This article needs additional citations for verification .(August 2020) |
Ecological design or ecodesign is an approach to designing products and services that gives special consideration to the environmental impacts of a product over its entire lifecycle. Sim Van der Ryn and Stuart Cowan define it as "any form of design that minimizes environmentally destructive impacts by integrating itself with living processes." [1] Ecological design can also be defined as the process of integrating environmental considerations into design and development with the aim of reducing environmental impacts of products through their life cycle. [2]
The idea helps connect scattered efforts to address environmental issues in architecture, agriculture, engineering, and ecological restoration, among others. The term was first used by John Button in 1998. [ citation needed ] Ecological design was originally conceptualized as the “adding in “of environmental factor to the design process, but later turned to the details of eco-design practice, such as product system or individual product or industry as a whole. [3] With the inclusion of life cycle modeling techniques, ecological design was related to the new interdisciplinary subject of industrial ecology.
As the whole product's life cycle should be regarded in an integrated perspective, representatives from advanced product design, production, marketing, purchasing, and project management should work together on the Ecodesign of a further developed or new product. Together, they have the best chance to predict the holistic effects of changes of the product and their environmental impact. Considerations of ecological design during product development is a proactive approach to eliminate environmental pollution due to product waste. [4]
An eco-design product may have a cradle-to-cradle life cycle ensuring zero waste is created in the whole process. By mimicking life cycles in nature, eco-design can serve as a concept to achieve a truly circular economy.
Environmental aspects which ought to be analysed for every stage of the life cycle are:
Waste (hazardous waste and other waste defined in environmental legislation) is only an intermediate step and the final emissions to the environment (e.g. methane and leaching from landfills) are inventoried. All consumables, materials and parts used in the life cycle phases are accounted for, and all indirect environmental aspects linked to their production.
The environmental aspects of the phases of the life cycle are evaluated according to their environmental impact on the basis of a number of parameters, such as extent of environmental impact, potential for improvement, or potential of change.
According to this ranking the recommended changes are carried out and reviewed after a certain time.
As the impact of design and the design process has evolved, designers have become more aware of their responsibilities. The design of a product unrelated to its sociological, psychological, or ecological surroundings is no longer possible or acceptable in modern society. [5]
With respect to these concepts, online platforms dealing in only Ecodesign products are emerging, with the additional sustainable purpose of eliminating all unnecessary distribution steps between the designer and the final customer.
Another area of ecological design is through designing with urban ecology in mind, similar to conservation biology, but designers take the natural world into account when designing landscapes, buildings. or anything that impacts interactions with wildlife. [6] A such example in architecture is that of green roofs, offices, where these are spaces that nature can interact with the man made environment but also where humans benefit from these design technologies. Another area is with landscape architecture in the creation of natural gardens, and natural landscapes, these allow for natural wildlife to thrive in urban centres.
Since the Industrial Revolution, design fields have been criticized for employing unsustainable practices. The architect-designer Victor Papanek (1923–1998) suggested that industrial design has murdered by creating new species of permanent garbage and by choosing materials and processes that pollute the air. [7] Papanek states that the designer-planner shares responsibility for nearly all of our products and tools, and hence, nearly all of our environmental mistakes. [8] To address these issues, R. Buckminster Fuller (1895–1983) demonstrated how design could play a central role in identifying and addressing major world problems. Fuller was concerned with the Earth's finite energy resources and natural resources, and how to integrate machine tools into efficient systems of industrial production. [9] He promoted the principle of "ephemeralization", a term he coined himself to do "more with less" and increase technological efficiency. [10] This concept is key in ecological design that works towards sustainability. In 1986, the design theorist Clive Dilnot argued that design must once again become a means of ordering the world rather than merely of shaping products. [11]
Despite rising ecological awareness in the 20th century, unsustainable design practices continued. The 1992 conference "The Agenda 21: The Earth Summit Strategy to Save Our Planet” put forward a proposition that the world is on a path of energy production and consumption that cannot be sustained. The report drew attention to individuals and groups around the world who have a set of principles to develop strategies for change among many aspects of society, including design. More broadly, the conference emphasized that designers must address human issues. These problems included six items: quality of life, efficient use of natural resources, protecting the global commons, managing human settlements, the use of chemicals and the management of human industrial waste, and fostering sustainable economic growth on a global scale. [12]
Though Western society has only recently espoused ecological design principles, indigenous peoples have long coexisted with the environment. Scholars have discussed the importance of acknowledging and learning from Indigenous peoples and cultures to move towards a more sustainable society. Indigenous knowledge is valuable in ecological design [13] as well as other ecological realms such as restoration ecology. [14]
These concepts of design tie into the concept of sustainable development. The three pillars addressed in sustainable development are: ecological integrity, social equity, and economic security. [15] Gould and Lewis argue in their book Green Gentrification that urban redevelopment and projects have neglected the social equity pillar, resulting in development that focuses on profit and deepens social inequality. One result of this is green or environmental gentrification. This process is often the result of good intentions to clean up an area and provide green amenities, but without setting protections in place for existing residents to ensure they are not forced out by increased property values and influxes of new wealthier residents.
Unhoused persons are one particularly vulnerable affected population of environmental gentrification. Government environmental planning agendas related to green spaces may lead to the displacement and exclusion of unhoused individuals, under a guise of pro-environmental ethics. [16] One example of this type of design is hostile architecture in urban parks. Park benches designed with metal arched bars to prevent a person from laying on the bench restricts who benefits from green space and ecological design.
Life Cycle Analysis (LCA) is a tool used to understand the how a product impacts the environment at each stage of its life cycle, from raw input to the end of the products' life cycle. Life Cycle Cost (LCC) is an economic metric that "identifies the minimum cost for each life cycle stage which would be presented in the aspects of material, procedures, usage, end-of-life and transportation." [17] LCA and LCC can be used to identify particular aspects of a product that is particularly environmentally damaging and reduce those impacts. For example, LCA might reveal that the fabrication stage of a product's life cycle is particularly harmful for the environment and switching to a different material can drive emissions down. However, switching material may increase environmental effects later in a products life time; LCA takes into account the whole life cycle of a product and can alert designers to the many impacts of a product, which is why LCA is important.
Some of the factors that LCA takes into account are the costs and emissions of:
End-of-life, or disposal, is an important aspect of LCA as waste management is a global issue, with trash found everywhere around the world from the ocean to within organisms. A framework was developed to assess sustainability of waste sites titled EcoSWaD, Ecological Sustainability of Waste Disposal Sites. [18] The model focuses on five major concerns: (1) location suitability, (2) operational sustainability, (3) environmental sustainability, (4) socioeconomic sustainability, and (5) site capacity sustainability. This framework was developed in 2021, as such most established waste disposal sites do not take these factors into consideration. Waste facilities such as dumps and incinerators are disproportionately placed in areas with low education and income levels, burdening these vulnerable populations with pollution and exposure to hazardous materials. [19] For example, legislation in the United States, such as the Cerrell Report, has encouraged these types of classist and racist processes for siting incinerators. [20] Internationally, there has been a global 'race to the bottom' in which polluting industries move to areas with fewer restrictions and regulations on emissions, usually in developing countries, disproportionately exposing vulnerable and impoverished populations to environmental threats. [21] These factors make LCA and sustainable waste sites important on a global scale.
Related to ecological urbanism, Urban Ecological Design integrates aesthetic, social, and ecological concerns into an urban design framework that seeks to increase ecological functioning, sustainably generate and consume resources, and create resilient built environments and the infrastructure to maintain them. Urban ecological design is inherently interdisciplinary: it integrates multiple academic and professional fields including environmental studies, sociology, justice studies, urban ecology, landscape ecology, urban planning, architecture, and landscape architecture. Urban ecological design aims to solve issues related to multiple large-scale trends including the growth of urban areas, climate change, and biodiversity loss. Urban ecological design has been described as a "process model" contrasted to a normative approach that outlines principles of design. [22] Urban ecological design blends a multitude of frameworks and approaches to create solutions to these issues by improving Urban resilience, sustainable use and management of resources, and integrating ecological processes into the urban landscape.
EcoMaterials, such as the use of local raw materials, are less costly and reduce the environmental costs of shipping, fuel consumption, and CO₂ emissions generated from transportation. Certified green building materials, such as wood from sustainably managed forest plantations, with accreditations from companies such as the Forest Stewardship Council (FSC), or the Pan-European Forest Certification Council (PEFCC), can be used.
Several other types of components and materials can be used in sustainable objects and buildings. Recyclable and recycled materials are commonly used in construction, but it is important that they don't generate any waste during manufacture or after their life cycle ends. Reclaimed materials such as timber at a construction site or junkyard can be given a second life by reusing them as support beams in a new building or as furniture. Stones from an excavation can be used in a retaining wall. The reuse of these items means that less energy is consumed in making new products and a new natural aesthetic quality is achieved.
Off-grid homes only use clean electric power. They are completely separated and disconnected from the conventional electricity grid and receive their power supply by harnessing active or passive energy systems. Off-grid homes are also not served by other publicly or privately managed utilities, such as water and gas in addition to electricity.
Increased applications of ecological design have gone along with the rise of environmental art. Recycling has been used in art since the early part of the 20th century, when cubist artist Pablo Picasso (1881–1973) and Georges Braque (1882–1963) created collages from newsprints, packaging and other found materials. Contemporary artists have also embraced sustainability, both in materials and artistic content. [23] One modern artist who embraces the reuse of materials is Bob Johnson, creator of River Cubes. Johnson promotes "artful trash management" by creating sculptures from garbage and scraps found in rivers. Garbage is collected, then compressed into a cube that represents the place and people it came from. [24]
There are some clothing companies that are using several ecological design methods to change the future of the textile industry into a more environmentally friendly one. Some approaches include recycling used clothing to minimize the use of raw resources, using biodegradable textile materials to reduce the lasting impact on the environment, and using plant dyes instead of poisonous chemicals to improve the appearance and impact of fabric. [25]
The same principle can be used inside the home, where found objects are now displayed with pride and collecting certain objects and materials to furnish a home is now admired rather than looked down upon. Take for example the electric wire reel reused as a center table.
There is a huge demand in Western countries to decorate homes in a "green" style. [26] A lot of effort is placed into recycled product design and the creation of a natural look. This ideal is also a part of developing countries, although their use of recycled and natural products is often based in necessity and wanting to get maximum use out of materials. The focus on self-regulation and personal lifestyle changes (including decorating as well as clothing and other consumer choices) has shifted questions of social responsibility away from government and corporations and onto the individual. [26]
Biophilic design is a concept used within the building industry to increase occupant connectivity to the natural environment through the use of direct nature, indirect nature, and space and place conditions.
These systems use the principle of harnessing the power generated from renewable and inexhaustible sources of energy, for example; solar, wind, thermal, biomass, geothermal, and hydropower energy.
Solar power is a widely known and used renewable energy source. An increase in technology has allowed solar power to be used in a wide variety of applications. Two types of solar panels generate heat into electricity. Thermal solar panels reduce or eliminate the consumption of gas and diesel, and reduce CO₂ emissions. Photovoltaic panels convert solar radiation into an electric current which can power any appliance. This is a more complex technology and is generally more expensive to manufacture than thermal panels.
Biomass is the energy source created from organic materials generated through a forced or spontaneous biological process.
Geothermal energy is obtained by harnessing heat from the ground. This type of energy can be used to heat and cool homes. It eliminates dependence on external energy and generates minimum waste. It is also hidden from view as it is placed underground, making it more aesthetically pleasing and easier to incorporate in a design.
Wind turbines are a useful application for areas without immediate conventional power sources, e.g., rural areas with schools and hospitals that need more power. Wind turbines can provide up to 30% of the energy consumed by a household but they are subject to regulations and technical specifications, such as the maximum distance at which the facility is located from the place of consumption and the power required and permitted for each property.
Water recycling systems such as rainwater tanks that harvest water for multiple purposes. Reusing grey water generated by households are a useful way of not wasting drinking water.
Hydropower , also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. Hydropower is an attractive alternative to fossil fuels as it does not directly produce carbon dioxide or other atmospheric pollutants and it provides a relatively consistent source of power.
Buildings that integrate passive energy systems (bioclimatic buildings) are heated using non-mechanical methods, thereby optimizing natural resources.
Passive daylighting involves the positioning and location of a building to allow for and make use of sunlight throughout the whole year. By using the sun's rays, thermal mass is stored in the building materials such as concrete and can generate enough heat for a room.
Green roofs are roofs that are partially or completely covered with plants or other vegetation. Green roofs are passive systems in that they create insulation that helps regulate the building's temperature. They also retain water, providing a water recycling system, and can provide soundproofing.
Ecodesign research focuses primarily on barriers to implementation, ecodesign tools and methods, and the intersection of ecodesign with other research disciplines. [27]
Several review articles provide an overview of the evolution and current state of ecodesign research: [28] [29] [30] [31] [32]
Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into by-products, products and services which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.
Sustainable living describes a lifestyle that attempts to reduce the use of Earth's natural resources by an individual or society. Its practitioners often attempt to reduce their ecological footprint by altering their home designs and methods of transportation, energy consumption and diet. Its proponents aim to conduct their lives in ways that are consistent with sustainability, naturally balanced, and respectful of humanity's symbiotic relationship with the Earth's natural ecology. The practice and general philosophy of ecological living closely follows the overall principles of sustainable development.
Life cycle assessment (LCA), also known as life cycle analysis, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. For instance, in the case of a manufactured product, environmental impacts are assessed from raw material extraction and processing (cradle), through the product's manufacture, distribution and use, to the recycling or final disposal of the materials composing it (grave).
Green building refers to both a structure and the application of processes that are environmentally responsible and resource-efficient throughout a building's life-cycle: from planning to design, construction, operation, maintenance, renovation, and demolition. This requires close cooperation of the contractor, the architects, the engineers, and the client at all project stages. The Green Building practice expands and complements the classical building design concerns of economy, utility, durability, and comfort. Green building also refers to saving resources to the maximum extent, including energy saving, land saving, water saving, material saving, etc., during the whole life cycle of the building, protecting the environment and reducing pollution, providing people with healthy, comfortable and efficient use of space, and being in harmony with nature. Buildings that live in harmony; green building technology focuses on low consumption, high efficiency, economy, environmental protection, integration and optimization.’
A sustainable city, eco-city, or green city is a city designed with consideration for the social, economic, and environmental impact, as well as a resilient habitat for existing populations. This is done in a way that does not compromise the ability of future generations to experience the same. The UN Sustainable Development Goal 11 defines sustainable cities as those that are dedicated to achieving green sustainability, social sustainability and economic sustainability. In accordance with the UN Sustainable Development Goal 11, a sustainable city is defined as one that is dedicated to achieving green, social, and economic sustainability. They are committed to this objective by facilitating opportunities for all through a design that prioritizes inclusivity as well as maintaining a sustainable economic growth. Furthermore, the objective is to minimize the inputs of energy, water, and food, and to drastically reduce waste, as well as the outputs of heat, air pollution. Richard Register, a visual artist, first coined the term ecocity in his 1987 book Ecocity Berkeley: Building Cities for a Healthy Future, where he offers innovative city planning solutions that would work anywhere. Other leading figures who envisioned sustainable cities are architect Paul F Downton, who later founded the company Ecopolis Pty Ltd, as well as authors Timothy Beatley and Steffen Lehmann, who have written extensively on the subject. The field of industrial ecology is sometimes used in planning these cities.
Life-cycle engineering (LCE) is a sustainability-oriented engineering methodology that takes into account the comprehensive technical, environmental, and economic impacts of decisions within the product life cycle. Alternatively, it can be defined as "sustainability-oriented product development activities within the scope of one to several product life cycles." LCE requires analysis to quantify sustainability, setting appropriate targets for environmental impact. The application of complementary methodologies and technologies enables engineers to apply LCE to fulfill environmental objectives.
Design for the environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. Different software tools have been developed to assist designers in finding optimized products or processes/services. DfE is also the original name of a United States Environmental Protection Agency (EPA) program, created in 1992, that works to prevent pollution, and the risk pollution presents to humans and the environment. The program provides information regarding safer chemical formulations for cleaning and other products. EPA renamed its program "Safer Choice" in 2015.
Design impact measures are measures used to qualify projects for various environmental rating systems and to guide both design and regulatory decisions from beginning to end. Some systems, like the greenhouse gas inventory, are required globally for all business decisions. Some are project-specific, like the LEED point rating system which is used only for its own ratings, and its qualifications do not correspond to much beyond physical measurements. Others like the Athena life-cycle impact assessment tool attempt to add up all the kinds of measurable impacts of all parts of a building throughout its life and are quite rigorous and complex.
This is a glossary of environmental science.
Sustainable packaging is packaging materials and methods that result in improved sustainability. This involves increased use of life cycle inventory (LCI) and life cycle assessment (LCA) to help guide the use of packaging which reduces the environmental impact and ecological footprint. It includes a look at the whole of the supply chain: from basic function, to marketing, and then through to end of life (LCA) and rebirth. Additionally, an eco-cost to value ratio can be useful The goals are to improve the long term viability and quality of life for humans and the longevity of natural ecosystems. Sustainable packaging must meet the functional and economic needs of the present without compromising the ability of future generations to meet their own needs. Sustainability is not necessarily an end state but is a continuing process of improvement.
This page is an index of sustainability articles.
Sustainable engineering is the process of designing or operating systems such that they use energy and resources sustainably, in other words, at a rate that does not compromise the natural environment, or the ability of future generations to meet their own needs.
The United States Environmental Protection Agency (EPA) was established in July 1970 when the White House and the United States Congress came together due to the public's demand for cleaner natural resources. The purpose of the EPA is to repair the damage done to the environment and to set up new criteria to allow Americans to make a clean environment a reality. The ultimate goal of the EPA is to protect human health and the environment.
The EVR model is a life cycle assessment based method to analyse consumption patterns, business strategies and design options in terms of eco-efficient value creation. Next to this it is used to compare products and service systems.
Environmentally sustainable design is the philosophy of designing physical objects, the built environment, and services to comply with the principles of ecological sustainability and also aimed at improving the health and comfort of occupants in a building. Sustainable design seeks to reduce negative impacts on the environment, the health and well-being of building occupants, thereby improving building performance. The basic objectives of sustainability are to reduce the consumption of non-renewable resources, minimize waste, and create healthy, productive environments.
Avoided burden is an allocation approach used in life-cycle assessment (LCA) to assess the environmental impacts of recycled and reused materials, components, products, or buildings. While the approach has been adapted to fit a variety of LCA goals, it generally considers products with recycling or reuse potential and allocates the environmental impacts of their initial production to their final life cycle. The avoided burden method is never explicitly required for LCA under the International Organization for Standardization (ISO) or European Standards (EN). In fact, these organizations only require that an allocation approach be used to properly address reuse and recycling. In this case, LCA practitioners can choose to utilize the avoided burden method based on the goal and scope of their study.
Green urbanism has been defined as the practice of creating communities beneficial to humans and the environment. According to Timothy Beatley, it is an attempt to shape more sustainable places, communities and lifestyles, and consume less of the world's resources. Urban areas are able to lay the groundwork of how environmentally integrated and sustainable city planning can both provide and improve environmental benefits on the local, national, and international levels. Green urbanism is interdisciplinary, combining the collaboration of landscape architects, engineers, urban planners, ecologists, transport planners, physicists, psychologists, sociologists, economists and other specialists in addition to architects and urban designers.
Sustainable products are products either sustainably sourced, manufactured or processed and provide environmental, social, and economic benefits while protecting public health and the environment throughout their whole life cycle, from the extraction of raw materials to the final disposal.
Life cycle thinking is an approach that emphasizes the assessment and minimization of environmental impacts at all stages of a product's life. This concept seeks to avoid shifting environmental burdens from one stage of the product's life to another. It also recognizes the importance of technological innovation in tackling environmental issues.
A circular economy is an alternative way countries manage their resources, in which usage of products in the traditional linear make, use, and dispose method is not implemented. Instead, resources are used for their maximum utility throughout their life cycle and regenerated in a cyclical pattern minimizing waste. They strive to create economic development through environmental and resource protection. The ideas of a circular economy were officially adopted by China in 2002, when the 16th National Congress of the Chinese Communist Party legislated it as a national endeavor though the various sustainability initiatives which were implemented in the previous decades starting in 1973. China adopted the circular economy due to the environmental damage and resource depletion that was occurring from going through its industrialization process. China is currently a world leader in the production of resources, where it produces 46% of the world's aluminum, 50% of steel and 60% of cement, while it has consumed more raw materials than all the countries a part of the Organisation for Economic Co-operation and Development (OECD) combined. In 2014, China created 3.2 billion tonnes of industrial solid waste, where 2 billion tonnes were recovered using recycling, incineration, reusing and composting. By 2025, China is anticipated to produce up to one quarter of the world's municipal solid waste.