Building services engineering

Last updated

Building services engineering (BSE) is a professional engineering discipline that strives to achieve a safe and comfortable indoor environment while minimizing the environmental impact of a building.

Contents

Professional bodies

The two most notable professional bodies are:

Education

Building services engineers typically possess an academic degree in civil engineering, architectural engineering, building services engineering, mechanical engineering or electrical engineering. The length of study for such a degree is usually 3–4 years for a Bachelor of Engineering (BEng) or Bachelor of Science (BSc) and 4–5 years for a Master of Engineering (MEng).

In the United Kingdom, the Chartered Institution of Building Services Engineers (CIBSE) accredits university degrees in Building Services Engineering. [1] In the United States, ABET accredits degrees. [2]

Building services engineering software

Many tasks in building services engineering involve the use of engineering software, for example to design/model or draw solutions. The most common types of tool are whole building energy simulation [3] and CAD (traditionally 2D) or the increasingly popular Building Information Modeling (BIM) which is 3D. 3D BIM software can have integrated tools for Building Services calculations such sizing ventilation ducts or estimating noise levels. Another use of 3D/4D BIM is that empowers more informed decision making and better coordination between different disciplines, such as 'collision testing'.

See also

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

A Bachelor of Engineering, Bachelor of Science in Engineering (BSE), or Bachelor of Science and Engineering is an undergraduate academic degree awarded to a college graduate majoring in an engineering discipline at a higher education institution.

A sound attenuator, or duct silencer, sound trap, or muffler, is a noise control acoustical treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of noise through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces.

<span class="mw-page-title-main">Building science</span>

Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants' thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships.

Infiltration is the unintentional or accidental introduction of outside air into a building, typically through cracks in the building envelope and through use of doors for passage. Infiltration is sometimes called air leakage. The leakage of room air out of a building, intentionally or not, is called exfiltration. Infiltration is caused by wind, negative pressurization of the building, and by air buoyancy forces known commonly as the stack effect.

<span class="mw-page-title-main">Green Building XML</span>

The Green Building XML schema (gbXML) is an open schema developed to facilitate transfer of building data stored in Building Information Models (BIMs) to engineering analysis tools. It enables interoperability between BIM and building performance simulation, which is relevant to sustainable building design and operation. gbXML is being integrated into a range of Computer-aided design (CAD) software and engineering tools, supported by leading 3D BIM vendors. The streamlined workflow can transfer building properties to and from engineering analysis tools, which eliminates the duplicate model generation and allows a bidirectional information update.

<span class="mw-page-title-main">Chartered Institution of Building Services Engineers</span> Engineering association based in London

The Chartered Institution of Building Services Engineers is an international professional engineering association based in London, England that represents building services engineers. It is a full member of the Construction Industry Council, and is consulted by government on matters relating to construction, engineering and sustainability. It is also licensed by the Engineering Council to assess candidates for inclusion on its Register of Professional Engineers.

A chilled beam is a type of radiation/convection HVAC system designed to heat and cool large buildings through the use of water. This method removes most of the zone sensible local heat gains and allows the flow rate of pre-conditioned air from the air handling unit to be reduced, lowering by 60% to 80% the ducted design airflow rate and the equipment capacity requirements. There are two types of chilled beams, a Passive Chilled Beam (PCB) and an Active Chilled Beam (ACB). They both consist of pipes of water (fin-and-tube) that pass through a heat exchanger contained in a case suspended from, or recessed in, the ceiling. As the beam cools the air around it, the air becomes denser and falls to the floor. It is replaced by warmer air moving up from below, causing a constant passive air movement called convection, to cool the room. The active beam consists of air duct connections, induction nozzles, hydronic heat transfer coils, supply outlets and induced air inlets. It contains an integral air supply that passes through nozzles, and induces air from the room to the cooling coil. For this reason, it has a better cooling capacity than the passive beam. Instead, the passive beam provides space cooling without the use of a fan and it is mainly done by convection. Passive beams can be either exposed or recessed. The passive approach can provide higher thermal comfort levels, while the active approach uses the momentum of ventilation air that enters at relatively high velocity to induce the circulation of room air through the unit. A chilled beam is similar in appearance to a VRF unit.

<span class="mw-page-title-main">Building engineer</span> Construction profession

A building engineer is recognised as being expert in the use of technology for the design, construction, assessment and maintenance of the built environment. Commercial Building Engineers are concerned with the planning, design, construction, operation, renovation, and maintenance of buildings, as well as with their impacts on the surrounding environment.

<span class="mw-page-title-main">Architectural engineer (PE)</span> Engineer specializing in the design and operation of buildings

Architectural Engineer (PE) is a professional engineering designation in the United States. The architectural engineer applies the knowledge and skills of broader engineering disciplines to the design, construction, operation, maintenance, and renovation of buildings and their component systems while paying careful attention to their effects on the surrounding environment.

<span class="mw-page-title-main">Architectural engineering</span> Engineering discipline of engineering systems of buildings

Architectural engineering or architecture engineering, also known as building engineering, is a discipline that deals with the engineering and construction of buildings, such as environmental, structural, mechanical, electrical, computational, embeddable, and other research domains. It is related to Architecture, Mechatronics Engineering, Computer Engineering, Aerospace Engineering, and Civil Engineering, but distinguished from Interior Design and Architectural Design as an art and science of designing infrastructure through these various engineering disciplines, from which properly align with many related surrounding engineering advancements.

<span class="mw-page-title-main">Richard Wittschiebe Hand</span>

Richard Wittschiebe Hand was an architecture firm based in Atlanta, Georgia, with an office in Madison, Wisconsin. Richard Wittschiebe Hand specialized in architecture, interior design, planning, and green/LEED consulting. RWH focused primarily on K-12 schools, colleges and universities, corporate and industrial office spaces, aquatic facilities, recreational and parks buildings, and fraternity houses. Richard Wittschiebe Hand was awarded the 2011 AIA Georgia "Firm Of The Year" award.

<span class="mw-page-title-main">Ralph G. Nevins</span> American professor of mechanical engineering

Ralph G. Nevins was an American professor of mechanical engineering and Chair of the Mechanical Engineering Department and Dean of the College of Engineering at Kansas State University, Manhattan, Kansas.

FINE MEP is a BIM CAD software tool for building services engineering design, built on top of IntelliCAD. It provides full IFC support, according to the 2x3 IFC Standard. FINE BIM structure, enables a smart model shaping and high design accuracy, directly applied to the real 3D-building model and its building services. Not only the building elements, but also the components of the mechanical/electrical installations themselves are all intelligent objects carrying their own attributes and interacting among each other. MEP design is supported by specific CAD commands and further facilitated through sophisticated recognition and validation algorithms, providing a user-friendly modeling environment.

<span class="mw-page-title-main">ASHRAE</span> American HVAC professional association

The American Society of Heating, Refrigerating and Air-Conditioning Engineers is an American professional association seeking to advance heating, ventilation, air conditioning and refrigeration (HVAC&R) systems design and construction. ASHRAE has over 50,000 members in more than 130 countries worldwide.

<span class="mw-page-title-main">Building performance simulation</span> Replication of aspects of building performance

Building performance simulation (BPS) is the replication of aspects of building performance using a computer-based, mathematical model created on the basis of fundamental physical principles and sound engineering practice. The objective of building performance simulation is the quantification of aspects of building performance which are relevant to the design, construction, operation and control of buildings. Building performance simulation has various sub-domains; most prominent are thermal simulation, lighting simulation, acoustical simulation and air flow simulation. Most building performance simulation is based on the use of bespoke simulation software. Building performance simulation itself is a field within the wider realm of scientific computing.

Charles C. Copeland is an American infrastructure engineer who has helped preserve and maintain several well-known New York City buildings and has developed innovative energy-conservation initiatives. Among the more iconic buildings are the Empire State Building, Grand Central Terminal, and the Alexander Hamilton Customs House. The energy-conserving innovations include an early (1974) solar energy rooftop installation in Manhattan and a 2015 patent for a control sequence to reduce peak utility steam demand in Manhattan buildings. He is president and CEO of Goldman Copeland Consulting Engineers, which also works with many of the nation's largest commercial property owners.

Ken Parsons is an English engineer, now emeritus professor of environmental ergonomics at Loughborough University.

References

  1. "Accredited Courses". CIBSE. Retrieved 2022-03-19.
  2. Search All Accredited Programs Archived 2011-08-17 at the Wayback Machine
  3. K. Mahmud, U. Amin, M.J. Hossain, J. Ravishankar, "Computational tools for design, analysis, and management of residential energy systems", Applied Energy, 2018, https://doi.org/10.1016/j.apenergy.2018.03.111