Public health genomics

Last updated

Public health genomics is the use of genomics information to benefit public health. This is visualized as more effective preventive care and disease treatments with better specificity, tailored to the genetic makeup of each patient. [1] According to the Centers for Disease Control and Prevention (U.S.), Public Health genomics is an emerging field of study that assesses the impact of genes and their interaction with behavior, diet and the environment on the population’s health. [2]

Genomics discipline in genetics

Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of genes, which direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

Public health preventing disease, prolonging life and promoting health through organized efforts and informed choices of society and individuals

Public health has been defined as "the science and art of preventing disease, prolonging life and promoting human health through organized efforts and informed choices of society, organizations, public and private, communities and individuals". Analyzing the health of a population and the threats it faces is the basis for public health. The public can be as small as a handful of people or as large as a village or an entire city; in the case of a pandemic it may encompass several continents. The concept of health takes into account physical, psychological and social well-being. As such, according to the World Health Organization, it is not merely the absence of disease or infirmity.

Centers for Disease Control and Prevention government agency

The Centers for Disease Control and Prevention (CDC) is the leading national public health institute of the United States. The CDC is a United States federal agency under the Department of Health and Human Services and is headquartered in Atlanta, Georgia.


This field of public health genomics is less than a decade old. A number of think tanks, universities, and governments (including the U.S., UK, and Australia) have started public health genomics projects. Research on the human genome is generating new knowledge that is changing public health programs and policies. Advances in genomic sciences are increasingly being used to improve health, prevent disease, educate and train the public health workforce, other healthcare providers, and citizens.

Human genome complete set of nucleic acid sequence for humans

The human genome is the complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome, and the mitochondrial genome. Human genomes include both protein-coding DNA genes and noncoding DNA. Haploid human genomes, which are contained in germ cells consist of three billion DNA base pairs, while diploid genomes have twice the DNA content. While there are significant differences among the genomes of human individuals, these are considerably smaller than the differences between humans and their closest living relatives, the chimpanzees and bonobos.

Public policy

Public policy has protected people against genetic discrimination, defined in Taber's Cyclopedic Medical Dictionary (2001) as unequal treatment of persons with either known genetic abnormalities or the inherited propensity for disease; genetic discrimination may have a negative effect on employability, insurability and other socio-economic variables. Public policy in the U.S. that protect individuals and groups of people against genetic discrimination include the Americans with Disabilities Act of 1990, Executive Order 13145 (2000) that prohibits genetic discrimination in the workplace for federal employees, [3] and the Genetic Information Nondiscrimination Act of 2008.

Public policy is the principled guide to action taken by the administrative executive branches of the state with regard to a class of issues, in a manner consistent with law and institutional customs.

Genetic discrimination occurs when people treat others differently because they have or are perceived to have a gene mutation(s) that causes or increases the risk of an inherited disorder. It may also refer to any and all discrimination based on the genotype of a person rather than their individual merits.

Taber's Cyclopedic Medical Dictionary is an encyclopedic medical dictionary published by F.A. Davis Company since 1940 by Clarence Wilbur Taber. Taber's is a recommended medical reference book for libraries and attorneys It is available in print, online, and in multiple mobile device formats. The 21st edition contains more than 60,000 terms and 1,000 images.

Main public concerns regarding genomic information are that of confidentiality, misuse of information by health plans, employers, and medical practitioners, and the right of access to genetic information.

Freedom of information extension of freedom of speech

Freedom of information is an extension of freedom of speech, a fundamental human right recognized in international law, which is today understood more generally as freedom of expression in any medium, be it orally, in writing, print, through the Internet or through art forms. This means that the protection of freedom of speech as a right includes not only the content, but also the means of expression. Freedom of information also refers to the right to privacy in the content of the Internet and information technology. As with the right to freedom of expression, the right to privacy is a recognised human right and freedom of information acts as an extension to this right. Lastly, freedom of information can include opposition to patents, opposition to copyrights or opposition to intellectual property in general. The international and United States Pirate Party have established political platforms based largely on freedom of information issues.

Ethical concerns

One of the many facets involved in public health genomics is that of bioethics. This has been highlighted in a study in 2005 by Cogent Research, that found when American citizens were asked what they thought the strongest drawback was in using genetic information, they listed "misuse of information/invasion of privacy" as the single most important problem. [4] In 2003, the Nuffield Council on Bioethics published a report, Pharmacogenetics: Ethical Issues. Authors of the document explore four broad categories of ethical and policy issues related to pharmacogenetics: information, resource, equity and control. In the introduction to the report, the authors clearly state that the development and application of pharmacogenetics depend on scientific research, but that policy and administration must provide incentives and restraints to ensure the most productive and just use of this technology. [5]

Bioethics is the study of the ethical issues emerging from advances in biology and medicine. It is also moral discernment as it relates to medical policy and practice. Bioethics are concerned with the ethical questions that arise in the relationships among life sciences, biotechnology, medicine, politics, law, and philosophy. It includes the study of values relating to primary care and other branches of medicine. Ethics relates to many other sciences and bio sciences.

The Nuffield Council on Bioethics is a UK-based independent charitable body, which examines and reports on bioethical issues raised by new advances in biological and medical research. Established in 1991, the Council is funded by the Nuffield Foundation, the Medical Research Council and the Wellcome Trust. The Council has been described by the media as a 'leading ethics watchdog', which 'never shrinks from the unthinkable'.

Pharmacogenetics is the study of inherited genetic differences in drug metabolic pathways which can affect individual responses to drugs, both in terms of therapeutic effect as well as adverse effects. The term pharmacogenetics is often used interchangeably with the term pharmacogenomics which also investigates the role of acquired and inherited genetic differences in relation to drug response and drug behaviour through a systematic examination of genes, gene products, and inter- and intra-individual variation in gene expression and function.

Genetic susceptibility to disease

Single nucleotide polymorphisms (SNPs) are single bases within a gene sequence that differ from that gene's consensus sequence, and are present in a subset of the population. SNPs may have no effect on gene expression, or they can change the function of a gene completely. Resulting gene expression changes can, in some cases, result in disease, or in susceptibility to disease (e.g., viral or bacterial infection).

Single-nucleotide polymorphism single nucleotide position in genomic DNA at which different sequence alternatives exist

A single-nucleotide polymorphism, often abbreviated to SNP, is a variation in a single nucleotide that occurs at a specific position in the genome, where each variation is present to some appreciable degree within a population.

Nucleobase nitrogen-containing biological compounds that form nucleosides

Nucleobases, also known as nitrogenous bases or often simply bases, are nitrogen-containing biological compounds that form nucleosides, which in turn are components of nucleotides, with all of these monomers constituting the basic building blocks of nucleic acids. The ability of nucleobases to form base pairs and to stack one upon another leads directly to long-chain helical structures such as ribonucleic acid (RNA) and deoxyribonucleic acid (DNA).

In molecular biology and bioinformatics, the consensus sequence is the calculated order of most frequent residues, either nucleotide or amino acid, found at each position in a sequence alignment. It represents the results of multiple sequence alignments in which related sequences are compared to each other and similar sequence motifs are calculated. Such information is important when considering sequence-dependent enzymes such as RNA polymerase.

Some current tests for genetic diseases include: cystic fibrosis, Tay–Sachs disease, amyotrophic lateral sclerosis (ALS), Huntington's disease, high cholesterol, some rare cancers and an inherited susceptibility to cancer. A select few are explored below.

Herpesvirus and bacterial infections

Since the field of genomics takes into account the entire genome of an organism, and not simply its individual genes, the stud of latent viral infection falls into this realm. For example, the DNA of a latent herpesvirus integrates into the host’s chromosome and propagates through cell replication, although it is not part of the organism's genome, and was not present at the birth of the individual.

An example of this is found in a study published in Nature, which showed that mice with a latent infection of a herpesvirus were less susceptible to bacterial infections. Murine mice were infected with murine gammaherpesvirus 68 and then challenged with the Listeria monocytogenes bacterium. Mice that had a latent infection of the virus had an increased resistance to the bacteria, but those with a non-latent strain of virus had no change in susceptibility to the bacteria. The study went on to test mice with murine cytomegalovirus, a member of the betaherpesvirinae subfamily, which provided similar results. However, infection with human herpes simplex virus type-1 (HSV-1), a member of the alphaherpesvirinae subfamily, did not provide increased resistance to bacterial infection. They also used Yersinia pestis (the causative agent of the Black Death) to challenge mice with a latent infection of gammaherpesvirus 68, and they found the mice did have an increased resistance to the bacteria. The suspected reason for this is that peritoneal macrophages in the mouse are activated after latent infection of the herpesvirus, and since macrophages play an important role in immunity, this provides the mouse with a stronger, active immune system at the time of bacterial exposure. It was found that the latent herpesvirus caused an increase in interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), cytokines which both lead to activation of macrophages and resistance to bacterial infection. [6]

Influenza and Mycobacterium tuberculosis

Variations within the human genome can be studied to determine susceptibility to infectious diseases. The study of variations within microbial genomes will also need to be evaluated to use genomics of infectious disease within public health. The ability to determine if a person has greater susceptibility to an infectious disease will be valuable to determine how to treat the disease if it is present or prevent the person from getting the disease. Several infectious diseases have shown a link between genetics and susceptibility in that families tend to have heritability traits of a disease.

During the course of the past[ when? ] influenza pandemics and the current[ when? ] influenza epizootic there has been evidence of family clusters of disease. Kandun, et al. found that family clusters in Indonesia in 2005 resulted in mild, severe and fatal cases among family members. The findings from this study raise questions about genetic or other predispositions and how they affect a persons susceptibility to and severity of disease. Continued research will be needed to determine the epidemiology of H5N1 infection and whether genetic, behavioral, immunologic, and environmental factors contribute to case clustering. [7]

Host genetic factors play a major role in determining differential susceptibility to major infectious diseases of humans. Infectious diseases in humans appear highly polygenic with many loci implicated but only a minority of these convincingly replicated. [8] Over the course of time, humans have been exposed to organisms like Mycobacterium tuberculosis . It is possible that the human genome has evolved in part from our exposure to M. tuberculosis. [9] Animal model studies and whole genome screens can be used to identify potential regions on a gene that suggest evidence of tuberculosis susceptibility. In the case of M. tuberculosis, animal model studies were used to suggest evidence of a locus which was correlated with susceptibility, further studies were done to prove the link between the suggested locus and susceptibility. The genetic loci that have been identified as associated with susceptibility to tuberculosis are HLA-DR, INF-γ, SLC11A1, VDR, MAL/TIRAP, and CCL2. [8] Further studies will be needed to determine genetic susceptibility to other infectious diseases and ways public health officials can prevent and test for these infections to enhance the concept of personalized medicine.

Type 1 Diabetes, immunomics, and public health

The term genomics, referring to the organism’s whole genome, is also used to refer to gene informatics, or the collection and storage of genetic data, including the functional information associated with the genes, and the analysis of the data as combinations, patterns and networks by computer algorithms. Systems biology and genomics are natural partners, since the development of genomic information and systems naturally facilitates analysis of systems biology questions involving relationships between genes, their variants (SNPs) and biological function. Such questions include the investigation of signaling pathways, evolutionary trees, or biological networks, such as immune networks and pathways. For this reason, genomics and these approaches are particularly suited to studies in immunology. The study of immunology using genomics, as well as proteomics and transcriptomics (including gene profiles, either genomic or expressed gene mRNA profiles), has been termed immunomics.

Accurate and sensitive prediction of disease, or detection during early stages of disease, could allow the prevention or arrest of disease development as immunotherapy treatments become available. Type-1 diabetes markers associated with disease susceptibility have been identified, for example HLA class II gene variants, however possession of one or more of these genomic markers does not necessarily lead to disease. Lack of progression to disease is likely due to the absence of environmental triggers, absence of other susceptibility genes, presence of protective genes, or differences in the temporal expression or presence of these factors. Combinations of markers have also been associated with susceptibility to type-1 diabetes however again, their presence may not always predict disease development, and conversely, disease may be present without the marker group. Potential variant genes (SNPs) or markers that are linked to the disease include genes for cytokines, membrane-bound ligands, insulin and immune regulatory genes.

Meta-analyses have been able to identify additional associated genes, [10] by pooling a number of large gene datasets. This successful study illustrates the importance of compiling and sharing large genome databases. The inclusion of phenotypic data in these databases will enhance discovery of candidate genes, while the addition of environmental and temporal data should be able to advance the disease progression pathways knowledge. HUGENet, which was initiated by the Centers for Disease Control and Prevention (U.S.), is accomplishing the integration of this type of information with the genome data, in a form available for analysis. [11] This project could be thought of as an example of ‘metagenomics’, the analysis of a community’s genome, [12] but for a human rather than a microbial community. This project is intended to promote international data sharing and collaboration, in addition to creating a standard and framework for the collection of this data.

Nonsyndromic hearing loss

Variations within the human genome are being studied to determine susceptibility to chronic diseases, as well as infectious diseases. According to Aileen Kenneson and Coleen Boyle, about one sixth of the U.S. population has some degree of hearing loss. [13] Recent research has linked variants in the gap junction beta 2 ( GJB2 ) gene to nonsyndromic prelingual sensorineural hearing loss. GJB2 is a gene encoding for connexin, a protein found in the cochlea. Scientists have found over 90 variants in this gene and sequence variations may account for up to 50% of nonsyndromic hearing loss. Variants in GJB2 are being used to determine age of onset, as well as severity of hearing loss.

It is clear that there are also environmental factors to consider. Infections such as rubella and meningitis and low birth weight and artificial ventilation, are known risk factors for hearing loss, but perhaps knowing this, as well as genetic information, will help with early intervention.

Information gained from further research in the role of GJB2 variants in hearing loss may lead to newborn screening for them. As early intervention is crucial to prevent developmental delays in children with hearing loss, the ability to test for susceptibility in young children would be beneficial. Knowing genetic information may also help in the treatment of other diseases if a patient is already at risk.

Further testing is needed, especially in determining the role of GJB2 variants and environmental factors on a population level, however initial studies show promise when using genetic information along with newborn screening.

Genomics and health


The World Health Organization has defined pharmacogenomics as the study of DNA sequence variation as it relates to different drug responses in individuals, i.e., the use of genomics to determine an individual’s response. Pharmacogenomics refers to the use of DNA-based genotyping in order to target pharmaceutical agents to specific patient populations in the design of drugs. [5] [14]

Current estimates state that 2 million hospital patients are affected by adverse drug reactions every year and adverse drug events are the fourth leading cause of death. These adverse drug reactions result in an estimated economic cost of $136 billion per year. Polymorphisms (genetic variations) in individuals affect drug metabolism and therefore an individual's response to a medication. Examples of ways in which genetics may affect an individual’s response to drugs include: drug transporters, metabolism and drug interactions. Pharmacogenetics may be used in the near future by public health practitioners to determine the best candidates for certain drugs, thereby reducing much of the guesswork in prescribing drugs. Such actions have the potential to improve the effectiveness of treatments and reduce adverse drug events. [15]

Nutrition and health

Nutrition is very important in determining various states of health. The field of nutrigenomics is based on the idea that everything ingested into a person’s body affects the genome of the individual. This may be through either upregulating or downregulating the expression of certain genes or by a number of other methods. While the field is quite young there are a number of companies that market directly to the public and promote the issue under the guise of public health. Yet many of these companies claim to benefit the consumer, the tests performed are either not applicable or often result in common sense recommendations. Such companies promote public distrust towards future medical tests that may test more appropriate and applicable agents.

An example of the role of nutrition would be the methylation pathway involving methylene tetrahydrofolate reductase (MTHFR). An individual with the SNP may need increased supplementation of vitamin B12 and folate to override the effect of a variant SNP. Increased risk for neural tube defects [16] and elevated homocysteine levels [17] have been associated with the MTHFR C677T polymorphism.

In 2002, researchers from the Johns Hopkins Bloomberg School of Public Health identified the blueprint of genes and enzymes in the body that enable sulforaphane, a compound found in broccoli and other vegetables, to prevent cancer and remove toxins from cells. The discovery was made using a “gene chip,” which allows researchers to monitor the complex interactions of thousands of proteins on a whole genome rather than one at time. This study was the first gene profiling analysis of a cancer-preventing agent using this approach. [18] [19] University of Minnesota researcher Sabrina Peterson, coauthored a study with Johanna Lampe of the Fred Hutchinson Cancer Research Center, Seattle, in October 2002 that investigated the chemoprotective effect of cruciferous vegetables (e.g., broccoli, brussels sprouts). Study results published in The Journal of Nutrition outline the metabolism and mechanisms of action of cruciferous vegetable constituents, discusses human studies testing effects of cruciferous vegetables on biotransformation systems and summarizes the epidemiologic and experimental evidence for an effect of genetic polymorphisms (genetic variations) in these enzymes in response to cruciferous vegetable intake. [20]

Healthcare and genomics

Members of the public are continually asking how obtaining their genetic blueprint will benefit them, and why they find that they are more susceptible to diseases that have no cures.

Researchers have found that almost all disorders and diseases that affect humans reflect the interplay between the environment and their genes; however we are still in the initial stages of understanding the specific role genes play on common disorders and diseases. [21] For example, while news reports may give a different impression, most cancer is not inherited. It is therefore likely that the recent rise in the rates of cancer worldwide can be at least partially attributed to the rise in the number of synthetic and otherwise toxic compounds found in our society today. Thus, in the near future, public health genomics, and more specifically environmental health, will become an important part of the future healthcare-related issues.

Potential benefits of uncovering the human genome will be focused more on identifying causes of disease and less on treating disease, through: improved diagnostic methods, earlier detection of a predisposing genetic variation, pharmacogenomics and gene therapy. [22]

For each individual, the experience of discovering and knowing their genetic make-up will be different. For some individuals, they will be given the assurance of not obtaining a disease, as a result of familial genes, in which their family has a strong history and some will be able to seek out better medicines or therapies for a disease they already have. Others will find they are more susceptible to a disease that has no cure. Though this information maybe painful, it will give them the opportunity to prevent or delay the on-set of that disease through: increased education of the disease, making lifestyle changes, finding preventive therapies or identifying environmental triggers of the disease. As we continue to have advances in the study of human genetics, we hope to one day incorporate it into the day-to-day practice of healthcare. Understanding one's own genetic blueprint can empower oneself to take an active role in promoting their own health. [23]

Genomics and understanding of disease susceptibility can help validate family history tool for use by practitioners and the public. IOM is validating the family history tool for six common chronic diseases (breast, ovarian, colorectal cancer, diabetes, heart disease, stroke) (IOM Initiative). Validating cost effective tools can help restore importance of basic medical practices (e.g. family history) in comparission to technology intensive investigations. [2]

The genomic face of immune responses

A critical set of phenomena that ties together various aspects of health interventions, such as drug sensitivity screening, cancer or autoimmune susceptibility screening, infectious disease prevalence and application of pharmacologic or nutrition therapies, is the systems biology of the immune response. For example, the influenza epidemic of 1918, as well as the recent cases of human fatality due to H5N1 (avian flu), both illustrate the potentially dangerous sequence of immune responses to this virus. Also well documented is the only case of spontaneous "immunity" to HIV in humans, shown to be due to a mutation in a surface protein on CD4 T cells, the primary targets of HIV. The immune system is truly a sentinel system of the body, with the result that health and disease are carefully balanced by the modulated response of each of its various parts, which then also act in concert as a whole. Especially in industrialized and rapidly developing economies, the high rate of allergic and reactive respiratory disease, autoimmune conditions and cancers are also in part linked to aberrant immune responses that are elicited as the communities' genomes encounter swiftly changing environments. The causes of perturbed immune responses run the gamut of genome-environment interactions due to diet, supplements, sun exposure, workplace exposures, etc. Public health genomics as a whole will absolutely require a rigorous understanding of the changing face of immune responses.

Newborn screening

The experience of newborn screening serves as the introduction to public health genomics for many people. If they did not undergo prenatal genetic testing, having their new baby undergo a heel stick in order to collect a small amount of blood may be the first time an individual or couple encounters genetic testing. Newborn genetic screening is a promising area in public health genomics that appears poised to capitalize on the public health goal of disease prevention as a primary form of treatment.

Most of the diseases that are screened for are extremely rare, single-gene disorders that are often autosomal recessive conditions and are not readily identifiable in neonates without these types of tests. Therefore, often the treating physician has never seen a patient with the disease or condition and so an immediate referral to a specialty clinic is necessary for the family.

Most of the conditions identified in newborn screening are metabolic disorders that either involve i) lacking an enzyme or the ability to metabolize (or breakdown) a particular component of the diet, like phenylketonuria, ii) abnormality of some component of the blood, especially the hemoglobin protein, or iii) alteration of some component of the endocrine system, especially the thyroid gland. Many of these disorders, once identified, can be treated before more severe symptoms, such as mental retardation or stunted growth, set in.

Newborn genetic screening is an area of tremendous growth. In the early 1960s, the only test was for phenylketonuria. In 2000, roughly two-thirds of states in the US screened for 10 or fewer genetic diseases in newborns. Notably, in 2007, 95% of states in the US screen for more than 30 different genetic diseases in newborns. Especially as costs have come down, newborn genetic screening offers “an excellent return on the expenditure of public health dollars.” [21]

Understanding traditional healing practices

Genomics will help develop an understanding of the practices that have evolved over centuries in old civilizations and which have been strengthened by observations (phenotype presentations) from generation to generation, but which lack documentation and scientific evidence. Traditional healers associated specific body types with resistance or susceptibility to particular diseases under specific conditions. Validation and standardization of this knowledge/ practices has not yet been done by modern science. Genomics, by associating genotypes with the phenotypes on which these practices were based, could provide key tools to advance the scientific understanding of some of these traditional healing practices. [24]

See also

Related Research Articles

Epstein–Barr virus virus of the herpes family

The Epstein–Barr virus (EBV), formally called Human gammaherpesvirus 4, is one of eight known human herpesvirus types in the herpes family, and is one of the most common viruses in humans.

Genetic testing medical test

Genetic testing, also known as DNA testing, allows the determination of bloodlines and the genetic diagnosis of vulnerabilities to inherited diseases. In agriculture, a form of genetic testing known as progeny testing can be used to evaluate the quality of breeding stock. In population ecology, genetic testing can be used to track genetic strengths and vulnerabilities of species populations.

In molecular biology, an amplicon is a piece of DNA or RNA that is the source and/or product of amplification or replication events. It can be formed artificially, using various methods including polymerase chain reactions (PCR) or ligase chain reactions (LCR), or naturally through gene duplication. In this context, amplification refers to the production of one or more copies of a genetic fragment or target sequence, specifically the amplicon. As it refers to the product of an amplification reaction, amplicon is used interchangeably with common laboratory terms, such as "PCR product."

Gene–environment interaction

Gene–environment interaction is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way. Environmental variation can be physical, chemical, biological, behavior patterns or life events.

Personalized medicine medical procedure that separates patients into different groups

Personalized medicine, precision medicine, or theranostics is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept though some authors and organisations use these expressions separately to indicate particular nuances.

Medical genetics medical specialty that involves the diagnosis and management of hereditary disorders

Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counselling people with genetic disorders would be considered part of medical genetics.

Virus latency

Virus latency is the ability of a pathogenic virus to lie dormant (latent) within a cell, denoted as the lysogenic part of the viral life cycle. A latent viral infection is a type of persistent viral infection which is distinguished from a chronic viral infection. Latency is the phase in certain viruses' life cycles in which, after initial infection, proliferation of virus particles ceases. However, the viral genome is not fully eradicated. The result of this is that the virus can reactivate and begin producing large amounts of viral progeny without the host being infected by new outside virus, denoted as the lytic part of the viral life cycle, and stays within the host indefinitely.

KEGG biological database

KEGG is a collection of databases dealing with genomes, biological pathways, diseases, drugs, and chemical substances. KEGG is utilized for bioinformatics research and education, including data analysis in genomics, metagenomics, metabolomics and other omics studies, modeling and simulation in systems biology, and translational research in drug development.

In molecular biology, SNP array is a type of DNA microarray which is used to detect polymorphisms within a population. A single nucleotide polymorphism (SNP), a variation at a single site in DNA, is the most frequent type of variation in the genome. Around 325 million SNPs have been identified in the human genome, 15 million of which are present at frequencies of 1% or higher across different populations worldwide.

Predictive medicine is a field of medicine that entails predicting the probability of disease and instituting preventive measures in order to either prevent the disease altogether or significantly decrease its impact upon the patient.

The Cancer Genome Project is part of the cancer, aging, and somatic mutation research based at the Wellcome Trust Sanger Institute in The United Kingdom. It aims to identify sequence variants/mutations critical in the development of human cancers. Like The Cancer Genome Atlas project within the United States, the Cancer Genome Project represents an effort in the War on Cancer to improve cancer diagnosis, treatment, and prevention through a better understanding of the molecular basis of the disease. The Cancer Genome Project was launched by Michael Stratton in 2000, and Peter Campbell is now the group leader of the project. The project works to combine knowledge of the human genome sequence with high throughput mutation detection techniques.

SLC11A1 protein-coding gene in the species Homo sapiens

Natural resistance-associated macrophage protein 1 is a protein that in humans is encoded by the SLC11A1 gene.

1000 Genomes Project International research project to catalog human genetic variation

The 1000 Genomes Project, launched in January 2008, was an international research effort to establish by far the most detailed catalogue of human genetic variation. Scientists planned to sequence the genomes of at least one thousand anonymous participants from a number of different ethnic groups within the following three years, using newly developed technologies which were faster and less expensive. In 2010, the project finished its pilot phase, which was described in detail in a publication in the journal Nature. In 2012, the sequencing of 1092 genomes was announced in a Nature publication. In 2015, two papers in Nature reported results and the completion of the project and opportunities for future research. Many rare variations, restricted to closely related groups, were identified, and eight structural-variation classes were analyzed.

Functional Molecular Infection Epidemiology (FMIE) is an emerging area of medicine that entails the study of pathogen genes and genomes in the context of their functional association with the host niches and the complex interactions they trigger within the host immune system to culminate in varied outcomes of the infection. This can also be defined as the correlation of genetic variations in a pathogen or its respective host with a unique function that is important for disease severity, disease progression, or host susceptibility to a particular pathogen. Functional epidemiology implies not only descriptive host-pathogen genomic associations, but rather the interplay between pathogen and host genomic variations to functionally demonstrate the role of the genetic variations during infection.

The Center for Applied Genomics is a Center of Emphasis at the Children's Hospital of Philadelphia with the primary goal of discovering and translating basic research findings into medical innovations.

Instituto Nacional de Medicina Genómica

The National Institute of Genomic Medicine is one of Mexico's twelve national institutes under the Secretariat of Health. The institute was founded in 2004, with its official headquarters built eight years later. INMEGEN is dedicated to the development of genomic medicine for the Mexican population. The institute carried out research projects aim to improve healthcare through prevention and medical care related to oncogenomics, nutrigenomics and pharmacogenomics. INMEGEN also studies metabolic, cardiovascular, autoimmune and infectious diseases. INMEGEN collaborates with other Mexican and international institutions for the development of different projects. The current director of the institution is Francisco Xavier Soberón.

Sociogenomics, also known as social genomics, is the field of research that examines why and how different social factors and processes affect the activity of the genome. Social genomics as a field is very young and was spurred by the scientific understanding that the expression of genes to their gene products, though not the DNA sequence itself, is affected by the external environment. Social genomics researchers have thus examined the role of social factors on the expression of individual genes, or more commonly, clusters of many genes.

Anavaj Sakuntabhai is a researcher specialising in human genetics of infectious diseases, notably malaria and dengue.

Elaine Ostrander American geneticist

Elaine Ann Ostrander is an American geneticist at the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) in Bethesda, Maryland She holds a number of professional academic appointments, currently serving as Distinguished and Senior Investigator and head of the NHGRI Section of Comparative Genomics; and Chief of the Cancer Genetics and Comparative Genomics Branch. She is known for her research on prostate cancer susceptibility in humans and for conducting genetic investigations with the Canis familiaris, the domestic dog model, which she has used to study disease susceptibility and frequency and other aspects of natural variation across mammals. In 2007, her laboratory showed that much of the variation in body size of domestic dogs is due to sequence changes in a single gene encoding a growth-promoting protein.

Elective genetic and genomic testing are DNA tests performed for an individual who does not have an indication for testing. An elective genetic test analyzes selected sites in the human genome while an elective genomic test analyzes the entire human genome. Some elective genetic and genomic tests require a physician to order the test to ensure that individuals understand the risks and benefits of testing as well as the results. Other DNA-based tests, such as a genealogical DNA test do not require a physician’s order. Elective testing is generally not paid for by health insurance companies. With the advent of personalized medicine, also called precision medicine, an increasing number of individuals are undertaking elective genetic and genomic testing.


  1. Bellagio Group on Public Health Genomics. "Genome-based Research and Population Health" (PDF). Archived from the original on January 7, 2008. Retrieved 3 September 2015.CS1 maint: Unfit url (link)
  2. 1 2 "Genomics and Population Health 2005" . Retrieved 3 September 2015.
  3. "A Time-Line of Genetic Discrimination Legislation, 1990–2005". Archived from the original on March 24, 2008. Retrieved 3 September 2015.CS1 maint: Unfit url (link)
  4. "New Survey Shows Americans Want Genetic Information in Health Care, But Fear Privacy, Ethical, Emotional Implications". 3 November 2005. Archived from the original on May 22, 2011. Retrieved 3 September 2015.CS1 maint: Unfit url (link)
  5. 1 2 Nuffield Council on Bioethics (20 September 2003). "Pharmacogenetics: Ethical Issues". Archived from the original on March 3, 2007. Retrieved 3 September 2015.CS1 maint: Unfit url (link)
  6. Barton ES, White DW, Cathelyn JS, et al. (17 May 2007). "Herpesvirus latency confers symbiotic protection from bacterial infection". Nature. 447 (7142): 326–9. doi:10.1038/nature05762. PMID   17507983.
  7. Kandun IN, Wibisono H, Sedyaningsih ER, et al. (23 November 2006). "Three Indonesian clusters of H5N1 virus infection in 2005". The New England Journal of Medicine. 355 (21): 2186–2194. doi:10.1056/NEJMoa060930. PMID   17124016.
  8. 1 2 Hill AV (December 2006). "Aspects of genetic susceptibility to human infectious diseases". Annual Review of Genetics. 40: 469–486. doi:10.1146/annurev.genet.40.110405.090546. PMID   17094741.
  9. Perrin P (June 2015). "Human and tuberculosis co-evolution: An integrative view". Tuberculosis. 95 Suppl 1: S112–S116. doi:10.1016/ PMID   25841342.
  10. Cox et. al., N. J. (October 2001). "Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families". American Journal of Human Genetics. 69 (4): 820–830. doi:10.1086/323501. PMC   1226067 . PMID   11507694.
  11. Burke et. al., W (July 2006). "The path from genome-based research to population health: development of an international public health genomics network". Genetics in Medicine. 8 (7): 451–8. doi:10.1097/01.gim.0000228213.72256.8c. PMID   16845279.
  12. Council, National Research; Studies, Division on Earth Life; Sciences, Board on Life; Applications, Committee on Metagenomics: Challenges Functional (24 May 2007). The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet. ISBN   978-0309106764.
  13. Khoury et. al., MJ (2003). Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease. Oxford University Press. pp. 423–435. ISBN   978-0195146745.
  14. "Ethical, Legal and Social Implications (ELSI) of human genomics" . Retrieved 3 September 2015.
  15. "Genomics and Its Impact on Science and Society – Oak Ridge National Laboratory" (PDF). Retrieved 3 September 2015.
  16. Monsalve MV, Salzano FM, Rupert JL, Hutz MH, Hill K, Hurtado AM, Hochachka PW, Devine DV (July 2003). "Methylenetetrahydrofolate reductase (MTHFR) allele frequencies in Amerindians". Annals of Human Genetics. 67 (Pt 4): 367–371. doi:10.1046/j.1469-1809.2003.00027.x. PMID   12914571.CS1 maint: Multiple names: authors list (link)
  17. Huang Y, Zhao Yl Yl, Li S (25 January 2002). "Hyperhomocysteine, methylenetetrahydrofolate reductase gene, and other risk factors in ischemic stroke". Zhonghua Yi Xue Za Zhi. 82 (2): 119–122. PMID   11953142.CS1 maint: Multiple names: authors list (link)
  18. "Researchers Identify First Genomic Blueprint of Cancer-Preventive Compound Found in Broccoli" . Retrieved 3 September 2015.
  19. Thimmulappa et. al., Rajesh K. (15 September 2002). "Identification of Nrf2-regulated Genes Induced by the Chemopreventive Agent Sulforaphane by Oligonucleotide Microarray". Cancer Research. 62 (18): 5196–5203. PMID   12234984.
  20. Lampe et. al., Johanna W. (October 2002). "Brassica, Biotransformation and Cancer Risk: Genetic Polymorphisms Alter the Preventive Effects of Cruciferous Vegetables". The Journal of Nutrition. 132 (10): 2991–2994. doi:10.1093/jn/131.10.2991. PMID   12368383.
  21. 1 2 Reilly, Philip (2004). Is it in Your Genes? The Influence of Genes on Common Disorders and Diseases That Affect You and Your Family. New York: Cold Spring Harbor Laboratory Press. ISBN   978-0879697198.
  22. "ARCHIVE: Potential Benefits of HGP Research" . Retrieved 3 September 2015.
  23. "The path from genome-based research to population health: Development of an international public health genomics network" (PDF). July 2006. Archived from the original on July 10, 2007. Retrieved 3 September 2015.CS1 maint: Unfit url (link)
  24. Sun et. al., DZ (28 August 2007). "Syndrome differentiation in traditional Chinese medicine and E-cadherin/ICAM-1 gene protein expression in gastric carcinoma". World Journal of Gastroenterology. 13 (32): 4321–4327. doi:10.3748/wjg.v13.i32.4321. PMC   4250857 . PMID   17708604.


Further reading