Greywater

Last updated
Left: greywater sample from an office building. Right: Same greywater after treatment in membrane bioreactor Greywater treatment.jpg
Left: greywater sample from an office building. Right: Same greywater after treatment in membrane bioreactor

Greywater (or grey water, sullage, also spelled gray water in the United States) refers to domestic wastewater generated in households or office buildings from streams without fecal contamination, i.e., all streams except for the wastewater from toilets. Sources of greywater include sinks, showers, baths, washing machines or dishwashers. As greywater contains fewer pathogens than blackwater, it is generally safer to handle and easier to treat and reuse onsite for toilet flushing, landscape or crop irrigation, and other non-potable uses. Greywater may still have some pathogen content from laundering soiled clothing or cleaning the anal area in the shower or bath.

Contents

The application of greywater reuse in urban water systems provides substantial benefits for both the water supply subsystem, by reducing the demand for fresh clean water, and the wastewater subsystems by reducing the amount of conveyed and treated wastewater. [1] Treated greywater has many uses, such as toilet flushing or irrigation. [2]

Overview

Example of a source of greywater in the household: dirty water from cleaning the floor Greywater - from house cleanings (2946418965).jpg
Example of a source of greywater in the household: dirty water from cleaning the floor
Urban decentralized greywater treatment with constructed wetland in Oslo Greywater treatment garden (3212483147).jpg
Urban decentralized greywater treatment with constructed wetland in Oslo
Greywater treatment plant with membrane bioreactor in the basement of an office building in Frankfurt Greywater treatment plant (5729648031).jpg
Greywater treatment plant with membrane bioreactor in the basement of an office building in Frankfurt

Quality

Greywater usually contains some traces of human waste and is therefore not free of pathogens. [3] The excreta come from washing the anal area in the bath and shower or from the laundry (washing underwear and diapers). The quality of greywater can deteriorate rapidly during storage because it is often warm and contains some nutrients and organic matter (e.g. dead skin cells), as well as pathogens. Stored greywater also leads to odour nuisances for the same reason. [4]

Synthetic personal care products (e.g. toothpaste, face wash, and shower gel) commonly rinsed into greywater may contain microbeads, a form of microplastics. [5] Greywater originating from washing clothes made from synthetic fabrics (e.g. nylon) is also likely to contain microfibers. [5]

Quantity

In households with conventional flush toilets, greywater makes up about 65% of the total wastewater produced by that household. [3] It may be a good source of water for reuse because there is a close relationship between the production of greywater and the potential demand for toilet flushing water.

Practical aspects

Misconnections of pipes can cause greywater tanks to contain a percentage of blackwater. [6]

The small traces of feces that enter the greywater stream via effluent from the shower, sink, or washing machine do not pose practical hazards under normal conditions, as long as the greywater is used correctly (for example, percolated from a dry well or used correctly in farming irrigation).

Treatment processes

Greywater "towers" are used to treat and reuse greywater in Arba Minch Wg5 Greywater towers in Arba Minch, Ethiopia (6730216543).jpg
Greywater "towers" are used to treat and reuse greywater in Arba Minch
Underground greywater recycling tank Underground Grey Water Recycling Tank.tif
Underground greywater recycling tank

The separate treatment of greywater falls under the concept of source separation, which is one principle commonly applied in ecological sanitation approaches. The main advantage of keeping greywater separate from toilet wastewater is that the pathogen load is greatly reduced, and the greywater is therefore easier to treat and reuse. [3]

When greywater is mixed with toilet wastewater, it is called sewage or blackwater and should be treated in sewage treatment plants or an onsite sewage facility, which is often a septic system.

Greywater from kitchen sinks contains fats, oils and grease, and high loads of organic matter. It should undergo preliminary treatment to remove these substances before discharge into a greywater tank. If this is difficult to apply, it could be directed to the sewage system or to an existing sewer. [7]

Most greywater is easier to treat and recycle than sewage because of lower levels of contaminants. If collected using a separate plumbing system from blackwater, domestic greywater can be recycled directly within the home, garden or company and used either immediately or processed and stored. If stored, it must be used within a very short time or it will begin to putrefy due to the organic solids in the water. Recycled greywater of this kind is never safe to drink, but a number of treatment steps can be used to provide water for washing or flushing toilets.

The treatment processes that can be used are in principle the same as those used for sewage treatment, except that they are usually installed on a smaller scale (decentralized level), often at household or building level:

In constructed wetlands, the plants use contaminants of greywater, such as food particles, as nutrients in their growth. Salt and soap residues can be toxic to microbial and plant life alike, but can be absorbed and degraded through constructed wetlands and aquatic plants such as sedges, rushes, and grasses.

Reuse

Global water resource supplies are shrinking. According to a report from the United Nations, water shortages will affect 2.7 billion people by 2025, which means 1 out of every 3 people in the world will be affected by this problem.[ citation needed ] Reusing greywater has become a good way to solve this problem, and wastewater reuse is also called recycled or reclaimed water. [9]

Benefits

Demand on conventional water supplies and pressure on sewage treatment systems is reduced by the use of greywater. Re-using greywater also reduces the volume of sewage effluent entering watercourses which can be ecologically beneficial. In times of drought, especially in urban areas, greywater use in irrigation or toilet systems helps to achieve some of the goals of ecologically sustainable development.

The potential ecological benefits of greywater recycling include:

In the U.S. Southwest and the Middle East where available water supplies are limited, especially in view of a rapidly growing population, a strong imperative exists for adoption of alternative water technologies.

The potential economic benefits of greywater recycling include:

Safety

Greywater use for irrigation appears to be a safe practice. A 2015 epidemiological study found no additional burden of disease among greywater users irrigating arid regions. [12] The safety of reuse of greywater as potable water has also been studied. A few organic micropollutants including benzene were found in greywater in significant concentrations but most pollutants were in very low concentrations. [13] Fecal contamination, peripheral pathogens (e.g., skin and mucous tissue), and food-derived pathogens are the three major sources of pathogens in greywater. [14]

Greywater reuse in toilet flushing and garden irrigation may produce aerosols. These could transmit legionella disease and bring a potential health risk for people. However, the result of the research shows that the health risk due to reuse of greywater either for garden irrigation or toilet flushing was not significantly higher than the risk associated with using clear water for the same activities. [15]

Irrigation

Most greywater should be assumed to have some blackwater-type components, including pathogens. Greywater should be applied below the surface where possible (e.g., via drip line on top of the soil, under mulch; or in mulch-filled trenches) and not sprayed, as there is a danger of inhaling the water as an aerosol.

In any greywater system, it is important to avoid toxic materials such as bleaches, bath salts, artificial dyes, chlorine-based cleansers, strong acids/alkali, solvents, and products containing boron, which is toxic to plants at high levels. Most cleaning agents contain sodium salts, which can cause excessive soil alkalinity, inhibit seed germination, and destroy the structure of soils by dispersing clay. Soils watered with greywater systems can be amended with gypsum (calcium sulfate) to reduce pH. Cleaning products containing ammonia are safe to use, as plants can use it to obtain nitrogen. [16] A 2010 study of greywater irrigation found no major health effects on plants, and suggests sodium buildup is largely dependent on the degree to which greywater migrates vertically through the soil. [17]

Some greywater may be applied directly from the sink to the garden or container field, receiving further treatment from soil life and plant roots.

The use of non-toxic and low-sodium soap and personal care products is recommended to protect vegetation when reusing greywater for irrigation purposes. [18]

Indoor reuse

Recycled greywater from showers and bathtubs can be used for flushing toilets in most European and Australian jurisdictions and in United States jurisdictions that have adopted the International Plumbing Code.

Such a system could provide an estimated 30% reduction in water use for the average household. The danger of biological contamination is avoided by using:

Greywater recycling without treatment is used in certain dwellings for applications where potable water is not required (e.g., garden and land irrigation, toilet flushing). It may also be used in dwellings when the greywater (e.g., from rainwater) is already fairly clean to begin with and/or has not been polluted with non-degradable chemicals such as non-natural soaps (thus using natural cleaning products instead). It is not recommended to use water that has been in the greywater filtration system for more than 24 hours as bacteria builds up, affecting the water that is being reused.

Due to the limited treatment technology, the treated greywater still contains some chemicals and bacteria, so some safety issues should be observed when using the treated greywater around the home. [19]

A clothes washer grey water system is sized to recycle the grey water of a one or two family home using the reclaimed water of a washing machine (produces 15 gallons per person per day). [20] It relies on either the pump from the washing machine or gravity to irrigate. This particular system is the most common and least restricted system. In most states with in the United States, this system does not require construction permits. This system is often characterized as Laundry to Landscape (L2L). The system relies on valves, draining to a mulch basin, or the area of irrigation for certain landscape features (a mulch basin for a tree requires 12.6 ft2). The drip system must be calibrated to avoid uneven distribution of grey water or overloading. [21]

Recycled grey water from domestic appliances also can be used to flush toilet. [22] Its application is based on standards set by plumbing codes. Indoor grey water reuse requires an efficient cleaning tank for insoluble waste, as well as a well regulated control mechanism.

The Uniform Plumbing Code, adopted in some U.S. jurisdictions, prohibits greywater use indoors. However, the California Plumbing Code, derived from the UPC, permits it.

Heat reclamation

Devices are currently available that capture heat from residential and industrial greywater through a process called drain water heat recovery, greywater heat recovery, or hot water heat recycling.

Rather than flowing directly into a water heating device, incoming cold water flows first through a heat exchanger where it is pre-warmed by heat from greywater flowing out from such activities as dish washing or showering. Typical household devices receiving greywater from a shower can recover up to 60% of the heat that would otherwise go to waste.[ citation needed ]

Regulations

United States

Government regulation governing domestic greywater use for landscape irrigation (diversion for reuse) is still a developing area and continues to gain wider support as the actual risks and benefits are considered and put into clearer perspective.

"Greywater" (by pure legal definition) is considered in some jurisdictions to be "sewage" (all wastewater including greywater and toilet waste), but in the U.S. states that adopt the International Plumbing Code, it can be used for subsurface irrigation and for toilet flushing, and in states that adopt the Uniform Plumbing Code , it can be used in underground disposal fields that are akin to shallow sewage disposal fields.

Wyoming allows surface and subsurface irrigation and other non-specific use of greywater under a Department of Environmental Quality policy enacted in March 2010. California, Utah, New Mexico and some other states allow true subsurface drip irrigation with greywater. Where greywater is still considered sewage, it is bound by the same regulatory procedures enacted to ensure properly engineered septic tank and effluent disposal systems are installed for long system life and to control spread of disease and pollution. In such regulatory jurisdictions, this has commonly meant domestic greywater diversion for landscape irrigation was either not permitted or was discouraged by expensive and complex sewage system approval requirements. Wider legitimate community greywater diversion for landscape irrigation has subsequently been handicapped and resulted in greywater reuse continuing to still be widely undertaken by householders outside of and in preference to the legal avenues.

However, with water conservation becoming a necessity in a growing number of jurisdictions, business, political and community pressure has made regulators seriously reconsider the actual risks against actual benefits.

It is now recognized and accepted by an increasing number of regulators[ citation needed ] that the microbiological risks of greywater reuse at the single dwelling level where inhabitants already had intimate knowledge of that greywater are in reality an insignificant risk, when properly managed without the need for onerous approval processes. This is reflected in the New South Wales Government Department of Water and Energy's newly released greywater diversion rules, and the recent passage of greywater legislation in Montana. [23] In the 2009 Legislative Session, the state of Montana passed a bill expanding greywater use into multi-family and commercial buildings. The Department of Environmental Quality has already drafted rules and design guidelines for greywater re-use systems in all these applications. Existing staff would review systems proposed for new subdivisions in conjunction with review of all other wastewater system components. [24]

Strict permit requirements in Austin, Texas, led to issuance of only one residential graywater permit since 2010. A working group formed to streamline the permitting process, and in 2013, the city created new code that has eased the requirements, resulting in four more permits. [25]

In California, a push has been made in recent years to address greywater in connection with the State's greenhouse gas reduction goals (see AB 32). As a large amount of energy (electricity) is used for pumping, treating and transporting potable water within the state, water conservation has been identified as one of several ways California is seeking to reduce greenhouse gas emissions. [26]

In July 2009, the California Building Standards Commission (CBSC) approved the addition of Chapter 16A "Non-potable Water Reuse Systems" to the 2007 California Plumbing Code. Emergency regulations allowing greywater reuse systems were subsequently filed with the California Secretary of State August 2009 and became effective immediately upon filing. Assembly Bill 371 (Goldberg 2006) and Senate Bill 283 (DeSaulnier 2009) directed the California Department of Water Resources (DWR), in consultation with the State Department of Health Services, to adopt and submit to the CBSC regulations for a State version of Appendix J (renamed Chapter 16 Part 2) of the Uniform Plumbing Code to provide design standards to safely plumb buildings with both potable and recycled water systems. November 2009 the CBSC unanimously voted to approve the California Dual Plumbing Code that establishes statewide standards for potable and recycled water plumbing systems in commercial, retail and office buildings, theaters, auditoriums, condominiums, schools, hotels, apartments, barracks, dormitories, jails, prisons and reformatories. In addition, the California Department of Housing and Community Development has greywater standards and DWR has also proposed dual plumbing design standards.

In Arizona, greywater is defined as water with a BOD5 less than 380 mg/L, TSS<430 and the Fats, Oil, and Grease (FOG) content should be less than 75 mg/L. The Arizona water has issued advice that people should avoid direct contact with greywater. Most greywater use is by underground drip irrigation since surface irrigation is not permitted. There are three types of use in Arizona: up to a quota of 400 gpd per family (close to 1500 L per day) no permission is required for greywater use, between 400 and 3000 gpd (1500 and 11,355 L per day, respectively) permission is required and above 3000 gpd (>11,355 L per day) it is considered as conventional wastewater venture. Other limitations include restrictions on contact, restrictions on use on herbaceous food plants, exclusion of hazardous materials and effective separation from surface water run-off. [27]

The Uniform Plumbing Code, adopted in some U.S. jurisdictions, prohibits gray water use indoors.

United Kingdom

Greywater recycling is relatively uncommon in the UK, largely because the financial cost and environmental impact of mains water is very low. Greywater systems should comply with BS8525 and the Water Supply (Water Fittings) Regulations in order to avoid risks to health. [28]

Greywater from single sewered premises has the potential to be reused on site for ornamental, garden and lawn irrigation, toilet flushing. The reuse options include Horizontal flow reed bed (HFRB), Vertical flow reed bed (VFRB), Green roof water recycling system (GROW), Membrane bioreactor (MBR) and Membrane chemical reactor (MCR). [29]

Canada

Although Canada is a water-rich country, the center of the country freezes in the winter and droughts happen some summers. There are locations where watering outdoors is restricted in the dry season, some water must be transported from an outside source, or on-site costs are high. At present, the standards for greywater reuse are not strict compared with other countries. [29]

The National Plumbing Code, which is adopted in whole or in part by the provinces, indicates that non-potable water systems should only be used to supply toilets and underground irrigation systems, collecting rainwater with roof gutters is included as a form of greywater. [30] [31] Health Canada has published a guideline to use greywater for toilet flushing and British Columbia's building code includes subsurface irrigation with greywater. [32] [33] In Alberta "Reclaimed wastewater from any source cannot be used domestically unless it is approved and meets water quality testing and monitoring by the local municipality." [34] Saskatchewan also treats greywater as sewage. [35]

Australia

Household greywater from a single contaminated site may be reused on-site at the ornamental garden and lawn watering, toilet flushing and laundry uses, depending on the type of greywater and treatment level. Some people wisely re-use the gross weight, but others use it even worse (without any treatment), such as bathing in the bath or simply transferring laundry water to the lawn where children and pets may be exposed directly. The Department of Health and Community Services (DHCS) focuses on protecting public health and then takes action to control and minimize the public health risks associated with greywater reuse. [29]

Cyprus

The government of Cyprus has implemented four water-saving subsidies: drilling installations, drilling with lavatories, installation of hot water circulation systems and installation of greywater recycling systems. [29]

Jordan

The emphasis on the use of greywater in Jordan has two main purposes: water conservation and socioeconomic aspects. The Amman Islamic Water Development and Management Network (INWRDAM) in Jordan promoted research on gray water reuse in Jordan. At present, greywater research in Jordan is funded mainly by the International Development Research Center (IDRC) in Ottawa, Canada, to install and use greywater systems based on the establishment of small wetland systems in private households. The cost of this system is about 500 US dollars per household. [29]

See also

Related Research Articles

<span class="mw-page-title-main">Water conservation</span> Policies for sustainable development of water use

Water conservation aims to sustainably manage the natural resource of fresh water, protect the hydrosphere, and meet current and future human demand. Water conservation makes it possible to avoid water scarcity. It covers all the policies, strategies and activities to reach these aims. Population, household size and growth and affluence all affect how much water is used.

<span class="mw-page-title-main">Drain-waste-vent system</span> Plumbing fixture

A drain-waste-vent system is the combination of pipes and plumbing fittings that captures sewage and greywater within a structure and routes it toward a water treatment system. It includes venting to the exterior environment to prevent a vacuum from forming and impeding fixtures such as sinks, showers, and toilets from draining freely, and employs water-filled traps to block dangerous sewer gasses from entering a plumbed structure.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Composting toilet</span> Type of toilet that treats human excreta by a biological process called composting

A composting toilet is a type of dry toilet that treats human waste by a biological process called composting. This process leads to the decomposition of organic matter and turns human waste into compost-like material. Composting is carried out by microorganisms under controlled aerobic conditions. Most composting toilets use no water for flushing and are therefore called "dry toilets".

Human waste refers to the waste products of the human digestive system, menses, and human metabolism including urine and feces. As part of a sanitation system that is in place, human waste is collected, transported, treated and disposed of or reused by one method or another, depending on the type of toilet being used, ability by the users to pay for services and other factors. Fecal sludge management is used to deal with fecal matter collected in on-site sanitation systems such as pit latrines and septic tanks.

Blackwater in a sanitation context denotes wastewater from toilets which likely contains pathogens that may spread by the fecal–oral route. Blackwater can contain feces, urine, water and toilet paper from flush toilets. Blackwater is distinguished from greywater, which comes from sinks, baths, washing machines, and other household appliances apart from toilets. Greywater results from washing food, clothing, dishes, as well as from showering or bathing.

<span class="mw-page-title-main">Ecological sanitation</span> Approach to sanitation provision which aims to safely reuse excreta in agriculture

Ecological sanitation, commonly abbreviated as ecosan, is an approach to sanitation provision which aims to safely reuse excreta in agriculture. It is an approach, rather than a technology or a device which is characterized by a desire to "close the loop", mainly for the nutrients and organic matter between sanitation and agriculture in a safe manner. One of the aims is to minimise the use of non-renewable resources. When properly designed and operated, ecosan systems provide a hygienically safe system to convert human excreta into nutrients to be returned to the soil, and water to be returned to the land. Ecosan is also called resource-oriented sanitation.

<span class="mw-page-title-main">Vacuum sewer</span> Method of transporting sewage from its source to a sewage treatment plant

A vacuum sewer or pneumatic sewer system is a method of transporting sewage from its source to a sewage treatment plant. It maintains a partial vacuum, with an air pressure below atmospheric pressure inside the pipe network and vacuum station collection vessel. Valves open and reseal automatically when the system is used, so differential pressure can be maintained without expending much energy pumping. A single central vacuum station can collect the wastewater of several thousand individual homes, depending on terrain and the local situation.

<span class="mw-page-title-main">Sustainable sanitation</span> Sanitation system designed to meet certain criteria and to work well over the long-term

Sustainable sanitation is a sanitation system designed to meet certain criteria and to work well over the long-term. Sustainable sanitation systems consider the entire "sanitation value chain", from the experience of the user, excreta and wastewater collection methods, transportation or conveyance of waste, treatment, and reuse or disposal. The Sustainable Sanitation Alliance (SuSanA) includes five features in its definition of "sustainable sanitation": Systems need to be economically and socially acceptable, technically and institutionally appropriate and protect the environment and natural resources.

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.

<span class="mw-page-title-main">Toilet</span> Piece of hardware for the collection or disposal of human excreta

A toilet is a piece of sanitary hardware that collects human waste, and sometimes toilet paper, usually for disposal. Flush toilets use water, while dry or non-flush toilets do not. They can be designed for a sitting position popular in Europe and North America with a toilet seat, with additional considerations for those with disabilities, or for a squatting posture more popular in Asia, known as a squat toilet. In urban areas, flush toilets are usually connected to a sewer system; in isolated areas, to a septic tank. The waste is known as blackwater and the combined effluent, including other sources, is sewage. Dry toilets are connected to a pit, removable container, composting chamber, or other storage and treatment device, including urine diversion with a urine-diverting toilet.

<span class="mw-page-title-main">Sewage</span> Wastewater that is produced by a community of people

Sewage is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater and blackwater. Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

<span class="mw-page-title-main">History of water supply and sanitation</span>

The history of water supply and sanitation is one of a logistical challenge to provide clean water and sanitation systems since the dawn of civilization. Where water resources, infrastructure or sanitation systems were insufficient, diseases spread and people fell sick or died prematurely.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

<span class="mw-page-title-main">Urine-diverting dry toilet</span> Dry toilet with separate collection of feces and urine without any flush water

A urine-diverting dry toilet (UDDT) is a type of dry toilet with urine diversion that can be used to provide safe, affordable sanitation in a variety of contexts worldwide. The separate collection of feces and urine without any flush water has many advantages, such as odor-free operation and pathogen reduction by drying. While dried feces and urine harvested from UDDTs can be and routinely are used in agriculture, many UDDT installations do not apply any sort of recovery scheme. The UDDT is an example of a technology that can be used to achieve a sustainable sanitation system. This dry excreta management system is an alternative to pit latrines and flush toilets, especially where water is scarce, a connection to a sewer system and centralized wastewater treatment plant is not feasible or desired, fertilizer and soil conditioner are needed for agriculture, or groundwater pollution should be minimized.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

<span class="mw-page-title-main">Rainwater harvesting in Canada</span>

Rainwater harvesting is becoming a procedure that many Canadians are incorporating into their daily lives, although data does not give exact figures for implementation. Rainwater can be used for a number of purposes including stormwater reduction, irrigation, laundry and portable toilets. In addition to low costs, rainwater harvesting is useful for landscape irrigation. Many Canadians have started implementing rainwater harvesting systems for use in stormwater reduction, irrigation, laundry, and lavatory plumbing. Provincial and municipal legislation is in place for regulating the rights and uses for captured rainwater. Substantial reform to Canadian law since the mid-2000s has increased the use of this technology in agricultural, industrial, and residential use, but ambiguity remains amongst legislation in many provinces. Bylaws and local municipal codes often regulate rainwater harvesting.

<span class="mw-page-title-main">Vermifilter</span> Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.

<span class="mw-page-title-main">Water reuse in California</span>

Water reuse in California is the use of reclaimed water for beneficial use. As a heavily populated state in the drought-prone arid west, water reuse is developing as an integral part of water in California enabling both the economy and population to grow.

Sewer mining is a concept where municipal wastewater (sewage) is pumped from a trunk sewer and treated on-site to accommodate a range of local, nonpotable water needs. It is a strategy for combating water scarcity. It combines decentralized wastewater management and water reclamation. Since 2012, it is used as a tool for improving water management and promoting reuse of water in Australia.

References

  1. Behzadian, k; Kapelan, Z (2015). "Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems" (PDF). Science of the Total Environment. 527–528: 220–231. Bibcode:2015ScTEn.527..220B. doi:10.1016/j.scitotenv.2015.04.097. hdl: 10871/17351 . PMID   25965035.
  2. Duttle, Marsha (January 1990). "NM State greywater advice". New Mexico State University. Archived from the original on 13 February 2010. Retrieved 23 January 2010.
  3. 1 2 3 Tilley, Elizabeth; Ulrich, Lukas; Lüthi, Christoph; Reymond, Philippe; Zurbrügg, Chris (2014). Compendium of Sanitation Systems and Technologies (2nd ed.). Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag). ISBN   978-3-906484-57-0. Archived from the original on 2015-05-26.
  4. Gross, Amit; Maimon, Adi; Alfiya, Yuval; Friedler, Eran (2015-03-26). Greywater Reuse. CRC Press. ISBN   978-1-4822-5505-8.
  5. 1 2 Monira, Sirajum; Roychand, Rajeev; Hai, Faisal Ibney; Bhuiyan, Muhammed; Dhar, Bipro Ranjan; Pramanik, Biplob Kumar (September 2023). "Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal". Chemosphere. 334: 139011. doi: 10.1016/j.chemosphere.2023.139011 .
  6. Tolksdorf, J.; Cornel, P. (2017-05-19). "Separating grey- and blackwater in urban water cycles – sensible in the view of misconnections?". Water Science and Technology. 76 (5): 1132–1139. doi: 10.2166/wst.2017.293 . ISSN   0273-1223. PMID   28876254.
  7. "Code of practice – on-site wastewater management, EPA-Victoria, Au, Publication 891 4-1" (PDF). July 2016. Archived from the original (PDF) on 10 April 2017. Retrieved 18 November 2017.
  8. Hemenway, Toby (2009). Gaia's Garden. Chelsea Green Publishing.
  9. Juan, Yi-Kai; Chen, Yi; Lin, Jing-Ming (19 November 2016). "Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan". Water. 8 (11): 546. doi: 10.3390/w8110546 .
  10. "Greywater Recycling". Archived from the original on January 30, 2009.
  11. "Sustainable Earth Technologies" . Retrieved 28 November 2017.
  12. Busgang, A; Friedler, E; Ovadia, O; Gross, A (2015). "Epidemiological study for the assessment of health risks associated with grey water reuse for irrigation in arid regions". Science of the Total Environment. 538: 230–239. Bibcode:2015ScTEn.538..230B. doi:10.1016/j.scitotenv.2015.08.009. PMID   26311579.
  13. Etchepare, R; van der Hoek, J (2015). "Health risk assessment of organic micropollutants in grey water for potable reuse". Water Research. 72: 186–198. doi:10.1016/j.watres.2014.10.048. PMID   25472689.
  14. Maimon, Adi; Friedler, Eran; Gross, Amit (27 March 2014). "Parameters affecting grey water quality and its safety for reuse". Science of the Total Environment. 487: 20–25. Bibcode:2014ScTEn.487...20M. doi:10.1016/j.scitotenv.2014.03.133. PMID   24751591.
  15. Blanky, Marina; Sharaby, Yehonatan; et al. (14 June 2017). "Grey water reuse – Assessment of the health risk induced by Legionella pneumophila". Sustainable Earth Technologies. 125: 410–417. doi:10.1016/j.watres.2017.08.068. PMID   28889040.
  16. Dr. Allen V. Barker; Jean E. English (Sep 2011). "Recycling Gray Water for Home Gardens". University of Massachusetts. Archived from the original on September 1, 2012.
  17. S. Sharvelle; L.A. Roesner; Y. Qian; M. Stromberger (2010). "Long-Term Study on Landscape Irrigation Using Household Graywater-Experimental Study" (PDF) (Interim Report). Colorado State University. Archived (PDF) from the original on 2013-04-09.
  18. US EPA. Water Recycling and Reuse: The Environmental Benefits Archived 2015-07-29 at the Wayback Machine . Retrieved: 21 July 2015.
  19. "choice". 2014-08-27. Retrieved 28 November 2017.
  20. "Laundry to Landscape Original Complete Information Hub". oasisdesign.net. Retrieved 2016-04-21.
  21. Times, Los Angeles (16 September 2014). "Gray water: from the washer to the garden". Los Angeles Times . Retrieved 2016-04-21.
  22. "Gray Water Indoor Reuse, Cascading, Rainwater Harvesting". oasisdesign.net. Retrieved 2016-04-28.
  23. "Policy recommendations for Montana | Greywater Action". Archived from the original on 2013-01-06. Retrieved 2012-01-28. 2007 grey water legislation in Montana
  24. "Gray water law is a good step forward". The Montana Standard . 2009-04-01. Archived from the original on 2016-04-07.
  25. Texas Water Report: Going Deeper for the Solution Archived 2014-02-22 at the Wayback Machine Texas Comptroller of Public Accounts. Retrieved 2/11/14.
  26. California Air Resources Board. AB 32 Scoping Plan. 2008.
  27. Oron, Gideon; Adel, Mike; Agmon, Vered; Frieder, Eran; Halperin, Rami; Leshem, Ehud; Weinberg, Daniel (14 March 2014). "Greywater use in Israel and worldwide: Standards and prospects". Science of the Total Environment. 487: 20–25. Bibcode:2014ScTEn.487...20M. doi:10.1016/j.scitotenv.2014.03.133. PMID   24751591.
  28. "BS 8525-1:2010 - Grey water systems. Code of practice – BSI British Standards". shop.bsigroup.com. Archived from the original on 2017-03-09. Retrieved 2017-03-08.
  29. 1 2 3 4 5 Oron, Gideon; Adel, Mike; Agmon, Vered; Frieder, Eran; Halperin, Rami; Leshem, Ehud; Weinberg, Daniel (14 March 2014). "Grey water use in Israel and worldwide: Standards and prospects". Water Research. 58: 92–101. doi:10.1016/j.watres.2014.03.032. PMID   24747140.
  30. Canadian Commission On Building And Fire Codes (2015). "National Plumbing Code of Canada: 2015" (Tenth ed.). National Research Council Canada. doi:10.4224/40002007 . Retrieved June 25, 2021.{{cite journal}}: Cite journal requires |journal= (help)
  31. "Archived copy" (PDF). Archived from the original (PDF) on 2018-08-23. Retrieved 2018-08-22.{{cite web}}: CS1 maint: archived copy as title (link)
  32. "Household Reclaimed Wastewater - Canada". Health Canada. August 27, 2007. Retrieved 24 August 2018.
  33. "Health Information: Grey Water Re-Use" (PDF). British Columbia Health Protection Branch Ministry of Health. September 2017. Retrieved June 25, 2021.
  34. "Reclaimed Wastewater". Reclaimed Water. Alberta. 2021. Retrieved June 25, 2021.
  35. "FAQs – Saskatchewan Onsite Wastewater Management Association". Alberta Onsite Wastewater Management Association. 2021. Retrieved June 25, 2021. In the Western Provinces, graywater must be collected by the septic system where it goes through the same treatment and dispersal process as blackwater.