Radiator (heating)

Last updated
A cast iron household radiator Household radiator.jpg
A cast iron household radiator
Heat exchange by built-in bathroom radiator uses hot water flow through the stainless steel pipes seen here to raise the temperature of the ambient air. The radiator depicted here also serves as a towel rack and warmer. Bathroom-radiator.jpg
Heat exchange by built-in bathroom radiator uses hot water flow through the stainless steel pipes seen here to raise the temperature of the ambient air. The radiator depicted here also serves as a towel rack and warmer.

Radiators and convectors are heat exchangers designed to transfer thermal energy from one medium to another for the purpose of space heating.

Contents

Denison Olmsted of New Haven, Connecticut, appears to have been the earliest person to use the term 'radiator' to mean a heating appliance in an 1834 patent for a stove with a heat exchanger which then radiated heat. In the patent he wrote that his invention was "a peculiar kind of apparatus, which I call a radiator". [1] The heating radiator was invented by Franz San Galli in 1855, a Kingdom of Prussia-born Russian businessman living in St. Petersburg. [2] [3] In the late 1800s, companies, such as the American Radiator Company, promoted cast iron radiators over previous fabricated steel designs in order to lower costs and expand the market.

Radiation vs. convection

A radiator is a device that transfers heat to a medium primarily through thermal radiation. In practice, the term radiator is often applied to any number of devices in which a fluid circulates through exposed pipes (often with fins or other means of increasing surface area), notwithstanding that such devices tend to transfer heat mainly by convection and might logically be called convectors.

The terms convection heater and convector refer to a class of devices in which the source of heat is not directly exposed. As domestic safety and the supply from water heaters keep temperatures relatively low, radiation is inefficient in comparison to convection.[ citation needed ]

Energy source

Hot-water baseboard-style radiator (top) which is covered (left) and opened (right), with inside view (bottom) showing the aluminium fins which are attached in series to the copper pipe Hotwater baseboard radiator (2).JPG
Hot-water baseboard-style radiator (top) which is covered (left) and opened (right), with inside view (bottom) showing the aluminium fins which are attached in series to the copper pipe

Steam

A cast iron radiator with single-pipe steam supply and radiator air vent 2006 400x700 one pipe steam radiator.jpg
A cast iron radiator with single-pipe steam supply and radiator air vent

Steam has the advantage of flowing through pipes under its own pressure without the need for pumping. For this reason, it was adopted earlier, before electric motors and pumps became available. Steam is also far easier to distribute than hot water throughout large, tall buildings like skyscrapers. However, the higher temperatures at which steam systems operate make them inherently less efficient, as unwanted heat loss is inevitably greater.

Steam pipes and radiators are prone to producing banging sounds called steam hammer. The bang is created when some of the steam condenses into water in a horizontal section of the steam piping. Subsequently, steam picks up the water, forms a "slug" and hurls it at high velocity into a pipe fitting, creating a loud hammering noise and greatly stressing the pipe. This condition is usually caused by a poor condensate drainage strategy and is often caused by buildings settling and the resultant pooling of condensate in pipes and radiators that no longer tilt slightly back towards the boiler.[ citation needed ]

Hot water

A hot-water radiator consists of a sealed hollow metal container filled with hot water from a boiler or other heating device by gravity feed, a pump, or natural convection . As it gives out heat, the hot water cools and sinks to the bottom of the radiator and is forced out of a pipe at the other end. Anti-hammer devices are often installed to prevent or minimize knocking in hot water radiator pipes.

Electricity

Unlike steam or hot water systems which receive heat from a boiler, electric radiators produce heat from electricity at the location of the radiator. This heat may be transferred to a fluid (such as oil) inside the radiator. The oil circulates inside the radiator by convection, which distributes the heat from the heating element to the surface of the radiator. Smaller electric radiators have the advantage of being portable, as they do not need to be connected to pipework. Some electric radiators can also use hot water; this is particularity common for heated towel rails, where the radiator uses hot water when the central heating system is running but switches to electricity when heating the whole building is not required.

Shape and design

Cast iron

Cast iron radiators may be used with hot water or steam systems. Traditional cast iron radiators are no longer common in new construction, replaced mostly with forced hot water baseboard or panel radiators, but they remain available.

Hot-water baseboard

Hot-water baseboard convectors (often referred to as "fin-tube radiators") consist of copper pipes which have aluminum fins attached to increase their surface area. Conduction is used to transfer heat from the water circulated in the pipes into the metal radiators or convectors.

Baseboard convectors are designed to heat the air in the room using convection to transfer heat from the radiators to the surrounding air. [4] They do this by drawing cool air in at the bottom, warming the air as it passes over the radiator fins, and discharging the heated air at the top. This sets up convective loops of air movement within a room. If the radiator is blocked either from above or below, this air movement is prevented, and the heater will not work. Baseboard heating systems are sometimes fitted with moveable covers to allow the resident to fine-tune heating by room, much like air registers in a central air system.

Panel radiator

Panel radiators are welded from flat or corrugated steel panels, and are usually hung from the wall. They are usually used with hot water systems, but electric versions are also available. The panels often have fins attached, which increases the surface area and therefore the amount of heat that can be transferred into the air. Several panels may be stacked together to make one radiator, and the resulting radiator is referred to with a two-digit type number. The first digit is the number of panels, and the second is the number of sets of fins, for example a type 21 radiator has two panels with one set of fins in between. Air flow around the radiator and between the panels is by convection only, and must be unrestricted if the radiator is to reach its design performance. The heat output of panel radiators is regulated by controlling the flow of hot water, with either a manual or a thermostatic valve.

Fan-assisted heat exchanger

A fan-assisted convector contains a heat exchanger fed by hot water from the heating system. A thermostatic switch energises an electric fan which blows air over the heat exchanger to circulate it in a room. Its advantages are small relative size and even distribution of heat. Disadvantages are fan noise and the need for both a source of heat and a separate electrical supply.

Underfloor

In underfloor heating, tubing is placed on the floor throughout the room and later covered with a concrete layer during construction. Constructingheatedfloor.jpg
In underfloor heating, tubing is placed on the floor throughout the room and later covered with a concrete layer during construction.

Also known as "radiant heat", underfloor heating uses a network of pipes, tubing or heating cables, buried in or attached beneath a floor to allow heat to rise into the room. Best results are achieved with conductive flooring materials such as tile. The large surface area of such room-sized radiators allows them to be kept just a few degrees above desired room temperature, minimizing convection. Underfloor heating is more expensive in new construction than less efficient systems. It also is generally difficult to retrofit into existing buildings.

The Roman hypocaust employed a similar principle of operation.

Skirting-board heating

Skirting-board radiators are a form of heater which involves placing radiators inside a skirting board. Hot water is piped though the system, usually taken directly from the central heating system. [5]

Indoor climate impact

Radiators can lower indoor humidity, which may contribute to dry skin, lower physical comfort, and shrinkage of wood flooring (for example), however, a humidifier can be used to increase the humidity. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Radiator</span> Type of heat exchanger; radiant body through water or other liquids

A radiator is a heat exchanger used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Solar water heating</span> Use of sunlight for water heating with a solar thermal collector

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications.

<span class="mw-page-title-main">Central heating</span> Type of heating system

A central heating system provides warmth to a number of spaces within a building from one main source of heat. It is a component of heating, ventilation, and air conditioning systems, which can both cool and warm interior spaces.

<span class="mw-page-title-main">Hydronics</span> Use of liquid or gaseous water in heating or cooling systems

Hydronics is the use of liquid water or gaseous water (steam) or a water solution as a heat-transfer medium in heating and cooling systems. The name differentiates such systems from oil and refrigerant systems.

<span class="mw-page-title-main">Air handler</span> Device used to regulate and circulate air as part of an HVAC system

An air handler, or air handling unit, is a device used to regulate and circulate air as part of a heating, ventilating, and air-conditioning (HVAC) system. An air handler is usually a large metal box containing a blower, furnace or A/C elements, filter racks or chambers, sound attenuators, and dampers. Air handlers usually connect to a ductwork ventilation system that distributes the conditioned air through the building and returns it to the AHU, sometimes exhausting air to the atmosphere and bringing in fresh air. Sometimes AHUs discharge (supply) and admit (return) air directly to and from the space served without ductwork

<span class="mw-page-title-main">Electric heating</span> Process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

<span class="mw-page-title-main">Forced-air</span> HVAC system

A forced-air central heating system is one which uses air as its heat transfer medium. These systems rely on ductwork, vents, and plenums as means of air distribution, separate from the actual heating and air conditioning systems. The return plenum carries the air from several large return grills (vents) to a central air handler for re-heating. The supply plenum directs air from the central unit to the rooms which the system is designed to heat. Regardless of type, all air handlers consist of an air filter, blower, heat exchanger/element/coil, and various controls. Like any other kind of central heating system, thermostats are used to control forced air heating systems.

<span class="mw-page-title-main">Fan heater</span> Heat producing machine to increase temperature of an enclosed space

A fan heater, also called a blow heater, is a heater that works by using a fan to pass air over a heat source. This heats up the air, which then leaves the heater, warming up the surrounding room. They can heat an enclosed space such as a room faster than a heater without a fan, but like any fan, create a degree of noise.

<span class="mw-page-title-main">Circulator pump</span> Pump for circulating fluid around a closed circuit for hydronic purposes

A circulator pump or circulating pump is a specific type of pump used to circulate gases, liquids, or slurries in a closed circuit. They are commonly found circulating water in a hydronic heating or cooling system. Because they only circulate liquid within a closed circuit, they only need to overcome the friction of a piping system.

<span class="mw-page-title-main">Underfloor heating</span> Form of central heating and cooling

Underfloor heating and cooling is a form of central heating and cooling that achieves indoor climate control for thermal comfort using hydronic or electrical heating elements embedded in a floor. Heating is achieved by conduction, radiation and convection. Use of underfloor heating dates back to the Neoglacial and Neolithic periods.

<span class="mw-page-title-main">Space heater</span> Household appliance that heats a single room or other small area

A space heater is a device used to heat a single, small- to medium-sized area. This type of heater can be contrasted with central heating, which distributes heat to multiple areas.

<span class="mw-page-title-main">Convection heater</span> Type of heating device

A convection heater is a type of heater that uses convection currents to heat and circulate air. These air currents flow throughout the body of the appliance and across its heating element. This process takes advantage of thermal conduction in order to heat the air, reducing its density relative to colder air and causing it to rise.

<span class="mw-page-title-main">Oil heater</span> Type of convection heater

An oil heater, also known as an oil-filled heater, oil-filled radiator, or column heater, is a common form of convection heater used in domestic heating. Although filled with oil, it is electrically heated and does not involve burning any oil fuel; the oil is used as a heat reservoir (buffer).

<span class="mw-page-title-main">Fan coil unit</span> HVAC device

A fan coil unit (FCU), also known as a Vertical Fan Coil-Unit (VFC), is a device consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC systems of residential, commercial, and industrial buildings that use ducted split air conditioning or with central plant cooling. FCUs are typically connected to ductwork and a thermostat to regulate the temperature of one or more spaces and to assist the main air handling unit for each space if used with chillers. The thermostat controls the fan speed and/or the flow of water or refrigerant to the heat exchanger using a control valve.

<span class="mw-page-title-main">Radiator (engine cooling)</span> Heat exchangers used for cooling internal combustion engines

Radiators are heat exchangers used for cooling internal combustion engines, mainly in automobiles but also in piston-engined aircraft, railway locomotives, motorcycles, stationary generating plants or any similar use of such an engine.

Heat exchangers are devices that transfer heat to achieve desired heating or cooling. An important design aspect of heat exchanger technology is the selection of appropriate materials to conduct and transfer heat fast and efficiently.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.

References

  1. Kay, Thornton (14 March 2016). "A peculiar kind of apparatus, which I call a radiator". SalvoNEWS. Archived from the original on 23 December 2016. Retrieved 22 December 2016.
  2. Family Sangalli / San Galli
  3. Johnny Acton; Tania Adams; Matt Packer (2006). Origin of Everyday Things . Sterling Publishing Company, Inc. p.  205. ISBN   1402743025 . Retrieved February 4, 2015. radiator 1855 invented.
  4. Siegenthaler, John (2023). Modern hydronic heating & cooling : for residential and light commercial buildings (3rd ed.). Cengage Learning. pp. 280–282. ISBN   978-1-337-90491-9.
  5. "In depth knowledge" . Retrieved 26 August 2014.
  6. McDonell, Geoff. "Residential Humidity Control Strategies for Radiant Conditioned Homes". Healthy heating. Retrieved 12 January 2023.

Sources