Rapid prototyping

Last updated
A rapid prototyping machine using selective laser sintering (SLS) 3dprinter.jpg
A rapid prototyping machine using selective laser sintering (SLS)
3D model slicing Rapid prototyping slicing-en.svg
3D model slicing

Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. [1] [2] Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology. [3]

Contents

The first methods for rapid prototyping became available in mid 1987 and were used to produce models and prototype parts. Today, they are used for a wide range of applications and are used to manufacture production-quality parts in relatively small numbers if desired without the typical unfavorable short-run economics. [4] This economy has encouraged online service bureaus. Historical surveys of RP technology [2] start with discussions of simulacra production techniques used by 19th-century sculptors. Some modern sculptors use the progeny technology to produce exhibitions and various objects. [5] The ability to reproduce designs from a dataset has given rise to issues of rights, as it is now possible to interpolate volumetric data from 2D images.

As with CNC subtractive methods, the computer-aided-design – computer-aided manufacturing CAD -CAM workflow in the traditional rapid prototyping process starts with the creation of geometric data, either as a 3D solid using a CAD workstation, or 2D slices using a scanning device. For rapid prototyping this data must represent a valid geometric model; namely, one whose boundary surfaces enclose a finite volume, contain no holes exposing the interior, and do not fold back on themselves. [6] In other words, the object must have an "inside". The model is valid if for each point in 3D space the computer can determine uniquely whether that point lies inside, on, or outside the boundary surface of the model. CAD post-processors will approximate the application vendors' internal CAD geometric forms (e.g., B-splines) with a simplified mathematical form, which in turn is expressed in a specified data format which is a common feature in additive manufacturing: STL file format, a de facto standard for transferring solid geometric models to SFF machines. [7]

To obtain the necessary motion control trajectories to drive the actual SFF, rapid prototyping, 3D printing or additive manufacturing mechanism, the prepared geometric model is typically sliced into layers, and the slices are scanned into lines (producing a "2D drawing" used to generate trajectory as in CNC's toolpath), mimicking in reverse the layer-to-layer physical building process. [ citation needed ]

Application areas

Rapid prototyping is also commonly applied in software engineering to try out new business models and application architectures such as Aerospace, Automotive, Financial Services, Product development, and Healthcare. [8] Aerospace design and industrial teams rely on prototyping in order to create new AM methodologies in the industry. Using SLA they can quickly make multiple versions of their projects in a few days and begin testing quicker. [9] Rapid Prototyping allows designers/developers to provide an accurate idea of how the finished product will turn out before putting too much time and money into the prototype. 3D printing being used for Rapid Prototyping allows for Industrial 3D printing to take place. With this, you could have large-scale moulds to spare parts being pumped out quickly within a short period of time. [10]

Types of Rapid Prototyping

History

In the 1970s, Joseph Henry Condon and others at Bell Labs developed the Unix Circuit Design System (UCDS), automating the laborious and error-prone task of manually converting drawings to fabricate circuit boards for the purposes of research and development.

By the 1980s, U.S. policy makers and industrial managers were forced to take note that America's dominance in the field of machine tool manufacturing evaporated, in what was named the machine tool crisis. Numerous projects sought to counter these trends in the traditional CNC CAM area, which had begun in the US. Later when Rapid Prototyping Systems moved out of labs to be commercialized, it was recognized that developments were already international and U.S. rapid prototyping companies would not have the luxury of letting a lead slip away. The National Science Foundation was an umbrella for the National Aeronautics and Space Administration (NASA), the US Department of Energy, the US Department of Commerce NIST, the US Department of Defense, Defense Advanced Research Projects Agency (DARPA), and the Office of Naval Research coordinated studies to inform strategic planners in their deliberations. One such report was the 1997 Rapid Prototyping in Europe and Japan Panel Report [2] in which Joseph J. Beaman [19] founder of DTM Corporation [DTM RapidTool pictured] provides a historical perspective:

The roots of rapid prototyping technology can be traced to practices in topography and photosculpture. Within TOPOGRAPHY Blanther (1892) suggested a layered method for making a mold for raised relief paper topographical maps .The process involved cutting the contour lines on a series of plates which were then stacked. Matsubara (1974) of Mitsubishi proposed a topographical process with a photo-hardening photopolymer resin to form thin layers stacked to make a casting mold. PHOTOSCULPTURE was a 19th-century technique to create exact three-dimensional replicas of objects. Most famously Francois Willeme (1860) placed 24 cameras in a circular array and simultaneously photographed an object. The silhouette of each photograph was then used to carve a replica. Morioka (1935, 1944) developed a hybrid photo sculpture and topographic process using structured light to photographically create contour lines of an object. The lines could then be developed into sheets and cut and stacked, or projected onto stock material for carving. The Munz (1956) Process reproduced a three-dimensional image of an object by selectively exposing, layer by layer, a photo emulsion on a lowering piston. After fixing, a solid transparent cylinder contains an image of the object.

Joseph J. Beaman [20]

"The Origins of Rapid Prototyping - RP stems from the ever-growing CAD industry, more specifically, the solid modeling side of CAD. Before solid modeling was introduced in the late 1980's, three-dimensional models were created with wire frames and surfaces. But not until the development of true solid modeling could innovative processes such as RP be developed. Charles Hull, who helped found 3D Systems in 1986, developed the first RP process. This process, called stereolithography, builds objects by curing thin consecutive layers of certain ultraviolet light-sensitive liquid resins with a low-power laser. With the introduction of RP, CAD solid models could suddenly come to life". [21]

The technologies referred to as Solid Freeform Fabrication are what we recognize today as rapid prototyping, 3D printing or additive manufacturing: Swainson (1977), Schwerzel (1984) worked on polymerization of a photosensitive polymer at the intersection of two computer controlled laser beams. Ciraud (1972) considered magnetostatic or electrostatic deposition with electron beam, laser or plasma for sintered surface cladding. These were all proposed but it is unknown if working machines were built. Hideo Kodama of Nagoya Municipal Industrial Research Institute was the first to publish an account of a solid model fabricated using a photopolymer rapid prototyping system (1981). [2] The very first 3D rapid prototyping system relying on Fused Deposition Modeling (FDM) was made in April 1992 by Stratasys but the patent did not issue until June 9, 1992. Sanders Prototype, Inc introduced the first desktop inkjet 3D Printer (3DP) using an invention from August 4,1992 (Helinski), Modelmaker 6Pro in late 1993 and then the larger industrial 3D printer, Modelmaker 2, in 1997. [22] Z-Corp using the MIT 3DP powder binding for Direct Shell Casting (DSP) invented 1993 was introduced to the market in 1995. [23] Even at that early date the technology was seen as having a place in manufacturing practice. A low resolution, low strength output had value in design verification, mold making, production jigs and other areas. Outputs have steadily advanced toward higher specification uses. [24] Sanders Prototype, Inc. (Solidscape) started as a Rapid Prototyping 3D Printing manufacturer with the Modelmaker 6Pro for making sacrificial Thermoplastic patterns of CAD models uses Drop-On-Demand (DOD) inkjet single nozzle technology. [23]

Innovations are constantly being sought, to improve speed and the ability to cope with mass production applications. [25] A dramatic development which RP shares with related CNC areas is the freeware open-sourcing of high level applications which constitute an entire CAD-CAM toolchain. This has created a community of low res device manufacturers. Hobbyists have even made forays into more demanding laser-effected device designs. [26]

The earliest list of RP Processes or Fabrication Technologies published in 1993 was written by Marshall Burns and explains each process very thoroughly. It also names some technologies that were precursors to the names on the list below. For Example: Visual Impact Corporation only produced a prototype printer for wax deposition and then licensed the patent to Sanders Prototype, Inc instead. BPM used the same inkjets and materials. [27]

Advantages of Rapid Prototyping

It accelerates the design process of any product as it allows for both low fidelity prototyping and high fidelity prototyping, [28] to foresee the necessary adjustments to be made before the final production line. As a result of this, it also cuts production costs for the overall product development [29] and allows functionality testing at a fraction of the regular cost. It eliminates the risk of the design team suffering injuries and the prototype from getting damaged during the modeling process. It also allows users or focus groups to have an involvement in the design process through interactions with each of the prototypes, from the initial prototype to the final model. Furthermore, it is an ideal way to test for ergonomics [30] and anthropometry (human factors) so that the designed product is capable of fulfilling the user's needs and offers a unique experience of usage.

Disadvantages of Rapid Prototyping

Although there are various benefits that come with rapid prototyping, some of the negative aspects of it are that there can a be a lack of accuracy [31] as it cannot guarantee that the quality of the prototype will be high or that the different components will fit well together due to a range of error in the dimensions of the 3D model. Also, the initial cost of using this production technique can be expensive due to the technology [32] which it works with. It can limit the range of materials [33] which the product can be made with and depending on the level of complexity that the design entails, it can lead to hard skill labor.

See also

Related Research Articles

<span class="mw-page-title-main">Computer-aided design</span> Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software help protect products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer-aided design and drafting (CADD) are also used.

<span class="mw-page-title-main">Selective laser sintering</span> 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

<span class="mw-page-title-main">Stereolithography</span> 3D printing technique

Stereolithography is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes by which light causes chemical monomers and oligomers to cross-link together to form polymers. Those polymers then make up the body of a three-dimensional solid. Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986. Stereolithography can be used to create prototypes for products in development, medical models, and computer hardware, as well as in many other applications. While stereolithography is fast and can produce almost any design, it can be expensive.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

<span class="mw-page-title-main">3D Systems</span> American 3D printing company

3D Systems, headquartered in Rock Hill, South Carolina, is a company that engineers, manufactures, and sells 3D printers, 3D printing materials, 3D scanners, and offers a 3D printing service. The company creates product concept models, precision and functional prototypes, master patterns for tooling, as well as production parts for direct digital manufacturing. It uses proprietary processes to fabricate physical objects using input from computer-aided design and manufacturing software, or 3D scanning and 3D sculpting devices.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses having completely melted.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

Custom-fit means personalized with regard to shape and size. A customized product would imply the modification of some of its characteristics according to the customers requirements such as with a custom car. However, when fit is added to the term, customization could give the idea of both the geometric characteristics of the body and the individual customer requirements, e.g., the steering wheel of the Formula 1 driver Fernando Alonso.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

<span class="mw-page-title-main">Powder bed and inkjet head 3D printing</span> 3D printing technique

Binder jet 3D printing, known variously as "Powder bed and inkjet" and "drop-on-powder" printing, is a rapid prototyping and additive manufacturing technology for making objects described by digital data such as a CAD file. Binder jetting is one of the seven categories of additive manufacturing processes according to ASTM and ISO.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

Solid ground curing (SGC) is a photo-polymer-based additive manufacturing technology used for producing models, prototypes, patterns, and production parts, in which the production of the layer geometry is carried out by means of a high-powered UV lamp through a mask. As the basis of solid ground curing is the exposure of each layer of the model by means of a lamp through a mask, the processing time for the generation of a layer is independent of the complexity of the layer. SGC was developed and commercialized by Cubital Ltd. of Israel in 1986 in the alternative name of Soldier System. While the method offered good accuracy and a very high fabrication rate, it suffered from high acquisition and operating costs due to system complexity. This led to poor market acceptance. While the company still exists, systems are no longer being sold. Nevertheless, it's still an interesting example of the many technologies other than stereolithography, its predeceasing rapid prototyping process that also utilizes photo-polymer materials. Though Objet Geometries Ltd. of Israel retains intellectual property of the process after the closure of Cubital Ltd. in 2002, the technology is no longer being produced.

<span class="mw-page-title-main">Fused filament fabrication</span> 3D printing process

Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.

<span class="mw-page-title-main">EnvisionTEC</span>

EnvisionTEC is a privately held global company that develops, manufactures and sells more than 40 configurations of desktop and production 3D printers based on seven several distinct process technologies that build objects from digital design files. Founded in 2002, the company now has a corporate headquarters for North America, located in Dearborn, Mich., and International headquarters in Gladbeck, Germany. It also has a production facility in the Greater Los Angeles area, as well as additional facilities in Montreal, for materials research, in Kiev, Ukraine, for software development, and in Woburn, Mass, for robotic 3D printing research and development. Today, the company's 3D Printers are used for mass customized production and to manufacture finished goods, investment casting patterns, tooling, prototypes and more. EnvisionTEC serves a variety of medical, professional and industrial customers. EnvisionTEC has developed large customer niches in the jewelry, dental, hearing aid, medical device, biofabrication and animation industries. EnvisionTEC is one of the few 3D printer companies globally whose products are being used for real production of final end-use parts.

Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.

Agile tooling is the design and fabrication of manufacturing related-tools such as dies, molds, patterns, jigs and fixtures in a configuration that aims to maximise the tools' performance, minimise manufacturing time and cost, and avoid delay in prototyping. A fully functional agile tooling laboratory consists of CNC milling, turning and routing equipment. It can also include additive manufacturing platforms, hydroforming, vacuum forming, die casting, stamping, injection molding and welding equipment.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

<span class="mw-page-title-main">Fusion 360</span> Computer-aided design (CAD) software application

Fusion is a commercial computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE) and printed circuit board (PCB) design software application, developed by Autodesk. It is available for Windows, macOS and web browser, with simplified applications available for Android and iOS. Fusion is licensed as a paid subscription, with a free limited home-based, non-commercial personal edition available.

<span class="mw-page-title-main">Ian Gibson (professor)</span>

Ian Gibson is a Professor of Design Engineering at the University of Twente. Gibson was selected as the scientific director of Fraunhofer Project Center at the University of Twente and is a recipient of lifetime achievement award, the Freeform and Additive Manufacturing Award. His main areas of research are in at the additive manufacturing, multi-material systems, micro-RP, Rapid Prototyping, Medical Modelling and tissue engineering.

Multi-material 3D printing is the additive manufacturing procedure of using multiple materials at the same time to fabricate an object. Similar to single material additive manufacturing it can be realised through methods such as FFF, SLA and Inkjet 3D printing. By expanding the design space to different materials, it establishes the possibilities of creating 3D printed objects of different color or with different material properties like elasticity or solubility. The first multi-material 3D printer Fab@Home became publicly available in 2006. The concept was quickly adopted by the industry followed by many consumer ready multi-material 3D printers.

References

  1. "Rapid Prototyping: An Overview". Efunda.com. Retrieved 2013-06-14.
  2. 1 2 3 4 "JTEC/WTEC Panel Report on Rapid Prototyping in Europe and Japan" (PDF). Archived from the original (PDF) on 2017-08-30. Retrieved 2016-12-28.
  3. "Interview with Dr Greg Gibbons, Additive Manufacturing, WMG, University of Warwick", Warwick University, KnowledgeCentre Archived 2013-10-22 at the Wayback Machine . Accessed 18 October 2013
  4. Liou, Frank W. (2007). "Rapid Prototyping Processes". Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development. CRC Press. p. 215. ISBN   978-1-4200-1410-5.
  5. Unger, Miles (April 25, 1999). "ART/ARCHITECTURE; Taking Over the Joystick of Natural Selection". The New York Times . Retrieved December 22, 2019.
  6. Kocovic, Petar (2017). 3D Printing and Its Impact on the Production of Fully Functional Components: Emerging Research and Opportunities: Emerging Research and Opportunities. IGI Global. p. xxii. ISBN   978-1-5225-2290-4.
  7. Chang, Kuang-Hua (2013). Product Performance Evaluation using CAD/CAE: The Computer-Aided Engineering Design Series. Academic Press. p. 22. ISBN   978-0-12-398460-9.
  8. Haberle, T. (201x). "The Connected Car in the Cloud: A Platform for Prototyping Telematics Services". IEEE Software. 32 (6): 11–17. doi:10.1109/MS.2015.137. S2CID   6722642.
  9. The New Age of Rapid Prototyping. (n.d.). Retrieved February 24, 2021, from https://www.machinedesign.com/3d-printing-cad/article/21837908/the-new-age-of-rapid-prototyping
  10. 3D printers for industrial. (n.d.). Retrieved February 24, 2021, from https://www8.hp.com/us/en/printers/3d-printers/industries/industrial.html?jumpid=ps_4196a3d547
  11. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  12. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  13. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  14. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  15. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  16. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  17. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  18. "Selecting a Rapid Prototyping Process". PROTOLABS. Proto Labs. Retrieved 17 February 2024.
  19. history of laser Additive Manufacturing "The History of Laser Additive Manufacturing". Archived from the original on 2013-02-13. Retrieved 2013-05-15.
  20. JTEC/WTEC Panel Report on Rapid Prototyping in Europe and Japan pg.24
  21. Cooper, Kenneth G. (2001). Rapid prototyping technology : selection and application. New York: Marcel Dekker. pp. 2–3, 9–10. ISBN   0-8247-0261-1. OCLC   45873626.
  22. Zalud, Todd (October 9, 1967). "Machine design - Don't print the drawing-print the part". penton.com/md.
  23. 1 2 Barnatt, Christopher (2013). 3D printing : the next industrial revolution. ExplainingTheFuture.com. pp. 38, 54–57, 75. ISBN   978-1-4841-8176-8. OCLC   854672031.
  24. Wohlers, Terry (April 2012). "Additive manufacturing advances" (PDF). Manufacturing Engineering Magazine. Society of Manufacturing Engineers. pp. 55–63.
  25. Hayes, Jonathan (2002), "Concurrent printing and thermographing for rapid manufacturing: executive summary". EngD thesis, University of Warwick. Accessed 18 October 2013
  26. Wharton, Knowledge (2 September 2013). "Will 3D Printing Push Past the Hobbyist Market?". The Fiscal Times. Retrieved 18 October 2013.
  27. Burns, Marshall (1993). Automated fabrication : improving productivity in manufacturing. Englewood Cliffs, N.J.: PTR Prentice Hall. ISBN   0-13-119462-3. OCLC   27810960.
  28. "Rapid prototyping". Engineering Product Design. Retrieved 17 February 2024.
  29. "Rapid prototyping". Engineering Product Design. Retrieved 17 February 2024.
  30. "Rapid Prototyping". Engineering Product Design. Retrieved 17 February 2024.
  31. "Rapid Prototyping". Engineering Product Design. Retrieved 17 February 2024.
  32. "Rapid Prototyping". Engineering Product Design. Retrieved 17 February 2024.
  33. "Rapid Prototyping". Engineering Product Design. Retrieved 17 February 2024.

Bibliography