This article needs additional citations for verification .(October 2024) |
This article possibly contains original research .(October 2024) |
Waste minimisation is a set of processes and practices intended to reduce the amount of waste produced. By reducing or eliminating the generation of harmful and persistent wastes, waste minimisation supports efforts to promote a more sustainable society. [1] Waste minimisation involves redesigning products and processes and/or changing societal patterns of consumption and production. [2]
The most environmentally resourceful, economically efficient, and cost effective way to manage waste often is to not have to address the problem in the first place. Managers see waste minimisation as a primary focus for most waste management strategies. Proper waste treatment and disposal can require a significant amount of time and resources; therefore, the benefits of waste minimisation can be considerable if carried out in an effective, safe and sustainable manner.
Traditional waste management focuses on processing waste after it is created, concentrating on re-use, recycling, and waste-to-energy conversion. [2] Waste minimisation involves efforts to avoid creating the waste during manufacturing. To effectively implement waste minimisation the manager requires knowledge of the production process, cradle-to-grave analysis (the tracking of materials from their extraction to their return to earth) and details of the composition of the waste.
The main sources of waste vary from country to country. In the UK, most waste comes from the construction and demolition of buildings, followed by mining and quarrying, industry and commerce. [3] Household waste constitutes a relatively small proportion of all waste. Industrial waste is often tied to requirements in the supply chain. For example, a company handling a product may insist that it should be shipped using particular packing because it fits downstream needs.
Proponents of waste minimisation state that manufactured products at the end of their useful life should be utilised resource for recycling and reuse rather than waste. [4]
Waste minimisation can protect the environment and often turns out to have positive economic benefits. Waste minimisation can improve: [1]
In industry, using more efficient manufacturing processes and better materials generally reduces the production of waste. The application of waste minimisation techniques has led to the development of innovative and commercially successful replacement products.
Waste minimisation efforts often require investment, which is usually compensated by the savings. However, waste reduction in one part of the production process may create waste production in another part.[ citation needed ]
Overpackaging is excess packaging. Eliminating it can result in source reduction, reducing waste before it is generated by proper package design and practice. Use of minimised packaging is key to working toward sustainable packaging.
Utilizing a charger port that can be used by any phone. The implementation of USB-C to reduce excess wires that end up in the waste that give off toxic chemicals that harm the planet. [7]
Reusable bags are a visible form of re-use, and some stores offer a "bag credit" for re-usable shopping bags, although at least one chain reversed its policy, claiming "it was just a temporary bonus". [8] In contrast, one study suggests that a bag tax is a more effective incentive than a similar discount. [9] (Of note, the before/after study compared a circumstance in which some stores offered a discount vs. a circumstance in which all stores applying the tax.) While there is a minor inconvenience involved, this may remedy itself, as reusable bags are generally more convenient for carrying groceries.
This section details some waste minimisation techniques for householders.
Appropriate amounts and sizes can be chosen when purchasing goods; buying large containers of paint for a small decorating job or buying larger amounts of food than can be consumed create unnecessary waste. Also, if a pack or can is to be thrown away, any remaining contents must be removed before the container can be recycled. [10]
Home composting, the practice of turning kitchen and garden waste into compost can be considered waste minimisation.
The resources that households use can be reduced considerably by using electricity thoughtfully (e.g. turning off lights and equipment when it is not needed) and by reducing the number of car journeys made. Individuals can reduce the amount of waste they create by buying fewer products and by buying products which last longer. Mending broken or worn items of clothing or equipment also contributes to minimising household waste. Individuals can minimise their water usage, and walk or cycle to their destination rather than using their car to save fuel and cut down emissions.
In a domestic situation, the potential for minimisation is often dictated by lifestyle. Some people may view it as wasteful to purchase new products solely to follow fashion trends when the older products are still usable. Adults working full-time have little free time, and so may have to purchase more convenient foods that require little preparation, or prefer disposable nappies if there is a baby in the family.
The amount of waste an individual produces is a small portion of all waste produced by society, and personal waste reduction can only make a small impact on overall waste volumes. Yet, influence on policy can be exerted in other areas. Increased consumer awareness of the impact and power of certain purchasing decisions allows industry and individuals to change the total resource consumption. Consumers can influence manufacturers and distributors by avoiding buying products that do not have eco-labelling, which is currently not mandatory, or choosing products that minimise the use of packaging. In the UK, PullApart combines both environmental and consumer packaging surveys, in a curbside packaging recycling classification system to minimise waste. Where reuse schemes are available, consumers can be proactive and use them.
Healthcare establishments are massive producers of waste. [11] The major sources of healthcare waste are: hospitals, laboratories and research centres, mortuary and autopsy centres, animal research and testing laboratories, blood banks and collection services, and nursing homes for the elderly. [11]
Waste minimisation can offer many opportunities to these establishments to use fewer resources, be less wasteful and generate less hazardous waste. Good management and control practices among health-care facilities can have a significant effect on the reduction of waste generated each day.
There are many examples of more efficient practices that can encourage waste minimisation in healthcare establishments and research facilities. [12]
Source reduction
Management and control measures at hospital level
Stock management of chemical and pharmaceutical products
In some countries, such as Germany, people have established a deeper culture of packaging waste reduction than in other countries. The Mach Mehrweg Pool (“Make Reuse Pool”) is an effort initially conceived by milk producers to harmonize and share reusable milk containers, which in more recent years was expanded to include reusable packaging for additional types of food, such as coffee. People have devised ways to bring back to stores containers for yoghurt, cooking oil and marmalade and for many other types of food and to refill them there. [13]
The European Union (EU) has set packaging reduction targets that require member states to reduce packaging, especially plastic packaging. Some types of single use plastic packaging, including packaging for unprocessed fresh fruits and vegetables; for foods and beverages filled and consumed in cafés and restaurants; for individual portions (for example, sugar, condiments, sauces); and for miniature packaging for toiletries; as well as shrink-wrap for suitcases in airports, would be banned effective January 1, 2030. More generally, the EU has set mandatory reduction targets for plastic packaging have been set as follows: 5% by 2030, 10% by 2035 and 15% by 2040. [14]
Waste management or waste disposal includes the processes and actions required to manage waste from its inception to its final disposal. This includes the collection, transport, treatment, and disposal of waste, together with monitoring and regulation of the waste management process and waste-related laws, technologies, and economic mechanisms.
Post-consumer waste is a waste type produced by the end consumer of a material stream; that is, where the waste-producing use did not involve the production of another product.
Packaging is the science, art and technology of enclosing or protecting products for distribution, storage, sale, and use. Packaging also refers to the process of designing, evaluating, and producing packages. Packaging can be described as a coordinated system of preparing goods for transport, warehousing, logistics, sale, and end use. Packaging contains, protects, preserves, transports, informs, and sells. In many countries it is fully integrated into government, business, institutional, industrial, and for personal use.
Zero waste, or waste minimization, is a set of principles focused on waste prevention that encourages redesigning resource life cycles so that all products are repurposed and/or reused. The goal of the movement is to avoid sending trash to landfills, incinerators, oceans, or any other part of the environment. Currently 9% of global plastic is recycled. In a zero waste system, all materials are reused until the optimum level of consumption is reached.
Waste (management) hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.
Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste, as in a garbage disposal; the two are sometimes collected separately. In the European Union, the semantic definition is 'mixed municipal waste,' given waste code 20 03 01 in the European Waste Catalog. Although the waste may originate from a number of sources that has nothing to do with a municipality, the traditional role of municipalities in collecting and managing these kinds of waste have produced the particular etymology 'municipal.'
A disposable is a product designed for a single use after which it is recycled or is disposed as solid waste. The term is also sometimes used for products that may last several months to distinguish from similar products that last indefinitely. The word "disposables" is not to be confused with the word "consumables", which is widely used in the mechanical world. For example, welders consider welding rods, tips, nozzles, gas, etc. to be "consumables", as they last only a certain amount of time before needing to be replaced. Consumables are needed for a process to take place, such as inks for printing and welding rods for welding, while disposable products are items that can be discarded after they become damaged or are no longer useful.
Construction waste or debris is any kind of debris from the construction process. Different government agencies have clear definitions. For example, the United States Environmental Protection Agency EPA defines construction and demolition materials as “debris generated during the construction, renovation and demolition of buildings, roads, and bridges.” Additionally, the EPA has categorized Construction and Demolition (C&D) waste into three categories: non-dangerous, hazardous, and semi-hazardous.
Precycling is the practice of reducing waste by attempting to avoid buying items which will generate waste into home or business. The U.S. Environmental Protection Agency (EPA) also cites that precycling is the preferred method of integrated solid waste management because it cuts waste at its source and therefore trash is eliminated before it is created. According to the EPA, precycling is also characterized as a decision-making process on the behalf of the consumer because it involves making informed judgments regarding a product's waste implications. The implications that are taken into consideration by the consumer include: whether a product is reusable, durable, or repairable; made from renewable or non-renewable resources; over-packaged; and whether or not the container is reusable.
Food packaging is a packaging system specifically designed for food and represents one of the most important aspects among the processes involved in the food industry, as it provides protection from chemical, biological and physical alterations. The main goal of food packaging is to provide a practical means of protecting and delivering food goods at a reasonable cost while meeting the needs and expectations of both consumers and industries. Additionally, current trends like sustainability, environmental impact reduction, and shelf-life extension have gradually become among the most important aspects in designing a packaging system.
Design for the environment (DfE) is a design approach to reduce the overall human health and environmental impact of a product, process or service, where impacts are considered across its life cycle. Different software tools have been developed to assist designers in finding optimized products or processes/services. DfE is also the original name of a United States Environmental Protection Agency (EPA) program, created in 1992, that works to prevent pollution, and the risk pollution presents to humans and the environment. The program provides information regarding safer chemical formulations for cleaning and other products. EPA renamed its program "Safer Choice" in 2015.
This is a glossary of environmental science.
Source reduction is activities designed to reduce the volume, mass, or toxicity of products throughout the life cycle. It includes the design and manufacture, use, and disposal of products with minimum toxic content, minimum volume of material, and/or a longer useful life.
Sustainable packaging is packaging materials and methods that result in improved sustainability. This involves increased use of life cycle inventory (LCI) and life cycle assessment (LCA) to help guide the use of packaging which reduces the environmental impact and ecological footprint. It includes a look at the whole of the supply chain: from basic function, to marketing, and then through to end of life (LCA) and rebirth. Additionally, an eco-cost to value ratio can be useful The goals are to improve the long term viability and quality of life for humans and the longevity of natural ecosystems. Sustainable packaging must meet the functional and economic needs of the present without compromising the ability of future generations to meet their own needs. Sustainability is not necessarily an end state but is a continuing process of improvement.
Waste are unwanted or unusable materials. Waste is any substance discarded after primary use, or is worthless, defective and of no use. A by-product, by contrast is a joint product of relatively minor economic value. A waste product may become a by-product, joint product or resource through an invention that raises a waste product's value above zero.
Solid waste policy in the United States is aimed at developing and implementing proper mechanisms to effectively manage solid waste. For solid waste policy to be effective, inputs should come from stakeholders, including citizens, businesses, community-based organizations, non-governmental organizations, government agencies, universities, and other research organizations. These inputs form the basis of policy frameworks that influence solid waste management decisions. In the United States, the Environmental Protection Agency (EPA) regulates household, industrial, manufacturing, and commercial solid and hazardous wastes under the 1976 Resource Conservation and Recovery Act (RCRA). Effective solid waste management is a cooperative effort involving federal, state, regional, and local entities. Thus, the RCRA's Solid Waste program section D encourages the environmental departments of each state to develop comprehensive plans to manage nonhazardous industrial and municipal solid waste. Each state will have different methods on how to educate and control the flow of waste
The City of Oakland, California, adopted a Zero Waste Strategic Plan in 2006, detailing a road map for the city to follow toward the implementation of a Zero Waste System by 2020. As stated in a City Resolution, introduced by then Mayor Jerry Brown, Zero Waste principles:
Sustainable Materials Management is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how a society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle new opportunities can be found to reduce environmental impacts, conserve resources, and reduce costs.
Packaging waste, the part of the waste that consists of packaging and packaging material, is a major part of the total global waste, and the major part of the packaging waste consists of single-use plastic food packaging, a hallmark of throwaway culture. Notable examples for which the need for regulation was recognized early, are "containers of liquids for human consumption", i.e. plastic bottles and the like. In Europe, the Germans top the list of packaging waste producers with more than 220 kilos of packaging per capita.
France's anti-waste law for a circular economy was passed in an effort to eliminate improper disposal of waste as well as limit excessive waste. This law is part of Europe's larger environmental activism efforts and builds on previous laws the country has passed.