architecture and must be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios, and architectural visualization studios. It is also used for movie effects and movie pre-visualization. 3ds Max features shaders, dynamic simulation, particle systems, radiosity, normal map creation and rendering, global illumination, a customizable user interface, and its own scripting language.

<span class="mw-page-title-main">Constructive solid geometry</span> Creating a complex 3D surface or object by combining primitive objects

Constructive solid geometry is a technique used in solid modeling. Constructive solid geometry allows a modeler to create a complex surface or object by using Boolean operators to combine simpler objects, potentially generating visually complex objects by combining a few primitive ones.

In computer graphics, level of detail (LOD) refers to the complexity of a 3D model representation. LOD can be decreased as the model moves away from the viewer or according to other metrics such as object importance, viewpoint-relative speed or position. LOD techniques increase the efficiency of rendering by decreasing the workload on graphics pipeline stages, usually vertex transformations. The reduced visual quality of the model is often unnoticed because of the small effect on object appearance when distant or moving fast.

<span class="mw-page-title-main">Low poly</span> 3D computer graphics mesh with low number of polygons

Low poly is a polygon mesh in 3D computer graphics that has a relatively small number of polygons. Low poly meshes occur in real-time applications as contrast with high-poly meshes in animated movies and special effects of the same era. The term low poly is used in both a technical and a descriptive sense; the number of polygons in a mesh is an important factor to optimize for performance but can give an undesirable appearance to the resulting graphics.

<span class="mw-page-title-main">Polygonal modeling</span> Object modeling method

In 3D computer graphics, polygonal modeling is an approach for modeling objects by representing or approximating their surfaces using polygon meshes. Polygonal modeling is well suited to scanline rendering and is therefore the method of choice for real-time computer graphics. Alternate methods of representing 3D objects include NURBS surfaces, subdivision surfaces, and equation-based representations used in ray tracers.

<span class="mw-page-title-main">3D rendering</span> Process of converting 3D scenes into 2D images

3D rendering is the 3D computer graphics process of converting 3D models into 2D images on a computer. 3D renders may include photorealistic effects or non-photorealistic styles.

Form·Z is a general-purpose solid and surface modeling software. It offers 2D/3D form manipulating and sculpting capabilities. It can be used on Windows and Macintosh computers. It is available in English, German, Italian, Spanish, French, Greek, Korean and Japanese languages.

<span class="mw-page-title-main">Digital sculpting</span> Use of software to manipulate a digital object

Digital sculpting, also known as sculpt modeling or 3D sculpting, is the use of software that offers tools to push, pull, smooth, grab, pinch or otherwise manipulate a digital object as if it were made of a real-life substance such as clay.

<span class="mw-page-title-main">3D computer graphics</span> Graphics that use a three-dimensional representation of geometric data

3D computer graphics, sometimes called CGI, 3-D-CGI or three-dimensional computer graphics, are graphics that use a three-dimensional representation of geometric data that is stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later or displayed in real time.

<span class="mw-page-title-main">Computer graphics (computer science)</span> Sub-field of computer science

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

Simplygon is 3D computer graphics software for automatic 3D optimization, based on proprietary methods for creating levels of detail (LODs) through Polygon mesh reduction and other optimization techniques.

<span class="mw-page-title-main">Cobalt (CAD program)</span> 3D computer graphics software

Cobalt is a parametric-based computer-aided design (CAD) and 3D modeling program that runs on both Macintosh and Microsoft Windows operating systems. The program combines the direct-modeling way to create and edit objects and the highly structured, history-driven parametric way exemplified by programs like Pro/ENGINEER. A product of Ashlar-Vellum, Cobalt is Wireframe-based and history-driven with associativity and 2D equation-driven parametrics and constraints. It offers surfacing tools, mold design tools, detailing, and engineering features. Cobalt includes a library of 149,000 mechanical parts.

<span class="mw-page-title-main">Modo (software)</span> Software

Modo is a polygon and subdivision surface modeling, sculpting, 3D painting, animation and rendering package developed by Luxology, LLC, which is now merged with and known as Foundry. The program incorporates features such as n-gons and edge weighting, and runs on Microsoft Windows, Linux and macOS platforms.

<span class="mw-page-title-main">C3D Toolkit</span> Geometric modelling kernel

C3D Toolkit is a proprietary cross-platform geometric modeling kit software developed by Russian by C3D Labs. It's written in C++. It can be licensed by other companies for use in their 3D computer graphics software products. The most widely known software in which C3D Toolkit is typically used are computer aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems.

This is a glossary of terms relating to computer graphics.

References

  1. "What is 3D Modeling & What's It Used For?". Concept Art Empire. 2018-04-27. Retrieved 2021-05-05.
  2. "3D Modeling". Siemens Digital Industries Software. Retrieved 2021-07-14.
  3. "What is 3D Modeling? | How 3D Modeling is Used Today". Tops. 2020-04-27. Retrieved 2021-07-14.
  4. Slick, Justin (2020-09-24). "What Is 3D Modeling?". Lifewire. Retrieved 2022-02-03.
  5. "How to 3D scan with a phone: Here are our best tips". Sculpteo. Retrieved 2021-07-14.
  6. "Facebook and Matterport collaborate on realistic virtual training environments for AI". TechCrunch. 30 June 2021. Retrieved 2021-07-14.
  7. Tredinnick, Ross; Anderson, Lee; Ries, Brian; Interrante, Victoria (2006). "A Tablet Based Immersive Architectural Design Tool" (PDF). Synthetic Landscapes: Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture. ACADIA. pp. 328–341. doi: 10.52842/conf.acadia.2006.328 .
  8. "ERIS Project Starts". ESO Announcement. Retrieved 14 June 2013.
  9. "The Future of 3D Modeling". GarageFarm. 2017-05-28. Retrieved 2021-12-15.
  10. "What is Solid Modeling? 3D CAD Software. Applications of Solid Modeling". Brighthub Engineering. 17 December 2008. Retrieved 2017-11-18.
  11. Jon Radoff, Anatomy of an MMORPG Archived 2009-12-13 at the Wayback Machine , August 22, 2008
  12. "Unlocking the Potential of 3D Modelling Techniques for Exceptional Furniture Renders". vizfurniture. viz' furniture. 9 December 2023. Retrieved 2023-12-09.
  13. Latif Kamran, Adam, Anbia, Yusof Yusri, Kadir Aini, Zuhra Abdul.(2021)"A review of G code, STEP, STEP-NC, and open architecture control technologies based embedded CNC systems".The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-021-06741-z
  14. "All About Virtual Fashion and the Creation of 3D Clothing". CGElves. Archived from the original on 5 January 2016. Retrieved 25 December 2015.
  15. "3D Clothes made for The Hobbit using Marvelous Designer". 3DArtist. Retrieved 9 May 2013.
  16. "3D Mapping and Modelling Market Worth" (Press release). June 2022. Archived from the original on 18 Nov 2022. Retrieved 1 Jun 2022.
  17. "Building Information Modeling Overview". Archived from the original on 7 Dec 2022. Retrieved 5 Mar 2012.
  18. Moreno, Cristina; Olbina, Svetlana; Issa, Raja R. (2019). "BIM Use by Architecture, Engineering, and Construction (AEC) Industry in Educational Facility Projects". Advances in Civil Engineering. 2019: 1–19. doi: 10.1155/2019/1392684 . hdl: 10217/195794 .
  19. 1 2 3 Burns, Marshall (1993). Automated fabrication : improving productivity in manufacturing. Englewood Cliffs, N.J.: PTR Prentice Hall. pp. 1–12, 75, 192–194. ISBN   0-13-119462-3. OCLC   27810960.
  20. "What is 3D Printing? The definitive guide". 3D Hubs. Retrieved 2017-11-18.
  21. "3D Printing Toys". Business Insider. Retrieved 25 January 2015.
  22. "New Trends in 3D Printing – Customized Medical Devices". Envisiontec. Retrieved 25 January 2015.
  23. Rector, Emily (2019-09-17). "What is 3D Modeling and Design? A Beginners Guide to 3D". MarketScale. Retrieved 2021-05-05.
  24. "3D virtual reality models help yield better surgical outcomes: Innovative technology improves visualization of patient anatomy, study finds". ScienceDaily. Retrieved 2019-09-19.
  25. Peddie, John (2013). The History of Visual Magic in Computers. London: Springer-Verlag. pp. 396–400. ISBN   978-1-4471-4931-6.
  26. "Level of Detail". Archived from the original on 30 December 2022. Retrieved 28 June 2022.
  27. "Level of Detail (LOD): Understand and Utilization". 5 April 2022. Archived from the original on 18 July 2022. Retrieved 5 April 2022.
  28. Magnani, Matthew; Douglass, Matthew; Schroder, Whittaker; Reeves, Jonathan; Braun, David R. (October 2020). "The Digital Revolution to Come: Photogrammetry in Archaeological Practice". American Antiquity. 85 (4): 737–760. doi:10.1017/aaq.2020.59. ISSN   0002-7316. S2CID   225390638.
  29. Wyatt-Spratt, Simon (2022-11-04). "After the Revolution: A Review of 3D Modelling as a Tool for Stone Artefact Analysis". Journal of Computer Applications in Archaeology. 5 (1): 215–237. doi: 10.5334/jcaa.103 . hdl: 2123/30230 . ISSN   2514-8362. S2CID   253353315.
  30. "3D Models for Clients". 7CGI. Retrieved 2023-04-09.
  31. "3D Modeling for Businesses". CGI Furniture. 5 November 2020. Retrieved 2020-11-05.
  32. Sikos, L. F. (2016). "Rich Semantics for Interactive 3D Models of Cultural Artifacts". Metadata and Semantics Research. Communications in Computer and Information Science. Vol. 672. Springer International Publishing. pp. 169–180. doi:10.1007/978-3-319-49157-8_14. ISBN   978-3-319-49156-1.
  33. Yu, D.; Hunter, J. (2014). "X3D Fragment Identifiers—Extending the Open Annotation Model to Support Semantic Annotation of 3D Cultural Heritage Objects over the Web". International Journal of Heritage in the Digital Era. 3 (3): 579–596. doi:10.1260/2047-4970.3.3.579.

Commons-logo.svg Media related to 3D modeling at Wikimedia Commons