Continuous design

Last updated

Evolutionary design, continuous design, evolutive design, or incremental design is directly related to any modular design application, in which components can be freely substituted to improve the design, modify performance, or change another feature at a later time.

Contents

Informatics

In particular, it applies (with the name continuous design) to software development. In this field it is a practice of creating and modifying the design of a system as it is developed, rather than purporting to specify the system completely before development starts (as in the waterfall model). Continuous design was popularized by extreme programming. Continuous design also uses test driven development and refactoring. Martin Fowler wrote a popular book called Refactoring, as well as a popular article entitled "Is Design Dead?", that talked about continuous/evolutionary design. James Shore wrote an article in IEEE titled "Continuous Design".

Industrial design

Modular design states that a product is made of subsystems that are joined together to create a full product. [1] The above design model defined in electronics and evolved in industrial design into well consolidated industrial standards related to platform concept and its evolution. [2]

See also

Related Research Articles

Integrated development environment Software application used to develop software

An integrated development environment (IDE) is a software application that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of at least a source code editor, build automation tools and a debugger. Some IDEs, such as NetBeans and Eclipse, contain the necessary compiler, interpreter, or both; others, such as SharpDevelop and Lazarus, do not.

In computer programming and software design, code refactoring is the process of restructuring existing computer code—changing the factoring—without changing its external behavior. Refactoring is intended to improve the design, structure, and/or implementation of the software, while preserving its functionality. Potential advantages of refactoring may include improved code readability and reduced complexity; these can improve the source code's maintainability and create a simpler, cleaner, or more expressive internal architecture or object model to improve extensibility. Another potential goal for refactoring is improved performance; software engineers face an ongoing challenge to write programs that perform faster or use less memory.

Iterative and incremental development Types of methodology to develop a system through repeated cycles (iterative) and in smaller portions at a time

Iterative and incremental development is any combination of both iterative design or iterative method and incremental build model for development.

Software design is the process by which an agent creates a specification of a software artifact intended to accomplish goals, using a set of primitive components and subject to constraints. Software design may refer to either "all the activity involved in conceptualizing, framing, implementing, commissioning, and ultimately modifying complex systems" or "the activity following requirements specification and before programming, as ... [in] a stylized software engineering process."

Rapid application development (RAD), also called rapid application building (RAB), is both a general term for adaptive software development approaches, and the name for James Martin's method of rapid development. In general, RAD approaches to software development put less emphasis on planning and more emphasis on an adaptive process. Prototypes are often used in addition to or sometimes even instead of design specifications.

The following outline is provided as an overview of and topical guide to software engineering:

Test-driven development (TDD) is a software development process relying on software requirements being converted to test cases before software is fully developed, and tracking all software development by repeatedly testing the software against all test cases. This is as opposed to software being developed first and test cases created later.

Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a system into varying degrees of interdependence and independence across and "hide the complexity of each part behind an abstraction and interface". However, the concept of modularity can be extended to multiple disciplines, each with their own nuances. Despite these nuances, consistent themes concerning modular systems can be identified.

In software engineering, service-oriented architecture (SOA) is an architectural style that supports service orientation. By consequence, it is as well applied in the field of software design where services are provided to the other components by application components, through a communication protocol over a network. A service is a discrete unit of functionality that can be accessed remotely and acted upon and updated independently, such as retrieving a credit card statement online. SOA is also intended to be independent of vendors, products and technologies.

In software testing, test automation is the use of software separate from the software being tested to control the execution of tests and the comparison of actual outcomes with predicted outcomes. Test automation can automate some repetitive but necessary tasks in a formalized testing process already in place, or perform additional testing that would be difficult to do manually. Test automation is critical for continuous delivery and continuous testing.

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing.

Open-design movement Movement for product development with publicly shared designs

The open-design movement involves the development of physical products, machines and systems through use of publicly shared design information. This includes the making of both free and open-source software (FOSS) as well as open-source hardware. The process is generally facilitated by the Internet and often performed without monetary compensation. The goals and philosophy of the movement are identical to that of the open-source movement, but are implemented for the development of physical products rather than software. Open design is a form of co-creation, where the final product is designed by the users, rather than an external stakeholder such as a private company.

ISO 10303 is an ISO standard for the computer-interpretable representation and exchange of product manufacturing information. It's an ASCII-based format. Its official title is: Automation systems and integration — Product data representation and exchange. It is known informally as "STEP", which stands for "STandard for the Exchange of Product model data". ISO 10303 can represent 3D objects in Computer-aided design (CAD) and related information.

Modular design, or modularity in design, is a design principle that subdivides a system into smaller parts called modules, which can be independently created, modified, replaced, or exchanged with other modules or between different systems.

Modularity refers to the ability of a system to organize discrete, individual units that can overall increase the efficiency of network activity and, in a biological sense, facilitates selective forces upon the network. Modularity is observed in all model systems, and can be studied at nearly every scale of biological organization, from molecular interactions all the way up to the whole organism.

Software evolution is the continual development of a piece of software after its initial release to address changing stakeholder and/or market requirements. Software evolution is important because organizations invest large amounts of money in their software and are completely dependent on this software. Software evolution helps software adapt to changing businesses requirements, fix defects, and integrate with other changing systems in a software system environment.

Morphogenetic robotics generally refers to the methodologies that address challenges in robotics inspired by biological morphogenesis.

Extreme programming Software development methodology

Extreme programming (XP) is a software development methodology which is intended to improve software quality and responsiveness to changing customer requirements. As a type of agile software development, it advocates frequent "releases" in short development cycles, which is intended to improve productivity and introduce checkpoints at which new customer requirements can be adopted.

A microservice architecture – a variant of the service-oriented architecture (SOA) structural style – arranges an application as a collection of loosely-coupled services. In a microservices architecture, services are fine-grained and the protocols are lightweight. The goal is that teams can bring their services to life independent of others. Loose coupling reduces all types of dependencies and the complexities around it, as service developers do not need to care about the users of the service, they do not force their changes onto users of the service. Therefore it allows organizations developing software to grow fast, and big, as well as use off the shelf services easier. Communication requirements are less. But it comes at a cost to maintain the decoupling. Interfaces need to be designed carefully and treated as a public API. Techniques like having multiple interfaces on the same service, or multiple versions of the same service, to not break existing users code.

Evolutionary database design involves incremental improvements to the database schema so that it can be continuously updated with changes, reflecting the customer's requirements. People across the globe work on the same piece of software at the same time hence, there is a need for techniques that allow a smooth evolution of database as the design develops. Such methods utilize automated refactoring and continuous integration so that it supports agile methodologies for software development. These development techniques are applied on systems that are in pre-production stage as well on systems that have already been released. These techniques not only cover relevant changes in the database schema according to customer's changing needs, but also migration of modified data into the database and also customizing the database access code accordingly without changing the data semantics.

References

  1. Ulrich K (1995) The role of product architecture in the manufacturing firm. Res Policy 24(3):419–441. doi:10.1016/0048-7333(94)00775-3, 1995
  2. Muffatto M (1999) Platform strategies in international new product development. Int J Opera Prod Manag 19(5/6):449–460. doi:10.1108/01443579910260766