Water footprint

Last updated
Infographic of water footprints around the world World Water Footprint.png
Infographic of water footprints around the world

A water footprint shows the extent of water use in relation to consumption by people. [1] The water footprint of an individual, community, or business is defined as the total volume of fresh water used to produce the goods and services consumed by the individual or community or produced by the business. Water use is measured in water volume consumed (evaporated) and/or polluted per unit of time. A water footprint can be calculated for any well-defined group of consumers (e.g., an individual, family, village, city, province, state, or nation) or producers (e.g., a public organization, private enterprise, or economic sector), for a single process (such as growing rice) or for any product or service. [2]

Contents

Traditionally, water use has been approached from the production side, by quantifying the following three columns of water use: water withdrawals in the agricultural, industrial, and domestic sector. While this does provide valuable data, it is a limited way of looking at water use in a globalised world, in which products are not always consumed in their country of origin. International trade of agricultural and industrial products in effect creates a global flow of virtual water, or embodied water (akin to the concept of embodied energy). [1]

In 2002, the water footprint concept was introduced in order to have a consumption-based indicator of water use, that could provide useful information in addition to the traditional production-sector-based indicators of water use. It is analogous to the ecological footprint concept introduced in the 1990s. The water footprint is a geographically explicit indicator, not only showing volumes of water use and pollution, but also the locations. [3] The global issue of water footprinting underscores the importance of fair and sustainable resource management. Due to increasing water shortages, climate change, and environmental concerns, transitioning towards a fair impact of water use is critical. The water footprint concept offers detailed insights for adequate and equitable water resource management. It advocates for a balanced and sustainable water-use approach, aiming to tackle global challenges. This approach is essential for responsible and equitable water resource utilization globally. Thus, it gives a grasp on how economic choices and processes influence the availability of adequate water resources and other ecological realities across the globe (and vice versa).

Definition and measures

There are many different aspects to water footprint and therefore different definitions and measures to describe them. Blue water footprint refers to groundwater or surface water usage, green water footprint refers to rainwater, and grey water footprint refers to the amount of water needed to dilute pollutants. [4]

Blue water footprint

A blue water footprint refers to the volume of water that has been sourced from surface or groundwater resources (lakes, rivers, wetlands and aquifers) and has either evaporated (for example while irrigating crops), or been incorporated into a product or taken from one body of water and returned to another, or returned at a different time. Irrigated agriculture, industry and domestic water use can each have a blue water footprint. [5]

Green water footprint

A green water footprint refers to the amount of water from precipitation that, after having been stored in the root zone of the soil (green water), is either lost by evapotranspiration or incorporated by plants. It is particularly relevant for agricultural, horticultural and forestry products. [5]

Grey water footprint

A grey water footprint refers to the volume of water that is required to dilute pollutants (industrial discharges, seepage from tailing ponds at mining operations, untreated municipal wastewater, or nonpoint source pollution such as agricultural runoff or urban runoff) to such an extent that the quality of the water meets agreed water quality standards. [5] It is calculated as:

where L is the pollutant load (as mass flux), cmax the maximum allowable concentration and cnat the natural concentration of the pollutant in the receiving water body (both expressed in mass/volume). [6]

Calculation for different factors

The water footprint of a process is expressed as volumetric flow rate of water. That of a product is the whole footprint (sum) of processes in its complete supply chain divided by the number of product units. For consumers, businesses and geographic area, water footprint is indicated as volume of water per time, in particular: [6]

History

The concept of a water footprint was coined in 2002, by Arjen Hoekstra, Professor in water management at the University of Twente, Netherlands, and co-founder and scientific director of the Water Footprint Network, whilst working at the UNESCO-IHE Institute for Water Education, as a metric to measure the amount of water consumed and polluted to produce goods and services along their full supply chain. [7] [8] [9] Water footprint is one of a family of ecological footprint indicators, which also includes carbon footprint and land footprint. The water footprint concept is further related to the idea of virtual water trade introduced in the early 1990s by Professor John Allan (2008 Stockholm Water Prize Laureate). The most elaborate publications on how to estimate water footprints are a 2004 report on the Water footprint of nations from UNESCO-IHE, [10] the 2008 book Globalization of Water, [11] and the 2011 manual The water footprint assessment manual: Setting the global standard. [12] Cooperation between global leading institutions in the field has led to the establishment of the Water Footprint Network in 2008.

Water Footprint Network (WFN)

The Water Footprint Network is an international learning community (a non-profit foundation under Dutch law) which serves as a platform for sharing knowledge, tools and innovations among governments, businesses and communities concerned about growing water scarcity and increasing water pollution levels, and their impacts on people and nature. The network consists of around 100 partners from all sectors – producers, investors, suppliers and regulators – as well as non-governmental organisations and academics. It describes its mission as follows:

To provide science-based, practical solutions and strategic insights that empower companies, governments, individuals and small-scale producers to transform the way we use and share fresh water within earth's limits. [7]

International standard

In February 2011, the Water Footprint Network, in a global collaborative effort of environmental organizations, companies, research institutions and the UN, launched the Global Water Footprint Standard. In July 2014, the International Organization for Standardization issued ISO 14046:2014, Environmental management—Water footprint—Principles, requirements and guidelines, to provide practical guidance to practitioners from various backgrounds, such as large companies, public authorities, non-governmental organizations, academic and research groups as well as small and medium enterprises, for carrying out a water footprint assessment. The ISO standard is based on life-cycle assessment (LCA) principles and can be applied for different sorts of assessment of products and companies. [13]

Life-cycle assessment of water use

Life-cycle assessment (LCA) is a systematic, phased approach to assessing the environmental aspects and potential impacts that are associated with a product, process or service. "Life cycle" refers to the major activities connected with the product's life-span, from its manufacture, use, and maintenance, to its final disposal, and also including the acquisition of raw material required to manufacture the product. [14] Thus a method for assessing the environmental impacts of freshwater consumption was developed. It specifically looks at the damage to three areas of protection: human health, ecosystem quality, and resources. The consideration of water consumption is crucial where water-intensive products (for example agricultural goods) are concerned that need to therefore undergo a life-cycle assessment. [15] In addition, regional assessments are equally as necessary as the impact of water use depends on its location. In short, LCA is important as it identifies the impact of water use in certain products, consumers, companies, nations, etc. which can help reduce the amount of water used. [16]

Water positive

The Water Positive initiative can be defined as the concept where an entity, such as a company, community, or individual, goes beyond simply conserving water and actively contributes to the sustainable management and restoration of water resources. A commercial or residential development is considered water positive when it generates more water than it consumes. This involves implementing practices and technologies that reduce water consumption, improve water quality, and enhance water availability. The goal of being water positive is to leave a positive impact on water ecosystem and ensure that more water is conserved and restored than is used or depleted. [17] [18] [19] [20]

Water availability

Total renewable water resources per capita in 2020 Total Renewable Water Resources Per Capita (2020).svg
Total renewable water resources per capita in 2020

Globally, about 4 percent of precipitation falling on land each year (about 117,000 km3 (28,000 cu mi)), [21] is used by rain-fed agriculture and about half is subject to evaporation and transpiration in forests and other natural or quasi-natural landscapes. [22] The remainder, which goes to groundwater replenishment and surface runoff, is sometimes called "total actual renewable freshwater resources". Its magnitude was in 2012 estimated at 52,579 km3 (12,614 cu mi)/year. [23] It represents water that can be used either in-stream or after withdrawal from surface and groundwater sources. Of this remainder, about 3,918 km3 (940 cu mi) were withdrawn in 2007, of which 2,722 km3 (653 cu mi), or 69 percent, were used by agriculture, and 734 km3 (176 cu mi), or 19 percent, by other industry. [24] Most agricultural use of withdrawn water is for irrigation, which uses about 5.1 percent of total actual renewable freshwater resources. [23] World water use has been growing rapidly in the last hundred years. [25] [26]

Water footprint of products (agricultural sector)

The water footprint of a product is the total volume of freshwater used to produce the product, summed over the various steps of the production chain. The water footprint of a product refers not only to the total volume of water used; it also refers to where and when the water is used. [27] The Water Footprint Network maintains a global database on the water footprint of products: WaterStat. [28] Nearly over 70% of the water supply worldwide is used in the agricultural sector. [29] [ clarification needed ]

The water footprints involved in various diets vary greatly, and much of the variation tends to be associated with levels of meat consumption. [30] The following table gives examples of estimated global average water footprints of popular agricultural products. [31] [32] [33]

ProductGlobal average water footprint, L/kg
almonds, shelled16,194
apple822
avocado283
banana790
beef15,415
bread, wheat1,608
butter5,553
cabbage237
cheese3,178
chicken4,325
chocolate17,196
cotton lint9,114
cucumber353
dates2,277
eggs3,300
groundnuts, shell2,782
leather (bovine)17,093
lettuce238
maize1,222
mango/guava1,800
milk1,021
olive oil14,430
orange560
pasta (dry)1,849
peach/nectarine910
pork5,988
potato287
pumpkin353
rice2,497
tomatoes, fresh214
tomatoes, dried4,275
vanilla beans126,505

(For more product water footprints: see the Product Gallery of the Water Footprint Network Archived 2020-07-30 at the Wayback Machine )

Water footprint of companies (industrial sector)

The water footprint of a business, the 'corporate water footprint', is defined as the total volume of freshwater that is used directly or indirectly to run and support a business. It is the total volume of water use to be associated with the use of the business outputs. The water footprint of a business consists of water used for producing/manufacturing or for supporting activities and the indirect water use in the producer's supply chain.

The Carbon Trust argue that a more robust approach is for businesses to go beyond simple volumetric measurement to assess the full range of water impact from all sites. Its work with leading global pharmaceutical company GlaxoSmithKline (GSK) analysed four key categories: water availability, water quality, health impacts, and licence to operate (including reputational and regulatory risks) in order to enable GSK to quantitatively measure, and credibly reduce, its year-on-year water impact. [34]

The Coca-Cola Company operates over a thousand manufacturing plants in about 200 countries. Making its drink uses a lot of water. Critics say its water footprint has been large. Coca-Cola has started to look at its water sustainability. [35] It has now set out goals to reduce its water footprint such as treating the water it uses so it goes back into the environment in a clean state. Another goal is to find sustainable sources for the raw materials it uses in its drinks, such as sugarcane, oranges, and maize. By making its water footprint better, the company can reduce costs, improve the environment, and benefit the communities in which it operates. [36]

Water footprint of individual consumers (domestic sector)

The water footprint of an individual refers to the sum of their direct and indirect freshwater use. The direct water use is the water used at home, while the indirect water use relates to the total volume of freshwater that is used to produce the goods and services consumed.

The average global water footprint of an individual is 1,385 m3 per year. Residents of some example nations have water footprints as shown in the table:

Nationannual water footprint
China 1,071 m3 [37]
Finland 1,733 m3 [38] [ unreliable source? ]
India 1,089 m3 [37]
United Kingdom 1,695 m3 [39]
United States 2,842 m3 [40]

Water footprint of nations

Global view of national per capita water footprints Water Footprint per capita.jpg
Global view of national per capita water footprints

The water footprint of a nation is the amount of water used to produce the goods and services consumed by the inhabitants of that nation. Analysis of the water footprint of nations illustrates the global dimension of water consumption and pollution, by showing that several countries rely heavily on foreign water resources and that (consumption patterns in) many countries significantly and in various ways impact how, and how much, water is being consumed and polluted elsewhere on Earth. International water dependencies are substantial and are likely to increase with continued global trade liberalisation. The largest share (76%) of the virtual water flows between countries is related to international trade in crops and derived crop products. Trade in animal products and industrial products contributed 12% each to the global virtual water flows. The four major direct factors determining the water footprint of a country are: volume of consumption (related to the gross national income); consumption pattern (e.g. high versus low meat consumption); climate (growth conditions); and agricultural practice (water use efficiency). [1]

Production or consumption

The assessment of total water use in connection to consumption can be approached from both ends of the supply chain. [41] The water footprint of production estimates how much water from local sources is used or polluted in order to provide the goods and services produced in that country. The water footprint of consumption of a country looks at the amount of water used or polluted (locally, or in the case of imported goods, in other countries) in connection with all the goods and services that are consumed by the inhabitants of that country. The water footprint of production and that of consumption, can also be estimated for any administrative unit such as a city, province, river basin or the entire world. [1]

Absolute or per capita

The absolute water footprint is the total sum of water footprints of all people. A country's per capita water footprint (that nation's water footprint divided by its number of inhabitants) can be used to compare its water footprint with those of other nations.

The global water footprint in the period 1996–2005 was 9.087 Gm3/yr (Billion Cubic Metres per year, or 9.087.000.000.000.000 liters/year), of which 74% was and green, 11% blue, 15% grey. This is an average amount per capita of 1.385 Gm3/yr., or 3.800 liters per person per day. [42] On average 92% of this is embedded in agricultural products consumed, 4.4% in industrial products consumed, and 3.6% is domestic water use. The global water footprint related to producing goods for export is 1.762 Gm3/y. [43]

In absolute terms, India is the country with the largest water footprint in the world, a total of 987 Gm3/yr. In relative terms (i.e. taking population size into account), the people of the USA have the largest water footprint, with 2480 m3/yr per capita, followed by the people in south European countries such as Greece, Italy and Spain (2300–2400 m3/yr per capita). High water footprints can also be found in Malaysia and Thailand. In contrast, the Chinese people have a relatively low per capita water footprint with an average of 700 m3/yr. [1] (These numbers are also from the period 1996-2005.)

Internal or external

Global average numbers and composition of all national water footprints, internal and external GlobalWaterFootprint by sector.1500.jpg
Global average numbers and composition of all national water footprints, internal and external

The internal water footprint is the amount of water used from domestic water resources; the external water footprint is the amount of water used in other countries to produce goods and services imported and consumed by the inhabitants of the country. When assessing the water footprint of a nation, it is crucial to take into account the international flows of virtual water (also called embodied water, i.e. the water used or polluted in connection to all agricultural and industrial commodities) leaving and entering the country. When taking the use of domestic water resources as a starting point for calculating a nation's water footprint, one should subtract the virtual water flows that leave the country and add the virtual water flows that enter the country. [1]

The external part of a nation's water footprint varies strongly from country to country. Some African nations, such as Sudan, Mali, Nigeria, Ethiopia, Malawi and Chad have hardly any external water footprint, simply because they have little import. Some European countries on the other hand—e.g. Italy, Germany, the UK and the Netherlands—have external water footprints that constitute 50–80% of their total water footprint. The agricultural products that on average contribute most to the external water footprints of nations are: bovine meat, soybean, wheat, cocoa, rice, cotton and maize. [1]

The top 10 gross virtual water exporting nations, which together account for more than half of the global virtual water export, are the United States (314 Gm3/year), China (143 Gm3/year), India (125 Gm3/year), Brazil (112 Gm3/year), Argentina (98 Gm3/year), Canada (91 Gm3/year), Australia (89 Gm3/year), Indonesia (72 Gm3/year), France (65 Gm3/year), and Germany (64 Gm3/year). [43]

The top 10 gross virtual water importing nations are the United States (234 Gm3/year), Japan (127 Gm3/year), Germany (125 Gm3/year), China (121 Gm3/year), Italy (101 Gm3/year), Mexico (92 Gm3/year), France (78 Gm3/year), the United Kingdom (77 Gm3/year), and The Netherlands (71 Gm3/year). [43]

Water use in continents

Europe

Each EU citizen consumes 4,815 litres of water per day on average; 44% is used in power production primarily to cool thermal plants or nuclear power plants. Energy production annual water consumption in the EU 27 in 2011 was, in billion m3: for gas 0.53, coal 1.54 and nuclear 2.44. Wind energy avoided the use of 387 million cubic metres (mn m3) of water in 2012, avoiding a cost of €743 million. [44] [45]

Asia

In south India the state Tamil Nadu is one of the main agricultural producers in India and it relies largely in groundwater for irrigation. In ten years, from 2002 to 2012, the Gravity Recovery and Climate Experiment calculated that the groundwater reduced in 1.4 m yr−1, which "is nearly 8% more than the annual recharge rate." [29]

Environmental water use

Although agriculture's water use includes provision of important terrestrial environmental values (as discussed in the "Water footprint of products" section above), and much "green water" is used in maintaining forests and wild lands, there is also direct environmental use (e.g. of surface water) that may be allocated by governments. For example, in California, where water use issues are sometimes severe because of drought, about 48 percent of "dedicated water use" in an average water year is for the environment (somewhat more than for agriculture). [46] Such environmental water use is for keeping streams flowing, maintaining aquatic and riparian habitats, keeping wetlands wet, etc.

Criticism

Insufficient consideration of consequences of proposed water saving policies to farm households

According to Dennis Wichelns of the International Water Management Institute: "Although one goal of virtual water analysis is to describe opportunities for improving water security, there is almost no mention of the potential impacts of the prescriptions arising from that analysis on farm households in industrialized or developing countries. It is essential to consider more carefully the inherent flaws in the virtual water and water footprint perspectives, particularly when seeking guidance regarding policy decisions." [47]

Regional water scarcity should be taken into account when interpreting water footprint

The application and interpretation of water footprints may sometimes be used to promote industrial activities that lead to facile criticism of certain products. For example, the 140 litres required for coffee production for one cup [2] might be of no harm to water resources if its cultivation occurs mainly in humid areas, but could be damaging in more arid regions. Other factors such as hydrology, climate, geology, topography, population and demographics should also be taken into account. Nevertheless, high water footprint calculations do suggest that environmental concern may be appropriate.

Many of the criticisms, including the above ones, compare the description of the water footprint of a water system to generated impacts, which is about its performance. Such a comparison between descriptive and performance factors and indicators is basically flawed. [48]

The use of the term footprint can also confuse people familiar with the notion of a carbon footprint, because the water footprint concept includes sums of water quantities without necessarily evaluating related impacts. This is in contrast to the carbon footprint, where carbon emissions are not simply summarized but normalized by CO2 emissions, which are globally identical, to account for the environmental harm. The difference is due to the somewhat more complex nature of water; while involved in the global hydrological cycle, it is expressed in conditions both local and regional through various forms like river basins, watersheds, on down to groundwater (as part of larger aquifer systems). Furthermore, looking at the definition of the footprint itself, and comparing ecological footprint, carbon footprint and water footprint, we realize that the three terms are indeed legitimate. [48]

Sustainable water use

Sustainable water use involves the rigorous assessment of all source of clean water to establish the current and future rates of use, the impacts of that use both downstream and in the wider area where the water may be used and the impact of contaminated water streams on the environment and economic well being of the area. It also involves the implementation of social policies such as water pricing in order to manage water demand. [49] In some localities, water may also have spiritual relevance and the use of such water may need to take account of such interests. For example, the Maori believe that water is the source and foundation of all life and have many spiritual associations with water and places associated with water. [50] On a national and global scale, water sustainability requires strategic and long term planning to ensure appropriate sources of clean water are identified and the environmental and economic impact of such choices are understood and accepted. [51] The re-use and reclamation of water is also part of sustainability including downstream impacts on both surface waters and ground waters. [36]

Sustainability assessment

Water footprint accounting has advanced substantially in recent years, however, water footprint analysis also needs sustainability assessment as its last phase. [12] One of the developments is to employ sustainable efficiency and equity ("Sefficiency in Sequity"), which present a comprehensive approach to assessing the sustainable use of water. [48] [52]

Sectoral distributions of withdrawn water use

Several nations estimate sectoral distribution of use of water withdrawn from surface and groundwater sources. For example, in Canada, in 2005, 42 billion m3 of withdrawn water were used, of which about 38 billion m3 were freshwater. Distribution of this use among sectors was: thermoelectric power generation 66.2%, manufacturing 13.6%, residential 9.0%, agriculture 4.7%, commercial and institutional 2.7%, water treatment and distribution systems 2.3%, mining 1.1%, and oil and gas extraction 0.5%. The 38 billion m3 of freshwater withdrawn in that year can be compared with the nation's annual freshwater yield (estimated as streamflow) of 3,472 billion m3. [53] Sectoral distribution is different in many respects in the US, where agriculture accounts for about 39% of fresh water withdrawals, thermoelectric power generation 38%, industrial 4%, residential 1%, and mining (including oil and gas) 1%. [54]

Within the agricultural sector, withdrawn water use is for irrigation and for livestock. Whereas all irrigation in the US (including loss in conveyance of irrigation water) is estimated to account for about 38 percent of US withdrawn freshwater use, [54] the irrigation water used for production of livestock feed and forage has been estimated to account for about 9 percent, [55] and other withdrawn freshwater use for the livestock sector (for drinking, washdown of facilities, etc.) is estimated at about 0.7 percent. [54] Because agriculture is a major user of withdrawn water, changes in the magnitude and efficiency of its water use are important. In the US, from 1980 (when agriculture's withdrawn water use peaked) to 2010, there was a 23 percent reduction in agriculture's use of withdrawn water, [54] while US agricultural output increased by 49 percent over that period. [56]

In the US, irrigation water application data are collected in the quinquennial Farm and Ranch Irrigation Survey, conducted as part of the Census of Agriculture. Such data indicate great differences in irrigation water use within various agricultural sectors. For example, about 14 percent of corn-for-grain land and 11 percent of soybean land in the US are irrigated, compared with 66 percent of vegetable land, 79 percent of orchard land and 97 percent of rice land. [57] [58]

See also

Related Research Articles

<span class="mw-page-title-main">Resource depletion</span> Depletion of natural organic and inorganic resources

Resource depletion is the consumption of a resource faster than it can be replenished. Natural resources are commonly divided between renewable resources and non-renewable resources. The use of either of these forms of resources beyond their rate of replacement is considered to be resource depletion. The value of a resource is a direct result of its availability in nature and the cost of extracting the resource. The more a resource is depleted the more the value of the resource increases. There are several types of resource depletion, including but not limited to: mining for fossil fuels and minerals, deforestation, pollution or contamination of resources, wetland and ecosystem degradation, soil erosion, overconsumption, aquifer depletion, and the excessive or unnecessary use of resources. Resource depletion is most commonly used in reference to farming, fishing, mining, water usage, and the consumption of fossil fuels. Depletion of wildlife populations is called defaunation.

The virtual water trade is the hidden flow of water in food or other commodities that are traded from one place to another. Other terms for it are embedded or embodied water. The virtual water trade is the idea that virtual water is exchanged along with goods and services. This idea provides a new, amplified perspective on water problems. It balances different perspectives, basic conditions, and interests. This concept makes it possible to distinguish between global, regional, and local levels and their linkages. However, the use of virtual water estimates may offer no guidance for policymakers seeking to ensure they are meeting environmental objectives.

<span class="mw-page-title-main">Water conservation</span> Policies for sustainable development of water use

Water conservation aims to sustainably manage the natural resource of fresh water, protect the hydrosphere, and meet current and future human demand. Water conservation makes it possible to avoid water scarcity. It covers all the policies, strategies and activities to reach these aims. Population, household size and growth and affluence all affect how much water is used.

<span class="mw-page-title-main">Environmental degradation</span> Any change or disturbance to the environment perceived to be deleterious or undesirable

Environmental degradation is the deterioration of the environment through depletion of resources such as quality of air, water and soil; the destruction of ecosystems; habitat destruction; the extinction of wildlife; and pollution. It is defined as any change or disturbance to the environment perceived to be deleterious or undesirable. The environmental degradation process amplifies the impact of environmental issues which leave lasting impacts on the environment.

<span class="mw-page-title-main">Reclaimed water</span> Converting wastewater into water that can be reused for other purposes

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

<span class="mw-page-title-main">Water scarcity</span> Situation where there is a shortage of water

Water scarcity is the lack of fresh water resources to meet the standard water demand. There are two type of water scarcity. One is physical. The other is economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity. Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand. Many people in Sub-Saharan Africa are living with economic water scarcity.

Peak water is a concept that underlines the growing constraints on the availability, quality, and use of freshwater resources. Peak water was defined in 2010 by Peter Gleick and Meena Palaniappan. They distinguish between peak renewable, peak non-renewable, and peak ecological water to demonstrate the fact that although there is a vast amount of water on the planet, sustainably managed water is becoming scarce.

This is a glossary of environmental science.

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either freshwater from natural sources, or water produced artificially from other sources, such as from reclaimed water (wastewater) or desalinated water (seawater). 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. People use water resources for agricultural, industrial and household activities.

With surface water resources of 20 billion m3 per year, of which 12 billion m3 are groundwater recharge, water resources in the Dominican Republic could be considered abundant. But irregular spatial and seasonal distribution, coupled with high consumption in irrigation and urban water supply, translates into water scarcity. Rapid economic growth and increased urbanization have also affected environmental quality and placed strains on the Dominican Republic's water resources base. In addition, the Dominican Republic is exposed to a number of natural hazards, such as hurricanes, storms, floods, Drought, earthquakes, and fires. Global climate change is expected to induce permanent climate shocks to the Caribbean region, which will likely affect the Dominican Republic in the form of sea level rise, higher surface air and sea temperatures, extreme weather events, increased rainfall intensity and more frequent and more severe "El Niño-like" conditions.

<span class="mw-page-title-main">Farm water</span>

Farm water, also known as agricultural water, is water committed for use in the production of food and fibre and collecting for further resources. In the US, some 80% of the fresh water withdrawn from rivers and groundwater is used to produce food and other agricultural products. Farm water may include water used in the irrigation of crops or the watering of livestock. Its study is called agricultural hydrology.

<span class="mw-page-title-main">Water in California</span> Water supply and distribution in the U.S. state of California

California's interconnected water system serves almost 40 million people and irrigates over 5,680,000 acres (2,300,000 ha) of farmland. As the world's largest, most productive, and potentially most controversial water system, it manages over 40 million acre-feet (49 km3) of water per year. Use of available water averages 50% environmental, 40% agricultural and 10% urban, though this varies considerably by region and between wet and dry years. In wet years, "environmental" water averages 61%, while in dry years it averages 41%, and can be even lower in critically dry years.

<span class="mw-page-title-main">Water security</span> A goal of water management to harness water-related opportunities and manage risks

The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production". For example, access to water, sanitation and hygiene services is one part of water security. Some organizations use the term water security more narrowly for water supply aspects only.

<span class="mw-page-title-main">Micro-sustainability</span> Individual or small scale sustainability efforts

Micro-sustainability is the portion of sustainability centered around small scale environmental measures that ultimately affect the environment through a larger cumulative impact. Micro-sustainability centers on individual efforts, behavior modification, education and creating attitudinal changes, which result in an environmentally conscious individual. Micro-sustainability encourages sustainable changes through "change agents"—individuals who foster positive environmental action locally and inside their sphere of influence. Examples of micro-sustainability include recycling, power saving by turning off unused lights, programming thermostats for efficient use of energy, reducing water usage, changing commuting habits to use less fossil fuels or modifying buying habits to reduce consumption and waste. The emphasis of micro-sustainability is on an individual's actions, rather than organizational or institutional practices at the systemic level. These small local level actions have immediate community benefits if undertaken on a widespread scale and if imitated, they can have a cumulative broad impact.

<span class="mw-page-title-main">Water scarcity in Africa</span> Overview of water scarcity in Africa

The main causes of water scarcity in Africa are physical and economic water scarcity, rapid population growth, and the effects of climate change on the water cycle. Water scarcity is the lack of fresh water resources to meet the standard water demand. The rainfall in sub-Saharan Africa is highly seasonal and unevenly distributed, leading to frequent floods and droughts.

<span class="mw-page-title-main">International Resource Panel</span>

The International Resource Panel is a scientific panel of experts that aims to help nations use natural resources sustainably without compromising economic growth and human needs. It provides independent scientific assessments and expert advice on a variety of areas, including:

<span class="mw-page-title-main">Water resource policy</span>

Water resource policy, sometimes called water resource management or water management, encompasses the policy-making processes and legislation that affect the collection, preparation, use, disposal, and protection of water resources. The long-term viability of water supply systems poses a significant challenge as a result of water resource depletion, climate change, and population expansion.

<span class="mw-page-title-main">Water issues in developing countries</span> Water issues and problems in developing countries are diverse and serious

Water issues in developing countries include scarcity of drinking water, poor infrastructure for water and sanitation access, water pollution, and low levels of water security. Over one billion people in developing countries have inadequate access to clean water. The main barriers to addressing water problems in developing nations include poverty, costs of infrastructure, and poor governance. The effects of climate change on the water cycle can make these problems worse.

<span class="mw-page-title-main">Fresh water</span> Naturally occurring water with low amounts of dissolved salts

Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. The term excludes seawater and brackish water, but it does include non-salty mineral-rich waters, such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.

<span class="mw-page-title-main">Arjen Hoekstra</span> Dutch water resources engineer

Arjen Hoekstra was a professor at the University of Twente who pioneered the concept of the water footprint - a way of measuring the extent of water consumption. His work drew attention to the hidden water use associated with a range of activities, and continues to have a profound effect both on scholarship and on environmental policy and activism. He strongly supported open source science, and all his articles were published under a Creative Commons License.

References

  1. 1 2 3 4 5 6 7 "Water footprints of nations: Water use by people as a function of their consumption pattern" (PDF). Water Footprint Network. Archived from the original (PDF) on 17 April 2018. Retrieved 3 March 2018.
  2. 1 2 "Waterfootprint.org: Water footprint and virtual water". The Water Footprint Network. Retrieved 30 October 2023.
  3. Definition taken from the Hoekstra, A.Y. and Chapagain, A.K. (2008) Globalization of water: Sharing the planet's freshwater resources, Blackwell Publishing, Oxford, UK.
  4. "16030, 1841-01-13, PERROT (fabrique)". Art Sales Catalogues Online. doi:10.1163/2210-7886_asc-16030 . Retrieved 2021-10-25.
  5. 1 2 3 "What is a water footprint?". The Water Footprint Network. Retrieved 8 March 2018.
  6. 1 2 "The Water Footprint Assessment Manual". Water Footprint Network. Archived from the original on 2015-02-10. Retrieved 2015-01-20.
  7. 1 2 "Water Footprint Network - Aims & history". Water Footprint Network. Retrieved 27 January 2018.
  8. Jayne M. Godfrey, Keryn Chalmers. 2012 Water Accounting: International Approaches to Policy and Decision-making. Edward Elgar Publishing. page222
  9. Hoekstra, A.Y. (2003) (ed) Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, IHE Delft, the Netherlands
  10. "Water footprints of nations" (PDF). UNESCO-IHE. Retrieved 2023-11-07.
  11. Globalization of Water, A.Y. Hoekstra and A.K. Chapagain, Blackwell, 2008
  12. 1 2 Hoekstra, Arjen (2011). The water footprint assessment manual: Setting the global standard (PDF). London: Earthscan. ISBN   978-1-84971-279-8.
  13. "ISO 14046:2014 Environmental management -- Water footprint -- Principles, requirements and guidelines". International Organization for Standardization. Retrieved 4 March 2018.
  14. Scientific Applications International Corporations (SAIC) (2006). Life Cycle Assessment: Principles and Practice. Reston, VA: SAIC.
  15. Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie (20 March 2009). "Assessing the Environmental Impacts of Freshwater Consumption in LCA". Environmental Science. 43 (11): 4008–104. Bibcode:2009EnST...43.4098P. doi: 10.1021/es802423e . PMID   19569336.
  16. Pfister, Stephan; Boulay, Anne-Marie; Berger, Markus; Hadjikakou, Michalis; Motoshita, Masaharu; Hess, Tim; Ridoutt, Brad; Weinzettel, Jan; Scherer, Laura; Döll, Petra; Manzardo, Alessandro; Núñez, Montserrat; Verones, Francesca; Humbert, Sebastien; Buxmann, Kurt; Harding, Kevin; Benini, Lorenzo; Oki, Taikan; Finkbeiner, Matthias; Henderson, Andrew (January 2017). "Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA"". Ecological Indicators. 72: 352–359. Bibcode:2017EcInd..72..352P. doi:10.1016/J.ECOLIND.2016.07.051. PMC   6192425 . PMID   30344449.
  17. Loher, Nicole (2023-03-15). "What Does it Mean to Be 'Water Positive'?". Meta Sustainability. Retrieved 2023-12-22.
  18. "¿Qué es ser "water positive"? El nuevo objetivo de las grandes compañías". Hidrología Sostenible (in Spanish). 2022-05-10. Retrieved 2023-12-22.
  19. Schupak, Amanda (2021-10-14). "Corporations are pledging to be 'water positive'. What does that mean?". The Guardian. ISSN   0261-3077 . Retrieved 2023-12-22.
  20. Pandey, Rajdeep (2018-10-23). "Water Positive Campus". Enviraj. Retrieved 2024-04-24.
  21. Schneider, U.; et al. (2014). "GPCC's new land surface precipitation climatology based on quality-controlled in-situ data and its role in quantifying the global water cycle". Theoretical and Applied Climatology. 115 (1–2): 15–40. Bibcode:2014ThApC.115...15S. doi: 10.1007/s00704-013-0860-x .
  22. "Water Use". FAO. Retrieved 2023-11-07.
  23. 1 2 Frenken, K. and V. Gillet. 2012. Irrigation water requirement and water withdrawal by country. AQUASTAT, FAO.
  24. "Water withdrawal by sector, around 2007" (PDF). FAO. 2014. Retrieved 2023-11-07.
  25. "Looming water crisis simply a management problem" by Jonathan Chenoweth, New Scientist 28 Aug., 2008, pp. 28-32.
  26. Ritchie, Hannah; Roser, Max (2017-11-20). "Water Use and Stress". Our World in Data.
  27. "WFN Glossary". Archived from the original on 2015-04-01. Retrieved 2012-10-02.
  28. "WaterStat". Archived from the original on 2015-04-01. Retrieved 2012-10-02.
  29. 1 2 Chinnasamy, Pennan; Agoramoorthy, Govindasamy (2015-05-01). "Groundwater Storage and Depletion Trends in Tamil Nadu State, India". Water Resources Management. 29 (7): 2139–2152. Bibcode:2015WatRM..29.2139C. doi:10.1007/s11269-015-0932-z. ISSN   1573-1650. S2CID   54761901.
  30. Vanham, D., M. M.Mekonnen and A. Y. Hoekstra. 2013. The water footprint of the EU for different diets. Ecological Indicators 32: 1-8.
  31. Mekonnen, M. M. and A. Y. Hoekstra. 2010. The green, blue and grey water footprint of farm animals and animal products. Volume 1: Main report. UNESCO-IHE., Institute for Water Education. 50 pp.
  32. Mekonnen, M. M. and A. Y. Hoekstra. 2010. The green, blue and grey water footprint of crops and derived crop products. Volume 2. Appendices main report. Value of Water Research Report Series No. 47. UNESCO-IHE Institute for Water Education. 1196 pp.
  33. "How much water does it take to grow an avocado?". Danwatch.dk. 2019. Archived from the original on 7 October 2019. Retrieved 7 October 2019.
  34. "Water, water everywhere... or is it?", The Carbon Trust , 26 November 2014. Retrieved on 20 January 2015.
  35. "2013 Water Report: The Coca-Cola Company". The Coca-Cola Company. Archived from the original on 19 April 2014. Retrieved 8 April 2014.
  36. 1 2 Naumann, Ruth (2011). Sustainability (1st ed.). North Shore, N.Z.: Cengage Learning. pp. 56–58. ISBN   978-017021-034-8.
  37. 1 2 Hoekstra, AY (2012). "The Water Footprint of Humanity" (PDF). PNAS . 109 (9): 3232–3237. Bibcode:2012PNAS..109.3232H. doi: 10.1073/pnas.1109936109 . PMC   3295316 . PMID   22331890.
  38. Data obtained from the Finnish Wikipedia article page Vesijalanjälki
  39. Chapagain, A.K. & Orr, S. "U.K. Water Footprint: The Impact of the U.K.'s Food and Fibre Consumption on Global Water Resources, Volume 1" (PDF). WWF-UK. and volume 2 Chapagain, A.K. & Orr, S. "Volume 2" (PDF). WWF-UK.
  40. "The Water Footprint of Humanity". JournalistsResource.org, retrieved 20 March 2012
  41. "National water footprint". waterfootprint.org. Retrieved 10 March 2018.
  42. "Angela Morelli - The Global Water Footprint of Humanity". youtube.com. TEDxOslo. 21 June 2011.
  43. 1 2 3 Hoekstra, Arjen Y.; Mekonnen, Mesfin M. (28 February 2012). "The water footprint of humanity". PNAS . 109 (9): 3232–3237. Bibcode:2012PNAS..109.3232H. doi: 10.1073/pnas.1109936109 . PMC   3295316 . PMID   22331890.
  44. Saving water with wind energy, EWEA June 2014
  45. "Saving water with wind energy Summary EWEA". EWEA.org. Retrieved 5 May 2017.
  46. "California State Water Project-Water Supply". www.Water.ca.gov. Archived from the original on 7 April 2017. Retrieved 5 May 2017.
  47. Wichelns, Dennis (2010). "Virtual water and water footprints offer limited insight regarding important policy questions". International Journal of Water Resources Development. 26 (4): 639–651. Bibcode:2010IJWRD..26..639W. doi:10.1080/07900627.2010.519494. S2CID   154664691 . Retrieved 21 January 2015.
  48. 1 2 3 Haie, N.; Freitas, M.R.; Pereira, J.C. (2018). "Integrating Water Footprint and Sefficiency: Overcoming Water Footprint Criticisms and Improving Decision Making". Water Alternatives. 11: 933–956.
  49. "Policies and measure to promote sustainable water use". Europeanm Environment Agency. 18 February 2008. Retrieved 26 April 2016.
  50. e Ahukaramū Charles Royal (22 September 2012). "Tangaroa – the sea - Water as the source of life". Encyclopaedia of New Zealand.
  51. Water Consumption and Sustainable Water Resources Management. OECD Library. 25 March 1998. ISBN   9789264162648 . Retrieved 26 April 2016.
  52. Haie, Naim (2020). Transparent Water Management Theory: Sefficiency in Sequity (PDF). Springer.
  53. Statistics Canada. 2010. Human activity and the environment. Freshwater supply and demand in Canada. Catalogue no. 16-201-X.
  54. 1 2 3 4 Maupin, M. A. et al. 2014. Estimated use of water in the United States 2010. U. S. Geological Survey Circular 1405. 55 pp.
  55. Zering, K. D., T. J. Centner, D. Meyer, G. L. Newton, J. M. Sweeten and S. Woodruff. 2012. Water and land issues associated with animal agriculture: a U.S. perspective. CAST Issue Paper No. 50. Council for Agricultural Science and Technology, Ames, Iowa. 24 pp.
  56. "USDA ERS - Agricultural Productivity in the U.S." www.ERS.USDA.gov. Retrieved 5 May 2017.
  57. US Department of Agriculture. 2009. 2007 Census of agriculture. Farm and ranch irrigation survey (2008). Volume 3. Special Studies. Part 1. AC-07-SS-1. 177 pp. + appendices.
  58. USDA. 2009. 2007 Census of agriculture. United States summary and State Data. Vol. 1. Geographic Area Series. Part 51. AC-07-A-51. 639 pp. + appendices.