Surface runoff

Last updated
Runoff flowing into a stormwater drain Runoff.jpg
Runoff flowing into a stormwater drain

Surface runoff (also known as overland flow) is the flow of water that occurs when excess stormwater, meltwater, or other sources flows over the Earth's surface. This might occur because soil is saturated to full capacity, because rain arrives more quickly than soil can absorb it, or because impervious areas (roofs and pavement) send their runoff to surrounding soil that cannot absorb all of it. Surface runoff is a major component of the water cycle. It is the primary agent in soil erosion by water. [1] [2]

Water chemical compound

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

Stormwater water that originates during precipitation events and snow/ice melt

Stormwater, also spelled storm water, is water that originates during precipitation events and snow/ice melt. Stormwater can soak into the soil (infiltrate), be held on the surface and evaporate, or runoff and end up in nearby streams, rivers, or other water bodies.


Meltwater is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found in the ablation zone of glaciers, where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form.


Runoff that occurs on the ground surface before reaching a channel is also called a nonpoint source. If a nonpoint source contains man-made contaminants, or natural forms of pollution (such as rotting leaves) the runoff is called nonpoint source pollution. A land area which produces runoff that drains to a common point is called a drainage basin. When runoff flows along the ground, it can pick up soil contaminants including petroleum, pesticides, or fertilizers that become discharge or nonpoint source pollution. [3]

Channel (geography) A type of landform in which part of a body of water is confined to a relatively narrow but long region

In physical geography, a channel is a type of landform consisting of the outline of a path of relatively shallow and narrow body of fluid, most commonly the confine of a river, river delta or strait. The word is cognate to canal, and sometimes shows in this form, e.g. the Hood Canal.

Nonpoint source pollution

Nonpoint source (NPS) pollution is a term used to describe pollution resulting from many diffuse sources, in direct contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult.

Drainage basin Area of land where precipitation collects and drains off into a common outlet

A drainage basin is any area of land where precipitation collects and drains off into a common outlet, such as into a river, bay, or other body of water. The drainage basin includes all the surface water from rain runoff, snowmelt, and nearby streams that run downslope towards the shared outlet, as well as the groundwater underneath the earth's surface. Drainage basins connect into other drainage basins at lower elevations in a hierarchical pattern, with smaller sub-drainage basins, which in turn drain into another common outlet.

In addition to causing water erosion and pollution, surface runoff in urban areas is a primary cause of urban flooding which can result in property damage, damp and mold in basements, and street flooding.

Urban runoff Surface runoff of rainwater created by urbanization

Urban runoff is surface runoff of rainwater created by urbanization. This runoff is a major source of flooding and water pollution in urban communities worldwide.


Surface runoff from a hillside after soil is saturated Runoffrazorback.jpg
Surface runoff from a hillside after soil is saturated

Surface runoff can be generated either by rainfall, snowfall or by the melting of snow, or glaciers.

Snow and glacier melt occur only in areas cold enough for these to form permanently. Typically snowmelt will peak in the spring and glacier melt in the summer, leading to pronounced flow maxima in rivers affected by them. The determining factor of the rate of melting of snow or glaciers is both air temperature and the duration of sunlight. In high mountain regions, streams frequently rise on sunny days and fall on cloudy ones for this reason.


In hydrology, snowmelt is surface runoff produced from melting snow. It can also be used to describe the period or season during which such runoff is produced. Water produced by snowmelt is an important part of the annual water cycle in many parts of the world, in some cases contributing high fractions of the annual runoff in a watershed. Predicting snowmelt runoff from a drainage basin may be a part of designing water control projects. Rapid snowmelt can cause flooding. If the snowmelt is then frozen, very dangerous conditions and accidents can occur, introducing the need for salt to melt the ice.

Glacier Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight; it forms where the accumulation of snow exceeds its ablation over many years, often centuries. Glaciers slowly deform and flow due to stresses induced by their weight, creating crevasses, seracs, and other distinguishing features. They also abrade rock and debris from their substrate to create landforms such as cirques and moraines. Glaciers form only on land and are distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

In areas where there is no snow, runoff will come from rainfall. However, not all rainfall will produce runoff because storage from soils can absorb light showers. On the extremely ancient soils of Australia and Southern Africa, [4] proteoid roots with their extremely dense networks of root hairs can absorb so much rainwater as to prevent runoff even when substantial amounts of rain fall. In these regions, even on less infertile cracking clay soils, high amounts of rainfall and potential evaporation are needed to generate any surface runoff, leading to specialised adaptations to extremely variable (usually ephemeral) streams.

Australia Country in Oceania

Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania and numerous smaller islands. It is the largest country in Oceania and the world's sixth-largest country by total area. The neighbouring countries are Papua New Guinea, Indonesia and East Timor to the north; the Solomon Islands and Vanuatu to the north-east; and New Zealand to the south-east. The population of 25 million is highly urbanised and heavily concentrated on the eastern seaboard. Australia's capital is Canberra, and its largest city is Sydney. The country's other major metropolitan areas are Melbourne, Brisbane, Perth and Adelaide.

Southern Africa southernmost region of the African continent

Southern Africa is the southernmost region of the African continent, variably defined by geography or geopolitics, and including several countries. The term southern Africa or Southern Africa, generally includes Angola, Botswana, Eswatini (Swaziland), Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe, though Angola may be included in Central Africa and Malawi, Mozambique, Zambia and Zimbabwe in East Africa. From a political perspective the region is said to be unipolar with South Africa as a first regional power.

Vertisol Clay-rich soil, prone to cracking

In both the World Reference Base for Soil Resources (WRB) and the USDA soil taxonomy, a Vertisol is a soil in which there is a high content of expansive clay minerals, many of them known as montmorillonite, that form deep cracks in drier seasons or years. In a phenomenon known as argillipedoturbation, alternate shrinking and swelling causes self-ploughing, where the soil material consistently mixes itself, causing some Vertisols to have an extremely deep A horizon and no B horizon.. This heaving of the underlying material to the surface often creates a microrelief known as gilgai.

Infiltration excess overland flow

runoff and filter soxx

This occurs when the rate of rainfall on a surface exceeds the rate at which water can infiltrate the ground, and any depression storage has already been filled. This is called flooding excess overland flow, Hortonian overland flow (after Robert E. Horton), or unsaturated overland flow. This more commonly occurs in arid and semi-arid regions, where rainfall intensities are high and the soil infiltration capacity is reduced because of surface sealing, or in paved areas. This occurs largely in city areas where pavements prevent water from flooding.

Infiltration (hydrology) process by which water on the ground surface enters the soil

In hydrology and soil science, infiltration is the process by which water on the ground surface enters the soil. Infiltration rate is a measure of the temporal rate at which soil is able to absorb rainfall or irrigation. It is most often measured in millimetres per hour or inches per hour. The rate decreases as the soil becomes saturated. If the precipitation rate exceeds the infiltration rate, runoff will usually occur unless there is some physical barrier. It is related to the saturated hydraulic conductivity of the near-surface soil. The rate of infiltration can be measured using an infiltrometer.

Robert Elmer Horton was an American civil engineer and soil scientist, considered by many to be the father of modern hydrology.

Arid severe lack of available water

A region is arid when it is characterized by a severe lack of available water, to the extent of hindering or preventing the growth and development of plant and animal life. Environments subject to arid climates tend to lack vegetation and are called xeric or desertic. Most "arid" climates straddle the Equator; these places include most of Africa and parts of South America, Central America, and Australia.

Saturation excess overland flow

When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The level of antecedent soil moisture is one factor affecting the time until soil becomes saturated. This runoff is called saturation excess overland flow, saturated overland flow or Dunne runoff.

Antecedent soil moisture

Soil retains a degree of moisture after a rainfall. This residual water moisture affects the soil's infiltration capacity. During the next rainfall event, the infiltration capacity will cause the soil to be saturated at a different rate. The higher the level of antecedent soil moisture, the more quickly the soil becomes saturated. Once the soil is saturated, runoff occurs.

Subsurface return flow

After water infiltrates the soil on an up-slope portion of a hill, the water may flow laterally through the soil, and exfiltrate (flow out of the soil) closer to a channel. This is called subsurface return flow or throughflow.

As it flows, the amount of runoff may be reduced in a number of possible ways: a small portion of it may evapotranspire; water may become temporarily stored in microtopographic depressions; and a portion of it may infiltrate as it flows overland. Any remaining surface water eventually flows into a receiving water body such as a river, lake, estuary or ocean. [5]

Human influence

Urban surface water runoff View of urban runoff discharging to coastal waters.jpg
Urban surface water runoff

Urbanization increases surface runoff by creating more impervious surfaces such as pavement and buildings that do not allow percolation of the water down through the soil to the aquifer. It is instead forced directly into streams or storm water runoff drains, where erosion and siltation can be major problems, even when flooding is not. Increased runoff reduces groundwater recharge, thus lowering the water table and making droughts worse, especially for agricultural farmers and others who depend on the water wells.

When anthropogenic contaminants are dissolved or suspended in runoff, the human impact is expanded to create water pollution. This pollutant load can reach various receiving waters such as streams, rivers, lakes, estuaries and oceans with resultant water chemistry changes to these water systems and their related ecosystems.

A 2008 report by the United States National Research Council identified urban stormwater as a leading source of water quality problems in the U.S. [6]

As humans continue to alter the climate through the addition of greenhouse gases to the atmosphere, precipitation patterns are expected to change as the atmospheric capacity for water vapor increases. This will have direct consequences on runoff amounts. [7]

Effects of surface runoff

Erosion and deposition

Surface runoff can cause erosion of the Earth's surface; eroded material may be deposited a considerable distance away. There are four main types of soil erosion by water: splash erosion, sheet erosion, rill erosion and gully erosion. Splash erosion is the result of mechanical collision of raindrops with the soil surface: soil particles which are dislodged by the impact then move with the surface runoff. Sheet erosion is the overland transport of sediment by runoff without a well defined channel. Soil surface roughness causes may cause runoff to become concentrated into narrower flow paths: as these incise, the small but well-defined channels which are formed are known as rills. These channels can be as small as one centimeter wide or as large as several meters. If runoff continue to incise and enlarge rills, they may eventually grow to become gullies. Gully erosion can transport large amounts of eroded material in a small time period.

Soil erosion by water on intensively-tilled farmland. Wassererosion Acker.jpg
Soil erosion by water on intensively-tilled farmland.
Willow hedge strengthened with fascines for the limitation of runoff, north of France. Fascine49.jpg
Willow hedge strengthened with fascines for the limitation of runoff, north of France.

Reduced crop productivity usually results from erosion, and these effects are studied in the field of soil conservation. The soil particles carried in runoff vary in size from about .001 millimeter to 1.0 millimeter in diameter. Larger particles settle over short transport distances, whereas small particles can be carried over long distances suspended in the water column. Erosion of silty soils that contain smaller particles generates turbidity and diminishes light transmission, which disrupts aquatic ecosystems.

Entire sections of countries have been rendered unproductive by erosion. On the high central plateau of Madagascar, approximately ten percent of that country's land area, virtually the entire landscape is devoid of vegetation, with erosive gully furrows typically in excess of 50 meters deep and one kilometer wide. Shifting cultivation is a farming system which sometimes incorporates the slash and burn method in some regions of the world. Erosion causes loss of the fertile top soil and reduces its fertility and quality of the agricultural produce.

Modern industrial farming is another major cause of erosion. In some areas in the American corn belt, more than 50 percent of the original topsoil has been carried away within the last 100 years.

Environmental effects

The principal environmental issues associated with runoff are the impacts to surface water, groundwater and soil through transport of water pollutants to these systems. Ultimately these consequences translate into human health risk, ecosystem disturbance and aesthetic impact to water resources. Some of the contaminants that create the greatest impact to surface waters arising from runoff are petroleum substances, herbicides and fertilizers. Quantitative uptake by surface runoff of pesticides and other contaminants has been studied since the 1960s, and early on contact of pesticides with water was known to enhance phytotoxicity. [8] In the case of surface waters, the impacts translate to water pollution, since the streams and rivers have received runoff carrying various chemicals or sediments. When surface waters are used as potable water supplies, they can be compromised regarding health risks and drinking water aesthetics (that is, odor, color and turbidity effects). Contaminated surface waters risk altering the metabolic processes of the aquatic species that they host; these alterations can lead to death, such as fish kills, or alter the balance of populations present. Other specific impacts are on animal mating, spawning, egg and larvae viability, juvenile survival and plant productivity. Some researches show surface runoff of pesticides, such as DDT, can alter the gender of fish species genetically, which transforms male into female fish. [9]

Surface runoff occurring within forests can supply lakes with high loads of mineral nitrogen and phosphorus leading to eutrophication. Runoff waters within coniferous forests are also enriched with humic acids and can lead to humification of water bodies [10] Additionally, high standing and young islands in the tropics and subtropics can undergo high soil erosion rates and also contribute large material fluxes to the coastal ocean. Such land derived runoff of sediment nutrients, carbon, and contaminants can have large impacts on global biogeochemical cycles and marine and coastal ecosystems. [11]

In the case of groundwater, the main issue is contamination of drinking water, if the aquifer is abstracted for human use. Regarding soil contamination, runoff waters can have two important pathways of concern. Firstly, runoff water can extract soil contaminants and carry them in the form of water pollution to even more sensitive aquatic habitats. Secondly, runoff can deposit contaminants on pristine soils, creating health or ecological consequences.

Agricultural issues

The other context of agricultural issues involves the transport of agricultural chemicals (nitrates, phosphates, pesticides, herbicides etc.) via surface runoff. This result occurs when chemical use is excessive or poorly timed with respect to high precipitation. The resulting contaminated runoff represents not only a waste of agricultural chemicals, but also an environmental threat to downstream ecosystems.


Flooding occurs when a watercourse is unable to convey the quantity of runoff flowing downstream. The frequency with which this occurs is described by a return period. Flooding is a natural process, which maintains ecosystem composition and processes, but it can also be altered by land use changes such as river engineering. Floods can be both beneficial to societies or cause damage. Agriculture along the Nile floodplain took advantage of the seasonal flooding that deposited nutrients beneficial for crops. However, as the number and susceptibility of settlements increase, flooding increasingly becomes a natural hazard. In urban areas, surface runoff is the primary cause of urban flooding, known for its repetitive and costly impact on communities. [12] Adverse impacts span loss of life, property damage, contamination of water supplies, loss of crops, and social dislocation and temporary homelessness. Floods are among the most devastating of natural disasters.

Mitigation and treatment

Runoff holding ponds (Uplands neighborhood of North Bend, Washington) North-Bend-Uplands-Runoff-pond-3942.jpg
Runoff holding ponds (Uplands neighborhood of North Bend, Washington)

Mitigation of adverse impacts of runoff can take several forms:

Land use controls. Many world regulatory agencies have encouraged research on methods of minimizing total surface runoff by avoiding unnecessary hardscape. [13] Many municipalities have produced guidelines and codes (zoning and related ordinances) for land developers that encourage minimum width sidewalks, use of pavers set in earth for driveways and walkways and other design techniques to allow maximum water infiltration in urban settings. An example land use control program can be seen in the city of Santa Monica, California. [14]

Erosion controls have appeared since medieval times when farmers realized the importance of contour farming to protect soil resources. Beginning in the 1950s these agricultural methods became increasingly more sophisticated. In the 1960s some state and local governments began to focus their efforts on mitigation of construction runoff by requiring builders to implement erosion and sediment controls (ESCs). This included such techniques as: use of straw bales and barriers to slow runoff on slopes, installation of silt fences, programming construction for months that have less rainfall and minimizing extent and duration of exposed graded areas. Montgomery County, Maryland implemented the first local government sediment control program in 1965, and this was followed by a statewide program in Maryland in 1970. [15]

Flood control programs as early as the first half of the twentieth century became quantitative in predicting peak flows of riverine systems. Progressively strategies have been developed to minimize peak flows and also to reduce channel velocities. Some of the techniques commonly applied are: provision of holding ponds (also called detention basins) to buffer riverine peak flows, use of energy dissipators in channels to reduce stream velocity and land use controls to minimize runoff. [16]

Chemical use and handling. Following enactment of the U.S. Resource Conservation and Recovery Act (RCRA) in 1976, and later the Water Quality Act of 1987, states and cities have become more vigilant in controlling the containment and storage of toxic chemicals, thus preventing releases and leakage. Methods commonly applied are: requirements for double containment of underground storage tanks, registration of hazardous materials usage, reduction in numbers of allowed pesticides and more stringent regulation of fertilizers and herbicides in landscape maintenance. In many industrial cases, pretreatment of wastes is required, to minimize escape of pollutants into sanitary or stormwater sewers.

The U.S. Clean Water Act (CWA) requires that local governments in urbanized areas (as defined by the Census Bureau) obtain stormwater discharge permits for their drainage systems. [17] [18] Essentially this means that the locality must operate a stormwater management program for all surface runoff that enters the municipal separate storm sewer system ("MS4"). EPA and state regulations and related publications outline six basic components that each local program must contain:

Other property owners which operate storm drain systems similar to municipalities, such as state highway systems, universities, military bases and prisons, are also subject to the MS4 permit requirements.

Measurement and mathematical modeling

Runoff is analyzed by using mathematical models in combination with various water quality sampling methods. Measurements can be made using continuous automated water quality analysis instruments targeted on pollutants such as specific organic or inorganic chemicals, pH, turbidity etc. or targeted on secondary indicators such as dissolved oxygen. Measurements can also be made in batch form by extracting a single water sample and conducting any number of chemical or physical tests on that sample.

In the 1950s or earlier hydrology transport models appeared to calculate quantities of runoff, primarily for flood forecasting. Beginning in the early 1970s computer models were developed to analyze the transport of runoff carrying water pollutants, which considered dissolution rates of various chemicals, infiltration into soils and ultimate pollutant load delivered to receiving waters. One of the earliest models addressing chemical dissolution in runoff and resulting transport was developed in the early 1970s under contract to the United States Environmental Protection Agency (EPA). [19] This computer model formed the basis of much of the mitigation study that led to strategies for land use and chemical handling controls.

Other computer models have been developed (such as the DSSAM Model) that allow surface runoff to be tracked through a river course as reactive water pollutants. In this case the surface runoff may be considered to be a line source of water pollution to the receiving waters.

See also

Related Research Articles

Water pollution Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities. Water bodies include for example lakes, rivers, oceans, aquifers and groundwater. Water pollution results when contaminants are introduced into the natural environment. For example, releasing inadequately treated wastewater into natural water bodies can lead to degradation of aquatic ecosystems. In turn, this can lead to public health problems for people living downstream. They may use the same polluted river water for drinking or bathing or irrigation. Water pollution is the leading worldwide cause of death and disease, e.g. due to water-borne diseases.

Nationwide Urban Runoff Program

The Nationwide Urban Runoff Program (NURP) is a research project conducted by the United States Environmental Protection Agency (EPA) between 1979 and 1983. It was the first comprehensive study of urban stormwater pollution across the United States.

Agricultural wastewater treatment Farm management agenda for controlling pollution from surface runoff in agriculture

Agricultural wastewater treatment is a farm management agenda for controlling pollution from surface runoff that may be contaminated by chemicals in fertiliser, pesticides, animal slurry, crop residues or irrigation water.

Retention basin Detention basin

A retention basin, sometimes called a wet pond,wet detention basin or stormwater management pond, is an artificial lake with vegetation around the perimeter, and includes a permanent pool of water in its design. It is used to manage stormwater runoff to prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay.

Bioswale Landscape elements designed to remove debris and pollution out of surface runoff water

Bioswales are landscape elements designed to concentrate or remove debris and pollution out of surface runoff water. They consist of a swaled drainage course with gently sloped sides and filled with vegetation, compost and/or riprap. The water's flow path, along with the wide and shallow ditch, is designed to maximize the time water spends in the swale, which aids the collection and removal of pollutants, silt and debris. Bioswales are also beneficial in groundwater recharge and are effective stormwater mitigation tools. Depending upon the topography of the land, a bioswale may have a meandering or almost straight channel alignment. A bioswale's make-up can be influenced by many different variables, including climate, rainfall patterns, size of the site, budget, and available vegetation that can be planted.

The United States Environmental Protection Agency (EPA) Storm Water Management Model is a dynamic rainfall–runoff–subsurface runoff simulation model used for single-event to long-term (continuous) simulation of the surface/subsurface hydrology quantity and quality from primarily urban/suburban areas. It can simulate the Rainfall- runoff, runoff, evaporation, infiltration and groundwater connection for roots, streets, grassed areas, rain gardens and ditches and pipes, for example. The hydrology component of SWMM operates on a collection of subcatchment areas divided into impervious and pervious areas with and without depression storage to predict runoff and pollutant loads from precipitation, evaporation and infiltration losses from each of the subcatchment. Besides, low impact development (LID) and best management practice areas on the subcatchment can be modeled to reduce the impervious and pervious runoff. The routing or hydraulics section of SWMM transports this water and possible associated water quality constituents through a system of closed pipes, open channels, storage/treatment devices, ponds, storages, pumps, orifices, weirs, outlets, outfalls and other regulators. SWMM tracks the quantity and quality of the flow generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period composed of multiple fixed or variable time steps. The water quality constituents such as water quality constituents can be simulated from buildup on the subcatchments through washoff to a hydraulic network with optional first order decay and linked pollutant removal, best management practice and low-impact development removal and treatment can be simulated at selected storage nodes. SWMM is one of the hydrology transport models which the EPA and other agencies have applied widely throughout North America and through consultants and universities throughout the world. The latest update notes and new features can be found on the EPA website in the download section. Recently added in November 2015 were the EPA SWMM 5.1 Hydrology Manual and in 2016 the EPA SWMM 5.1 Hydraulic Manual and EPA SWMM 5.1 Water Quality Volume (III) + Errata

First flush

First flush is the initial surface runoff of a rainstorm. During this phase, water pollution entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.


The DSSAM Model is a computer simulation developed for the Truckee River to analyze water quality impacts from land use and wastewater management decisions in the Truckee River Basin. This area includes the cities of Reno and Sparks, Nevada as well as the Lake Tahoe Basin. The model is historically and alternatively called the Earth Metrics Truckee River Model. Since original development in 1984-1986 under contract to the U.S. Environmental Protection Agency (EPA), the model has been refined and successive versions have been dubbed DSSAM II and DSSAM III. This hydrology transport model is based upon a pollutant loading metric called Total maximum daily load (TMDL). The success of this flagship model contributed to the Agency’s broadened commitment to the use of the underlying TMDL protocol in its national policy for management of most river systems in the United States.

Hydrological transport model

An hydrological transport model is a mathematical model used to simulate river or stream flow and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

Area sources are sources of pollution which emit a substance or radiation from a specified area.

Best management practice for water pollution Water pollution term

Best management practices (BMPs) is a term used in the United States and Canada to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in stormwater management and wetland management, BMPs may refer to a principal control or treatment technique as well.

Fiber roll

A fiber roll is a temporary erosion control and sediment control device used on construction sites to protect water quality in nearby streams, rivers, lakes and seas from sediment erosion. It is made of straw, coconut fiber or similar material formed into a tubular roll.

Nutrient pollution

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Excess nutrients have been summarized as potentially leading to:

Water pollution in the United States

Since the 1960s, water quality in surface water bodies in the United States has generally improved, due to the implementation of the 1972 Clean Water Act. However, many water bodies are still being polluted from one or more categories of sources, which may include agriculture, industry, or urban runoff.

Nonpoint source (NPS) water pollution regulations are environmental regulations that restrict or limit water pollution from diffuse or nonpoint effluent sources such as polluted runoff from agricultural areas in a river catchments or wind-borne debris blowing out to sea. In the United States, governments have taken a number of legal and regulatory approaches to controlling NPS effluent. Nonpoint water pollution sources include, for example, leakage from underground storage tanks, storm water runoff, atmospheric deposition of contaminants, and golf course, agricultural, and forestry runoff. Nonpoint sources are the most significant single source of water pollution in the United States, accounting for almost half of all water pollution, and agricultural runoff is the single largest source of nonpoint source water pollution. This water pollution has a number of detrimental effects on human health and the environment. Unlike point source pollution, nonpoint source pollution arises from numerous and diverse sources, making identification, monitoring, and regulation more complex.

Low-impact development (U.S. and Canada)

Low-impact development (LID) is a term used in Canada and the United States to describe a land planning and engineering design approach to manage stormwater runoff as part of green infrastructure. LID emphasizes conservation and use of on-site natural features to protect water quality. This approach implements engineered small-scale hydrologic controls to replicate the pre-development hydrologic regime of watersheds through infiltrating, filtering, storing, evaporating, and detaining runoff close to its source. Green infrastructure investments are one approach that often yields multiple benefits and builds city resilience.

A runoff footprint is the total surface runoff that a site produces over the course of a year. According to the United States Environmental Protection Agency (EPA), stormwater is "rainwater and melted snow that runs off streets, lawns, and other sites." Urbanized areas with high concentrations of impervious surfaces like buildings, roads, and driveways produce large volumes of runoff which can lead to flooding, sewer overflows, and poor water quality. Since soil in urban areas can be compacted and have a low infiltration rate, the surface runoff estimated in a runoff footprint is not just from impervious surfaces, but also pervious areas including yards. The total runoff is a measure of the site’s contribution to stormwater issues in an area, especially in urban areas with sewer overflows. Completing a runoff footprint for a site allows a property owner to understand what areas on his or her site are producing the most runoff and what scenarios of stormwater green solutions like rain barrels and rain gardens are most effective in mitigating this runoff and its costs to the community.


  1. Ronnie Wilson, The Horton Papers (1933)
  2. Keith Beven, Robert E. Horton's perceptual model of infiltration processes, Hydrological Processes, Wiley Intersciences DOI 10:1002 hyp 5740 (2004)
  3. L. Davis Mackenzie and Susan J. Masten, Principles of Environmental Engineering and Science ISBN   0-07-235053-9
  4. McMahon T.A. and Finlayson, B.; Global Runoff: Continental Comparisons of Annual Flows and Peak Discharges ISBN   3-923381-27-1
  5. Nelson, R. (2004). The Water Cycle. Minneapolis: Lerner. ISBN   0-8225-4596-9
  6. United States. National Research Council. Washington, DC. "Urban Stormwater Management in the United States." October 15, 2008. pp. 18-20.
  7. Wigley T.M.L & Jones P.D (1985). "Influences of precipitation changes and direct CO2 effects on streamflow". Letters to Nature. 314 (6007): 149–152. doi:10.1038/314149a0.
  8. W.F. Spencer, Distribution of Pesticides between Soil, Water and Air, International symposium on Pesticides in the Soil, February 25–27, 1970, Michigan State University, East Lansing, Michigan
  9. Science News. "DDT treatment turns male fish into mothers." 2000-02-05. (By subscription only.)
  10. Klimaszyk Piotr, Rzymski Piotr "Surface Runoff as a Factor Determining Trophic State of Midforest Lake" Polish Journal of Environmental Studies, 2011, 20(5), 1203-1210
  11. Renee K. Takesue,Curt D. Storlazzi. Sources and dispersal of land-based runoff from small Hawaiian drainages to a coral reef: Insights from geochemical signatures. Estuarine, Coastal and Shelf Science Journal. 2/13/17
  12. Center for Neighborhood Technology, Chicago IL “The Prevalence and Cost of Urban Flooding.” May 2013
  13. U.S. Environmental Protection Agency (EPA). "Impervious Cover." Ecosystems Research Division, Athens, GA. 2009-02-24. Archived May 9, 2009, at the Wayback Machine
  14. Urban Runoff, City of Santa Monica website. Retrieved 29 July 2007.
  15. Maryland Department of Environment. Baltimore, MD. "Erosion and Sediment Control and Stormwater Management in Maryland." 2007. Archived September 12, 2008, at the Wayback Machine
  16. Channel Stability Assessment for Flood Control Projects U.S. Army Corps of Engineers, (1996) ISBN   0-7844-0201-9
  17. United States. Code of Federal Regulations, 40 CFR 122.26
  18. EPA. Washington, D.C. "Stormwater Discharges From Municipal Separate Storm Sewer Systems (MS4s)." 2009-03-11.
  19. C.M. Hogan, Leda Patmore, Gary Latshaw, Harry Seidman et al. Computer modeling of pesticide transport in soil for five instrumented watersheds, U.S. Environmental Protection Agency Southeast Water laboratory, Athens, Ga. by ESL Inc., Sunnyvale, California (1973)

Further reading

  • Gebert, W. A., D.J. Graczyk, and W.R. Krug. (1987). Average annual runoff in the United States, 1951-80 [Hydrologic Investigations Atlas HA-710]. Reston, Va.: U.S. Department of the Interior, U.S. Geological Survey.
  • Shodor Education Foundation (1998)."Surface Water Runoff Modeling."