Prototype

Last updated
Prototype signage on the Boise Greenbelt, testing for rust, paint-fastness, durability, etc. PrototypeBoiseGreenbeltSignage.jpg
Prototype signage on the Boise Greenbelt, testing for rust, paint-fastness, durability, etc.
A sign explaining prototype signage PrototypeBoiseGreenbeltSignageExplanation.jpg
A sign explaining prototype signage

A prototype is an early sample, model, or release of a product built to test a concept or process. [1] It is a term used in a variety of contexts, including semantics, design, electronics, and software programming. A prototype is generally used to evaluate a new design to enhance precision by system analysts and users. [2] Prototyping serves to provide specifications for a real, working system rather than a theoretical one. [3] In some design workflow models, creating a prototype (a process sometimes called materialization) is the step between the formalization and the evaluation of an idea. [4]

Contents

A prototype can also mean a typical example of something such as in the use of the derivation 'prototypical'. [5] This is a useful term in identifying objects, behaviours and concepts which are considered the accepted norm and is analogous with terms such as stereotypes and archetypes.

The word prototype derives from the Greek πρωτότυπονprototypon, "primitive form", neutral of πρωτότυποςprototypos, "original, primitive", from πρῶτος protos, "first" and τύπος typos, "impression". [1] [6]

Types

Prototypes explore different aspects of an intended design: [7]

Differences in creating a prototype vs. a final product

In general, the creation of prototypes will differ from creation of the final product in some fundamental ways:

Engineers and prototype specialists attempt to minimize the impact of these differences on the intended role for the prototype. For example, if a visual prototype is not able to use the same materials as the final product, they will attempt to substitute materials with properties that closely simulate the intended final materials.

Characteristics and limitations of prototypes

A prototype of the Polish economy hatchback car Beskid 106 designed in the 1980s PL Beskid106 car.jpg
A prototype of the Polish economy hatchback car Beskid 106 designed in the 1980s

Engineers and prototyping specialists seek to understand the limitations of prototypes to exactly simulate the characteristics of their intended design.

It is important to realize that by their very definition, prototypes will represent some compromise from the final production design. Due to differences in materials, processes and design fidelity, it is possible that a prototype may fail to perform acceptably whereas the production design may have been sound. A counter-intuitive idea is that prototypes may actually perform acceptably whereas the production design may be flawed since prototyping materials and processes may occasionally outperform their production counterparts.

In general, it can be expected that individual prototype costs will be substantially greater than the final production costs due to inefficiencies in materials and processes. Prototypes are also used to revise the design for the purposes of reducing costs through optimization and refinement. [15]

It is possible to use prototype testing to reduce the risk that a design may not perform as intended, however prototypes generally cannot eliminate all risk. There are pragmatic and practical limitations to the ability of a prototype to match the intended final performance of the product and some allowances and engineering judgement are often required before moving forward with a production design.

Building the full design is often expensive and can be time-consuming, especially when repeated several times—building the full design, figuring out what the problems are and how to solve them, then building another full design. As an alternative, rapid prototyping or rapid application development techniques are used for the initial prototypes, which implement part, but not all, of the complete design. This allows designers and manufacturers to rapidly and inexpensively test the parts of the design that are most likely to have problems, solve those problems, and then build the full design.

This counter-intuitive idea—that the quickest way to build something is, first to build something else—is shared by scaffolding and the telescope rule.

Engineering sciences

In technology research, a technology demonstrator is a prototype serving as proof-of-concept and demonstration model for a new technology or future product, proving its viability and illustrating conceivable applications.

In large development projects, a testbed is a platform and prototype development environment for rigorous experimentation and testing of new technologies, components, scientific theories and computational tools. [16]

With recent advances in computer modeling it is becoming practical to eliminate the creation of a physical prototype (except possibly at greatly reduced scales for promotional purposes), instead modeling all aspects of the final product as a computer model. An example of such a development can be seen in Boeing 787 Dreamliner, in which the first full sized physical realization is made on the series production line. Computer modeling is now being extensively used in automotive design, both for form (in the styling and aerodynamics of the vehicle) and in function—especially for improving vehicle crashworthiness and in weight reduction to improve mileage.

Mechanical and electrical engineering

The most common use of the word prototype is a functional, although experimental, version of a non-military machine (e.g., automobiles, domestic appliances, consumer electronics) whose designers would like to have built by mass production means, as opposed to a mockup, which is an inert representation of a machine's appearance, often made of some non-durable substance.

An electronics designer often builds the first prototype from breadboard or stripboard or perfboard, typically using "DIP" packages.

However, more and more often the first functional prototype is built on a "prototype PCB" almost identical to the production PCB, as PCB manufacturing prices fall and as many components are not available in DIP packages, but only available in SMT packages optimized for placing on a PCB.

Builders of military machines and aviation prefer the terms "experimental" and "service test". [17]

Electronics prototyping

A simple electronic circuit prototype on a breadboard Protoboard circuito multivibradores.jpg
A simple electronic circuit prototype on a breadboard
Example of prototype in optoelectronics (Texas Instruments, DLP Cinema Prototype System) Texas Instruments, DLP Cinema Prototype System, Mark V, Paris, 2000 - Philippe Binant Archives.jpg
Example of prototype in optoelectronics (Texas Instruments, DLP Cinema Prototype System)

In electronics, prototyping means building an actual circuit to a theoretical design to verify that it works, and to provide a physical platform for debugging it if it does not. The prototype is often constructed using techniques such as wire wrapping or using veroboard or breadboard, with the result being a circuit that is electrically identical to the design but not physically identical to the final product. [18]

Open-source tools like Fritzing exist to document electronic prototypes (especially the breadboard-based ones) and move toward physical production. Prototyping platforms such as Arduino also simplify the task of programming and interacting with a microcontroller. [19] The developer can choose to deploy their invention as-is using the prototyping platform, or replace it with only the microcontroller chip and the circuitry that is relevant to their product.

A technician can quickly build a prototype (and make additions and modifications) using these techniques, but for volume production it is much faster and usually cheaper to mass-produce custom printed circuit boards than to produce these other kinds of prototype boards. The proliferation of quick-turn PCB fabrication and assembly companies has enabled the concepts of rapid prototyping to be applied to electronic circuit design. It is now possible, even with the smallest passive components and largest fine-pitch packages, to have boards fabricated, assembled, and even tested in a matter of days.

Computer programming and computer science

Prototype software is often referred to as alpha grade, meaning it is the first version to run. Often only a few functions are implemented, the primary focus of the alpha is to have a functional base code on to which features may be added. Once alpha grade software has most of the required features integrated into it, it becomes beta software for testing of the entire software and to adjust the program to respond correctly during situations unforeseen during development. [20]

Often the end users may not be able to provide a complete set of application objectives, detailed input, processing, or output requirements in the initial stage. After the user evaluation, another prototype will be built based on feedback from users, and again the cycle returns to customer evaluation. The cycle starts by listening to the user, followed by building or revising a mock-up, and letting the user test the mock-up, then back. There is now a new generation of tools called Application Simulation Software which help quickly simulate application before their development. [21]

Extreme programming uses iterative design to gradually add one feature at a time to the initial prototype. [22]

Other programming/computing concepts

In many programming languages, a function prototype is the declaration of a subroutine or function (and should not be confused with software prototyping). This term is rather C/C++-specific; other terms for this notion are signature, type and interface. In prototype-based programming (a form of object-oriented programming), new objects are produced by cloning existing objects, which are called prototypes. [23]

The term may also refer to the Prototype Javascript Framework.

Additionally, the term may refer to the prototype design pattern.

Continuous learning approaches within organizations or businesses may also use the concept of business or process prototypes through software models.

The concept of prototypicality is used to describe how much a website deviates from the expected norm, and leads to a lowering of user preference for that site's design. [24]

Data prototyping

A data prototype is a form of functional or working prototype. [25] The justification for its creation is usually a data migration, data integration or application implementation project and the raw materials used as input are an instance of all the relevant data which exists at the start of the project.

The objectives of data prototyping are to produce:

To achieve this, a data architect uses a graphical interface to interactively develop and execute transformation and cleansing rules using raw data. The resultant data is then evaluated and the rules refined. Beyond the obvious visual checking of the data on-screen by the data architect, the usual evaluation and validation approaches are to use Data profiling software [26] and then to insert the resultant data into a test version of the target application and trial its use.

Scale modeling

A scale model of an Douglas SB2D Destroyer in a wind tunnel for testing NACA Ames 7x10 Wind Tunnel - GPN-2000-001822.jpg
A scale model of an Douglas SB2D Destroyer in a wind tunnel for testing

In the field of scale modeling (which includes model railroading, vehicle modeling, airplane modeling, military modeling, etc.), a prototype is the real-world basis or source for a scale model—such as the real EMD GP38-2 locomotive—which is the prototype of Athearn's (among other manufacturers) locomotive model. Technically, any non-living object can serve as a prototype for a model, including structures, equipment, and appliances, and so on, but generally prototypes have come to mean full-size real-world vehicles including automobiles (the prototype 1957 Chevy has spawned many models), military equipment (such as M4 Shermans, a favorite among US Military modelers), railroad equipment, motor trucks, motorcycles, and space-ships (real-world such as Apollo/Saturn Vs, or the ISS). As of 2014, basic rapid prototype machines (such as 3D printers) cost about $2,000, but larger and more precise machines can cost as much as $500,000. [27]

Metrology

In the science and practice of metrology, a prototype is a human-made object that is used as the standard of measurement of some physical quantity to base all measurement of that physical quantity against. Sometimes this standard object is called an artifact. In the International System of Units (SI), there remains no prototype standard since May 20, 2019. Before that date, the last prototype used was the international prototype of the kilogram, a solid platinum-iridium cylinder kept at the Bureau International des Poids et Mesures (International Bureau of Weights and Measures) in Sèvres France (a suburb of Paris) that by definition was the mass of exactly one kilogram. Copies of this prototype are fashioned and issued to many nations to represent the national standard of the kilogram and are periodically compared to the Paris prototype. Now the kilogram is redefined in such a way that the Planck constant h is prescribed a value of exactly 6.62607015×10−34 joule-second (J⋅s)

Until 1960, the meter was defined by a platinum-iridium prototype bar with two marks on it (that were, by definition, spaced apart by one meter), the international prototype of the metre, and in 1983 the meter was redefined to be the distance in free space covered by light in 1/299,792,458 of a second (thus defining the speed of light to be 299,792,458 meters per second).

Natural sciences

In many sciences, from pathology to taxonomy, prototype refers to a disease, species, etc. which sets a good example for the whole category. In biology, prototype is the ancestral or primitive form of a species or other group; an archetype. [28] For example, the Senegal bichir is regarded as the prototypes of its genus, Polypterus .

See also

Related Research Articles

Computer-aided design Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. Designs made through CAD software are helpful in protecting products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The term CADD is also used.

Systems design is the process of defining the architecture, product design, modules, interfaces, and data for a system to satisfy specified requirements. Systems design could be seen as the application of systems theory to product development. There is some overlap with the disciplines of systems analysis, systems architecture and systems engineering.

Breadboard Board with embedded spring clips that allows for electronics to be wired without soldering

A breadboard, or protoboard, is a construction base for prototyping of electronics. Originally the word referred to a literal bread board, a polished piece of wood used when slicing bread. In the 1970s the solderless breadboard became available and nowadays the term "breadboard" is commonly used to refer to these.

Rapid-application development (RAD), also called rapid-application building (RAB), is both a general term for adaptive software development approaches, and the name for James Martin's method of rapid development. In general, RAD approaches to software development put less emphasis on planning and more emphasis on an adaptive process. Prototypes are often used in addition to or sometimes even instead of design specifications.

Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining applications, frameworks, or other software components. Software development is a process of writing and maintaining the source code, but in a broader sense, it includes all that is involved between the conception of the desired software through to the final manifestation of the software, sometimes in a planned and structured process. Therefore, software development may include research, new development, prototyping, modification, reuse, re-engineering, maintenance, or any other activities that result in software products.

Usability Capacity of a system for its users to perform tasks

Usability can be described as the capacity of a system to provide a condition for its users to perform the tasks safely, effectively, and efficiently while enjoying the experience. In software engineering, usability is the degree to which a software can be used by specified consumers to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use.

Requirements analysis Engineering process

In systems engineering and software engineering, requirements analysis focuses on the tasks that determine the needs or conditions to meet the new or altered product or project, taking account of the possibly conflicting requirements of the various stakeholders, analyzing, documenting, validating and managing software or system requirements.

Systems development life cycle Systems engineering term

In systems engineering, information systems and software engineering, the software development life cycle (SDLC), also referred to as the application development life-cycle, is a process for planning, creating, testing, and deploying an information system. The systems development life cycle concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.

Product lifecycle

In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design, and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes and business systems and provides a product information backbone for companies and their extended enterprise.

Proof of concept (POC), also known as proof of principle, is a realization of a certain method or idea in order to demonstrate its feasibility, or a demonstration in principle with the aim of verifying that some concept or theory has practical potential. A proof of concept is usually small and may or may not be complete.

In software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle. In simple terms, software verification is: "Assuming we should build X, does our software achieve its goals without any bugs or gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the high-level requirements?"

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing.

In the context of software engineering, software quality refers to two related but distinct notions:

Iterative design is a design methodology based on a cyclic process of prototyping, testing, analyzing, and refining a product or process. Based on the results of testing the most recent iteration of a design, changes and refinements are made. This process is intended to ultimately improve the quality and functionality of a design. In iterative design, interaction with the designed system is used as a form of research for informing and evolving a project, as successive versions, or iterations of a design are implemented.

User interface design

User interface (UI) design or user interface engineering is the design of user interfaces for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing usability and the user experience. The goal of user interface design is to make the user's interaction as simple and efficient as possible, in terms of accomplishing user goals.

Mockup

In manufacturing and design, a mockup, or mock-up, is a scale or full-size model of a design or device, used for teaching, demonstration, design evaluation, promotion, and other purposes. A mockup may be a prototype if it provides at least part of the functionality of a system and enables testing of a design. Mock-ups are used by designers mainly to acquire feedback from users. Mock-ups address the idea captured in a popular engineering one-liner: "You can fix it now on the drafting board with an eraser or you can fix it later on the construction site with a sledge hammer".

In software engineering, a software development process is the process of dividing software development work into smaller, parallel or sequential steps or subprocesses to improve design, product management, and project management. It is also known as a software development life cycle (SDLC). The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.

Business requirements, also known as stakeholder requirements specifications (StRS), describe the characteristics of a proposed system from the viewpoint of the system's end user like a CONOPS. Products, systems, software, and processes are ways of how to deliver, satisfy, or meet business requirements. Consequently, business requirements are often discussed in the context of developing or procuring software or other systems.

Predictive engineering analytics (PEA) is a development approach for the manufacturing industry that helps with the design of complex products. It concerns the introduction of new software tools, the integration between those, and a refinement of simulation and testing processes to improve collaboration between analysis teams that handle different applications. This is combined with intelligent reporting and data analytics. The objective is to let simulation drive the design, to predict product behavior rather than to react on issues which may arise, and to install a process that lets design continue after product delivery.

Design prototyping in its broader definition comprises the actions to make, test and analyse a prototype, a model or a mockup according to one or various purposes in different stages of the design process. Other definitions consider prototyping as the methods or techniques for making a prototype, or a stage in the design process. The concept of prototyping in design disciplines' literature is also related to the concepts of experimentation, and Research through Design (RtD).

References

  1. 1 2 Blackwell, A. H.; Manar, E., eds. (2015). "Prototype". UXL Encyclopedia of Science (3rd ed.). Retrieved 13 July 2015.
  2. Gero, John S. (1990-12-15). "Design Prototypes: A Knowledge Representation Schema for Design". AI Magazine. 11 (4): 26. ISSN   0738-4602.
  3. "Prototyping Definition". PC Magazine. Retrieved 2012-05-03.
  4. Marcelo M. Soares; Francesco Rebelo (15 August 2012). Advances in Usability Evaluation. CRC Press. p. 482. ISBN   978-1-4398-7025-9.
  5. "prototypical (adjective) definition and synonyms | Macmillan Dictionary". www.macmillandictionary.com. Retrieved 2019-12-15.
  6. Harper, Douglas. "prototype (n.)". Online Etymology Dictionary.
  7. Lai, Chun Sing; Locatelli, Giorgio (February 2021). "Valuing the option to prototype: A case study with Generation Integrated Energy Storage". Energy. 217: 119290. doi: 10.1016/j.energy.2020.119290 .
  8. "Proof-of-Principle Prototype". 3d-printing-expert.com. Retrieved 2019-12-15.
  9. "What Is A Working Prototype". product-design-prototype-experts.com. Retrieved 2019-12-15.
  10. "What Is A Visual Prototype". 3d-printing-expert.com. Retrieved 2019-12-15.
  11. "User Experience Prototype". 3d-printing-expert.com. Retrieved 2019-12-15.
  12. Somiya, Shigeyuki, ed. (2013). Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (2nd ed.). Academic Press. p. 491. ISBN   9780123854704.
  13. "Prototypes: General Categories". ThomasNet. Retrieved 13 July 2015.
  14. "Prototyping". Brown University - User Experience, Independent Study Project. Retrieved 2015-02-24.
  15. Gschwind, M.; Salapura, V.; Maurer, D. (April 2001). "FPGA prototyping of a RISC processor core for embedded applications". IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 9 (2): 241–250. doi:10.1109/92.924027. ISSN   1063-8210.
  16. Simon, Heilesen (2007-01-31). Designing for Networked Communications: Strategies and Development: Strategies and Development. Idea Group Inc (IGI). ISBN   9781599040714.
  17. Willcox, Cornélis De Witt; Stuart, Edwin Roy (1918). International Military Digest. Cumulative digest corporation.
  18. "PCB Rapid Prototype". www.wellpcb.com. WellPCB. Retrieved 2017-06-01.
  19. Trevennor, Alan (2012-10-17). Practical AVR Microcontrollers: Games, Gadgets, and Home Automation with the Microcontroller Used in the Arduino. Apress. ISBN   9781430244462.
  20. "Alpha Version Definition". PC Magazine. Retrieved 2012-05-03.
  21. "Baseblock Software LLC, Software for the Motor Control Industry". www.baseblock.com. Retrieved 2019-12-15.
  22. Garvin, David A. (1993-07-01). "Building a Learning Organization". Harvard Business Review (July–August 1993). ISSN   0017-8012 . Retrieved 2019-12-15.
  23. "5.5 Function Prototypes". HP. Retrieved 2012-05-03.
  24. Tuch, Alexandre N.; Presslaber, Eva E.; Stöcklin, Markus; Opwis, Klaus; Bargas-Avila, Javier A. (2012-11-01). "The role of visual complexity and prototypicality regarding first impression of websites: Working towards understanding aesthetic judgments". International Journal of Human-Computer Studies. 70 (11): 794–811. doi:10.1016/j.ijhcs.2012.06.003. ISSN   1071-5819.
  25. Introduction to Engineering: Engineering Fundamentals and Concepts: E-Book. Türker Canbazoğlu. 2018-12-11.
  26. Abedjan, Ziawasch (2018). Zimányi, Esteban (ed.). "An Introduction to Data Profiling". Business Intelligence and Big Data. Lecture Notes in Business Information Processing. Springer International Publishing. 324: 1–20. doi:10.1007/978-3-319-96655-7_1. ISBN   978-3-319-96655-7.
  27. "Archived copy". Archived from the original on 2013-10-28. Retrieved 2013-10-30.CS1 maint: archived copy as title (link)
  28. prototype. CollinsDictionary.com. Collins English Dictionary - Complete & Unabridged 11th Edition. Retrieved December 07, 2012.