Stereolithography

Last updated
Schematic representation of Stereolithography: a light-emitting device a) A laser or DLP selectively illuminates the transparent bottom c) of a tank b) filled with a liquid photo-polymerizing resin. The solidified resin d) is progressively dragged up by a lifting platform e) Schematic representation of Stereolithography.png
Schematic representation of Stereolithography: a light-emitting device a) A laser or DLP selectively illuminates the transparent bottom c) of a tank b) filled with a liquid photo-polymerizing resin. The solidified resin d) is progressively dragged up by a lifting platform e)
An SLA produced part SLA produced part.JPG
An SLA produced part
An example of an SLA printed circuit board with various components to simulate the final product. SLA 3D Printed PCB.jpg
An example of an SLA printed circuit board with various components to simulate the final product.

Stereolithography (SLA or SL; also known as vat photopolymerisation, [1] optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes by which light causes chemical monomers and oligomers to cross-link together to form polymers. [2] Those polymers then make up the body of a three-dimensional solid. Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986. [3] Stereolithography can be used to create prototypes for products in development, medical models, and computer hardware, as well as in many other applications. While stereolithography is fast and can produce almost any design, it can be expensive.[ citation needed ]

Contents

History

Stereolithography or "SLA" printing is an early and widely used 3D printing technology. In the early 1980s, Japanese researcher Hideo Kodama first invented the modern layered approach to stereolithography by using ultraviolet light to cure photosensitive polymers. [4] [5] In 1984, just before Chuck Hull filed his own patent, Alain Le Mehaute, Olivier de Witte and Jean Claude André filed a patent for the stereolithography process. [6] The French inventors' patent application was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium). Le Mehaute believes that the abandonment reflects a problem with innovation in France. [7] [8]

The term “stereolithography” (Greek: stereo-solid and lithography) was coined in 1984 by Chuck Hull when he filed his patent for the process. [2] [9] Hull patented stereolithography as a method of creating 3D objects by successively "printing" thin layers of an object using a medium curable by ultraviolet light, starting from the bottom layer to the top layer. Hull's patent described a concentrated beam of ultraviolet light focused onto the surface of a vat filled with a liquid photopolymer. The beam is focused onto the surface of the liquid photopolymer, creating each layer of the desired 3D object by means of crosslinking (generation of intermolecular bonds in polymers). It was invented with the intent of allowing engineers to create prototypes of their designs in a more time effective manner. [4] [10] After the patent was granted in 1986, [2] Hull co-founded the world's first 3D printing company, 3D Systems, to commercialize it. [11]

Stereolithography's success in the automotive industry allowed 3D printing to achieve industry status and the technology continues to find innovative uses in many fields of study. [10] [12] Attempts have been made to construct mathematical models of stereolithography processes and to design algorithms to determine whether a proposed object may be constructed using 3D printing. [13]

Technology

Stereolithography is an additive manufacturing process that, in its most common form, works by focusing an ultraviolet (UV) laser on to a vat of photopolymer resin. [14] With the help of computer aided manufacturing or computer-aided design (CAM/CAD) software, [15] the UV laser is used to draw a pre-programmed design or shape on to the surface of the photopolymer vat. Photopolymers are sensitive to ultraviolet light, so the resin is photochemically solidified and forms a single layer of the desired 3D object. [16] Then, the build platform lowers one layer and a blade recoats the top of the tank with resin. [5] This process is repeated for each layer of the design until the 3D object is complete. Completed parts must be washed with a solvent to clean wet resin from their surfaces. [17]

It is also possible to print objects "bottom up" by using a vat with a transparent bottom and focusing the UV or deep-blue polymerization laser upward through the bottom of the vat. [17] An inverted stereolithography machine starts a print by lowering the build platform to touch the bottom of the resin-filled vat, then moving upward the height of one layer. The UV laser then writes the bottom-most layer of the desired part through the transparent vat bottom. Then the vat is "rocked", flexing and peeling the bottom of the vat away from the hardened photopolymer; the hardened material detaches from the bottom of the vat and stays attached to the rising build platform, and new liquid photopolymer flows in from the edges of the partially built part. The UV laser then writes the second-from-bottom layer and repeats the process. An advantage of this bottom-up mode is that the build volume can be much bigger than the vat itself, and only enough photopolymer is needed to keep the bottom of the build vat continuously full of photopolymer. This approach is typical of desktop SLA printers, while the right-side-up approach is more common in industrial systems. [5]

Stereolithography requires the use of supporting structures which attach to the elevator platform to prevent deflection due to gravity, resist lateral pressure from the resin-filled blade, or retain newly created sections during the "vat rocking" of bottom up printing. Supports are typically created automatically during the preparation of CAD models and can also be made manually. In either situation, the supports must be removed manually after printing. [5]

Other forms of stereolithography build each layer by LCD masking, or using a DLP projector. [18]

DigitalWorkflow.001.jpg

Materials

The liquid materials used for SLA printing are commonly referred to as "resins" and are thermoset polymers. A wide variety of resins are commercially available and it is also possible to use homemade resins to test different compositions for example. Material properties vary according to formulation configurations: "materials can be soft or hard, heavily filled with secondary materials like glass and ceramic, or imbued with mechanical properties like high heat deflection temperature or impact resistance". [19] Recently,[ when? ] some studies have tested the possibility to green [20] or reusable [21] materials to produce "sustainable" resins. It is possible to classify the resins in the following categories: [22]

Uses

Medical modeling

Stereolithographic model of a skull StereolithographiemodellSchaedel.jpg
Stereolithographic model of a skull

Stereolithographic models have been used in medicine since the 1990s, [23] for creating accurate 3D models of various anatomical regions of a patient, based on data from computer scans. [24] Medical modelling involves first acquiring a CT, MRI, or other scan. [25] This data consists of a series of cross sectional images of the human anatomy. In these images different tissues show up as different levels of grey. Selecting a range of grey values enables specific tissues to be isolated. A region of interest is then selected and all the pixels connected to the target point within that grey value range are selected. This enables a specific organ to be selected. This process is referred to as segmentation. The segmented data may then be translated into a format suitable for stereolithography. [26] While stereolithography is normally accurate, the accuracy of a medical model depends on many factors, especially the operator performing the segmentation correctly. There are potential errors possible when making medical models using stereolithography but these can be avoided with practice and well trained operators. [27]

Stereolithographic models are used as an aid to diagnosis, preoperative planning and implant design and manufacture. This might involve planning and rehearsing osteotomies, for example. Surgeons use models to help plan surgeries [28] but prosthetists and technologists also use models as an aid to the design and manufacture of custom-fitting implants. For instance, medical models created through stereolithography can be used to help in the construction of Cranioplasty plates. [29] [30]

In 2019, scientists at Rice University published an article in the journal Science, presenting soft hydrogel materials for stereolithography used in biological research applications. [31]

Prototyping

Stereolithography is often used for prototyping parts. For a relatively low price, stereolithography can produce accurate prototypes, even of irregular shapes. [32] Businesses can use those prototypes to assess the design of their product or as publicity for the final product. [28]

Advantages and disadvantages

Advantages

One of the advantages of stereolithography is its speed; functional parts can be manufactured within a day. [10] The length of time it takes to produce a single part depends upon the complexity of the design and the size. Printing time can last anywhere from hours to more than a day. [10] SLA printed parts, unlike those obtained from FFF/FDM, do not exhibit significant anisotropy and there's no visible layering pattern. The surface quality is, in general, superior. Prototypes and designs made with stereolithography are strong enough to be machined [33] [34] and can also be used to make master patterns for injection molding or various metal casting processes. [33]

Disadvantages

Although stereolithography can be used to produce virtually any synthetic design, [15] it is often costly, though the price is coming down. Since 2012, [35] however, public interest in 3D printing has inspired the design of several consumer SLA machines which can cost considerably less. Beginning in 2016, substitution of the SLA and DLP methods using a high resolution, high contrast LCD panel has brought prices down to below US$200. The layers are created in their entirety since the entire layer is displayed on the LCD screen and is exposed using UV LEDs that lie below. Resolutions of .01mm are attainable. Another disadvantage is that the photopolymers are sticky, messy, and need to be handled with care. Newly made parts need to be washed, further cured, and dried. The environmental impact of all these processes requires more study to be understood, but in general SLA technologies have not created any biodegradable or compostable forms of resin, while other 3-D printing methods offer some compostable PLA options. The choice of materials is limited compared to FFF, which can process virtually any thermoplastic.

See also

Related Research Articles

<span class="mw-page-title-main">Selective laser sintering</span> 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

<span class="mw-page-title-main">3D Systems</span>

3D Systems, headquartered in Rock Hill, South Carolina, is a company that engineers, manufactures, and sells 3D printers, 3D printing materials, 3D scanners, and offers a 3D printing service. The company creates product concept models, precision and functional prototypes, master patterns for tooling, as well as production parts for direct digital manufacturing. It uses proprietary processes to fabricate physical objects using input from computer-aided design and manufacturing software, or 3D scanning and 3D sculpting devices.

<span class="mw-page-title-main">Rapid prototyping</span> Group of techniques to quickly construct physical objects

Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.

Chuck Hull is the co-founder, executive vice president and chief technology officer of 3D Systems. He is one of the inventors of the SLA 3D printer, the first commercial rapid prototyping technology, and the widely used STL file format. He is named on more than 60 U.S. patents as well as other patents around the world in the fields of ion optics and rapid prototyping. He was inducted into the National Inventors Hall of Fame in 2014 and in 2017 was one of the first inductees into the TCT Hall of Fame.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

<span class="mw-page-title-main">Objet Geometries</span>

Objet Geometries is one of the brands of Stratasys, a 3D printer developing company. The brand began with Objet Geometries Ltd, a corporation engaged in the design, development, and manufacture of photopolymer 3D printing systems. The company, incorporated in 1998, was based in Rehovot, Israel. In 2011 the company merged with Stratasys. It held patents on a number of associated printing materials that are used in PolyJet and PolyJet Matrix polymer jetting technologies. It distributed 3D printers worldwide through wholly owned subsidiaries in the United States, Europe, and Hong Kong. Objet Geometries owned more than 50 patents and patent-pending inventions.

<span class="mw-page-title-main">Powder bed and inkjet head 3D printing</span> 3D printing technique

Binder jet 3D printing, known variously as "Powder bed and inkjet" and "drop-on-powder" printing, is a rapid prototyping and additive manufacturing technology for making objects described by digital data such as a CAD file. Binder jetting is one of the seven categories of additive manufacturing processes according to ASTM and ISO.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

<span class="mw-page-title-main">Formlabs</span>

Formlabs is a 3D printing technology developer and manufacturer. The Somerville, Massachusetts-based company was founded in September 2011 by three MIT Media Lab students. The company develops and manufactures 3D printers and related software and consumables. It is most known for raising nearly $3 million in a Kickstarter campaign and creating the Form 1, Form 1+, Form 2, Form Cell, Form 3, Form 3L, Fuse 1, Fuse 1+ and Form Auto stereolithography and selective laser sintering 3D printers and accessories.

<span class="mw-page-title-main">EnvisionTEC</span>

EnvisionTEC is a privately held global company that develops, manufactures and sells more than 40 configurations of desktop and production 3D printers based on seven several distinct process technologies that build objects from digital design files. Founded in 2002, the company now has a corporate headquarters for North America, located in Dearborn, Mich., and International headquarters in Gladbeck, Germany. It also has a production facility in the Greater Los Angeles area, as well as additional facilities in Montreal, for materials research, in Kiev, Ukraine, for software development, and in Woburn, Mass, for robotic 3D printing research and development. Today, the company's 3D Printers are used for mass customized production and to manufacture finished goods, investment casting patterns, tooling, prototypes and more. EnvisionTEC serves a variety of medical, professional and industrial customers. EnvisionTEC has developed large customer niches in the jewelry, dental, hearing aid, medical device, biofabrication and animation industries. EnvisionTEC is one of the few 3D printer companies globally whose products are being used for real production of final end-use parts.

Continuous Liquid Interface Production is a proprietary method of 3D printing that uses photo polymerization to create smooth-sided solid objects of a wide variety of shapes using resins. It was invented by Joseph DeSimone, Alexander and Nikita Ermoshkin and Edward T. Samulski and was originally owned by EiPi Systems, but is now being developed by Carbon.

<span class="mw-page-title-main">Kudo3d</span>

Kudo3D, based in Dublin, California, manufactures professional desktop 3D printers. Its Titan 1 and Titan 2 3D printer use a proprietary passive self-peeling technology, making it one of the leading professional high-resolution stereolithography printers. This technology allows both the Titan 1 and Titan 2 to be used in printing for various applications.

<span class="mw-page-title-main">DFM analysis for stereolithography</span>

In design for additive manufacturing (DFAM), there are both broad themes and optimizations specific to a particular AM process. Described here is DFM analysis for stereolithography, in which design for manufacturability (DFM) considerations are applied in designing a part to be manufactured by the stereolithography (SLA) process. In SLA, parts are built from a photocurable liquid resin that cures when exposed to a laser beam that scans across the surface of the resin (photopolymerization). Resins containing acrylate, epoxy, and urethane are typically used. Complex parts and assemblies can be directly made in one go, to a greater extent than in earlier forms of manufacturing such as casting, forming, metal fabrication, and machining. Realization of such a seamless process requires the designer to take in considerations of manufacturability of the part by the process. In any product design process, DFM considerations are important to reduce iterations, time and material wastage.

Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.

Three-dimensional (3D) microfabrication refers to manufacturing techniques that involve the layering of materials to produce a three-dimensional structure at a microscopic scale. These structures are usually on the scale of micrometers and are popular in microelectronics and microelectromechanical systems.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

Multi-material 3D printing is the additive manufacturing procedure of using multiple materials at the same time to fabricate an object. Similar to single material additive manufacturing it can be realised through methods such as FFF, SLA and Inkjet 3D printing. By expanding the design space to different materials, it establishes the possibilities of creating 3D printed objects of different color or with different material properties like elasticity or solubility. The first multi-material 3D printer Fab@Home became publicly available in 2006. The concept was quickly adopted by the industry followed by many consumer ready multi-material 3D printers.

<span class="mw-page-title-main">High-area rapid printing</span>

High-area rapid printing (HARP) is a stereolithography (SLA) method that permits the continuous, high-throughput printing of large objects at rapid speeds. This method was introduced in 2019 by the Mirkin Research Group at Northwestern University in order to address drawbacks associated with traditional SLA manufacturing processes. Since the polymerization reactions involved in SLA are highly exothermic processes, the production of objects at high-throughputs is associated with high temperatures that can result in structural defects. HARP addresses this problem by utilizing a solid-liquid slip boundary that cools the resin by withdrawing heat from the system. This allows for large structures to be fabricated quickly without the temperature-associated defects inherent to other SLA processes.

3D drug printing or “3D printing of pharmaceuticals” is a technology that uses three-dimensional printing techniques to create customized pharmaceuticals, such as 3D printed tablets. It allows for precise control over the composition and dosage of drugs, enabling the production of personalized medicine tailored to an individual's specific needs, such as age, weight, and medical condition. This approach can be used to improve the effectiveness of drug therapies and to reduce side effects.

References

  1. ISO/ASTM 52900 Standard. Additive manufacturing. General principles. Fundamentals and vocabulary.
  2. 1 2 3 U.S. Patent 4,575,330 (“Apparatus for Production of Three-Dimensional Objects by Stereolithography”)
  3. "US Patent for Apparatus for production of three-dimensional objects by stereolithography Patent (Patent # 4,575,330 issued March 11, 1986) - Justia Patents Search". patents.justia.com. Retrieved 2019-04-24.
  4. 1 2 Gibson, Ian, and Jorge Bártolo, Paulo. “History of Stereolithography.” Stereolithography: Materials, Processes, and Applications. (2011): 41-43. Print. 7 October 2015.
  5. 1 2 3 4 "The Ultimate Guide to Stereolithography (SLA) 3D Printing". Formlabs . Formlabs, Inc. Retrieved 26 December 2017.
  6. Jean-Claude, Andre. "Disdpositif pour realiser un modele de piece industrielle". National De La Propriete Industrielle.
  7. Moussion, Alexandre (2014). "Interview d'Alain Le Méhauté, l'un des pères de l'impression 3D". Primante 3D.
  8. Mendoza, Hannah Rose (May 15, 2015). "Alain Le Méhauté, The Man Who Submitted Patent For SLA 3D Printing Before Chuck Hull". 3dprint.com. 3DR Holdings, LLC.
  9. "Stereolithography / 3D Printing / Additive Fabrication". Photopolymers. Savla Associates. Archived from the original on 14 February 2008. Retrieved 10 August 2017.
  10. 1 2 3 4 Hull, Chuck (2012). "On Stereolithography". Virtual and Physical Prototyping. 7 (3): 177. doi:10.1080/17452759.2012.723409. S2CID   219623097.
  11. "Our Story". 3D Systems. 3D Systems, Inc. 12 January 2017. Retrieved 10 August 2017.
  12. Jacobs, Paul F. “Introduction to Rapid Prototyping and Manufacturing.” Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography. 1st Ed. (1992): 4-6. Print. 7 October 2015.
  13. B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Toussaint, G. Wilfong and B. Zhu, "Feasibility of design in stereolithography," Algorithmica, Special Issue on Computational Geometry in Manufacturing, Vol. 19, No. 1/2, Sept/Oct, 1997, pp. 61–83.
  14. Crivello, James V., and Elsa Reichmanis. "Photopolymer Materials and Processes for Advanced Technologies." Chemistry of Materials Chem. Mater. 26.1 (2014): 533. Print.
  15. 1 2 Lipson, Hod, Francis C. Moon, Jimmy Hai, and Carlo Paventi. "3-D Printing the History of Mechanisms." Journal of Mechanical Design J. Mech. Des. (2004): 1029-033. Print.
  16. Fouassier, J. P. "Photopolymerization Reactions." The Wiley Database of Polymer Properties 3 (2003): 25. Print.
  17. 1 2 Ngo, Dong. "Formlabs Form 2 3D Printer review: An excellent 3D printer for a hefty price". CNET . Retrieved 3 August 2016. More specifically, as the print platform lowers itself into the resin glass tank, an ultraviolet laser light, from underneath the see-through tank, shines on it. (For this reason, SLA is sometimes called the laser 3D-printing technology.) Exposed to the laser light, the resin cures, solidifies and sticks to the platform. As more resin is exposed to the laser light, the pattern is created and joins the layer above. As more and more layers are being created, the build platform slowly -- very slowly -- moves upward, finally pulling the entire object out of the tank as the print process is finished.
  18. rsilvers. "On the difference between DLP and LCD based SLA printers | Matter Replicator" . Retrieved 2019-03-17.
  19. "The Ultimate Guide to Stereolithography (SLA) 3D Printing (Updated for 2020)". Formlabs. Retrieved 2020-10-21.
  20. Wu, B.; Sufi, A.; Biswas, R.G.; Hisatsune, A.; Moxley-Paquette, V.; Ning, P.; Soong, R.; Dicks, A.P. & Simpson, A.J. (2019). "Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin". ACS Sustainable Chemistry & Engineering. Vol. 8. pp. 1171–1177. doi:10.1021/acssuschemeng.9b06281. S2CID   214174209.
  21. Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C.K.; Dunn, M.L.; Wang, T. & Qi, H.J. (2017). "Recyclable 3D printing of vitrimer epoxy". Materials Horizons. Vol. 4. pp. 598–607. doi:10.1039/C7MH00043J.
  22. "SLA 3D printing materials compared". 3D Hubs. Retrieved 2020-10-21.
  23. Klimek, L; Klein HM; Schneider W; Mosges R; Schmelzer B; Voy ED (1993). "Stereolithographic modelling for reconstructive head surgery". Acta Oto-Rhino-Laryngologica Belgica. 47 (3): 329–34. PMID   8213143.
  24. Bouyssie, JF; Bouyssie S; Sharrock P; Duran D (1997). "Stereolithographic models derived from x-ray computed tomography. Reproduction accuracy". Surgical and Radiologic Anatomy. 19 (3): 193–9. PMID   9381322.
  25. Winder, RJ; Bibb, R (2009). "A Review of the Issues Surrounding Three-Dimensional Computed Tomography for Medical Modelling using Rapid Prototyping Techniques". Radiography. 16: 78–83. doi:10.1016/j.radi.2009.10.005. S2CID   72633062.
  26. Bibb, Richard (2006). Medical Modelling: the application of advanced design and development technologies in medicine . Cambridge: Woodhead Publishing Ltd. ISBN   978-1-84569-138-7.
  27. Winder, RJ; Bibb, R (2005). "Medical Rapid Prototyping Technologies: State of the Art and Current Limitations for Application in Oral and Maxillofacial Surgery". Journal of Oral and Maxillofacial Surgery. 63 (7): 1006–15. doi:10.1016/j.joms.2005.03.016. PMID   16003630.
  28. 1 2 "Applications of SLA". Stereolithography. Retrieved 7 October 2016.
  29. D'Urso, Paul; Effeney, David; Earwaker, W. John; Barker, Timothy; Redmond, Michael; Thompson, Robert; Tomlinson, Francis (April 2000). "Custom cranioplasty using stereolithography and acrylic". British Journal of Plastic Surgery. 53 (3): 200–204. doi: 10.1054/bjps.1999.3268 . PMID   10738323.
  30. Klein, H. M.; Schneider, W.; Alzen, G.; Voy, E.D.; Günther, R. W. (October 1992). "Pediatric craniofacial surgery: Comparison of milling and stereolithography for 3D model manufacturing". Pediatric Radiology. 22 (6): 458–460. doi:10.1007/BF02013512. PMID   1437375. S2CID   12820200.
  31. Grigoryan, Bagrat; Paulsen, Samantha J.; Corbett, Daniel C.; Sazer, Daniel W.; Fortin, Chelsea L.; Zaita, Alexander J.; Greenfield, Paul T.; Calafat, Nicholas J.; Gounley, John P.; Ta, Anderson H.; Johansson, Fredrik; Randles, Amanda; Rosenkrantz, Jessica E.; Louis-Rosenberg, Jesse D.; Galie, Peter A.; Stevens, Kelly R.; Miller, Jordan S. (3 May 2019). "AAAS". Science. 364 (6439): 458–464. doi:10.1126/science.aav9750. PMC   7769170 . PMID   31048486.
  32. Palermo, Elizabeth (16 July 2013). "What is Stereolithography?". Live Science . Purch Group . Retrieved 7 October 2016.
  33. 1 2 "Sterolithography". Proto3000. Proto3000 Inc. Retrieved 22 June 2018.
  34. "3D Print technologies". Luma 3D Print. LUMA-iD Ltd. Retrieved 22 June 2018.
  35. Prindle, Drew (6 June 2017). "With lasers and hot nylon, Formlabs just took 3D printing to a whole new level". Digital Trends . Designtechnica Corporation. Retrieved 24 September 2018.

Sources